1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <linux/uaccess.h> 29 #include <asm/cacheflush.h> 30 #include <asm/sections.h> 31 #include <linux/module.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 35 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 36 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 37 38 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 39 40 int __kprobes arch_prepare_kprobe(struct kprobe *p) 41 { 42 /* Make sure the probe isn't going on a difficult instruction */ 43 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr)) 44 return -EINVAL; 45 46 if ((unsigned long)p->addr & 0x01) 47 return -EINVAL; 48 49 /* Use the get_insn_slot() facility for correctness */ 50 if (!(p->ainsn.insn = get_insn_slot())) 51 return -ENOMEM; 52 53 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 54 55 get_instruction_type(&p->ainsn); 56 p->opcode = *p->addr; 57 return 0; 58 } 59 60 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction) 61 { 62 switch (*(__u8 *) instruction) { 63 case 0x0c: /* bassm */ 64 case 0x0b: /* bsm */ 65 case 0x83: /* diag */ 66 case 0x44: /* ex */ 67 case 0xac: /* stnsm */ 68 case 0xad: /* stosm */ 69 return -EINVAL; 70 } 71 switch (*(__u16 *) instruction) { 72 case 0x0101: /* pr */ 73 case 0xb25a: /* bsa */ 74 case 0xb240: /* bakr */ 75 case 0xb258: /* bsg */ 76 case 0xb218: /* pc */ 77 case 0xb228: /* pt */ 78 case 0xb98d: /* epsw */ 79 return -EINVAL; 80 } 81 return 0; 82 } 83 84 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn) 85 { 86 /* default fixup method */ 87 ainsn->fixup = FIXUP_PSW_NORMAL; 88 89 /* save r1 operand */ 90 ainsn->reg = (*ainsn->insn & 0xf0) >> 4; 91 92 /* save the instruction length (pop 5-5) in bytes */ 93 switch (*(__u8 *) (ainsn->insn) >> 6) { 94 case 0: 95 ainsn->ilen = 2; 96 break; 97 case 1: 98 case 2: 99 ainsn->ilen = 4; 100 break; 101 case 3: 102 ainsn->ilen = 6; 103 break; 104 } 105 106 switch (*(__u8 *) ainsn->insn) { 107 case 0x05: /* balr */ 108 case 0x0d: /* basr */ 109 ainsn->fixup = FIXUP_RETURN_REGISTER; 110 /* if r2 = 0, no branch will be taken */ 111 if ((*ainsn->insn & 0x0f) == 0) 112 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN; 113 break; 114 case 0x06: /* bctr */ 115 case 0x07: /* bcr */ 116 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 117 break; 118 case 0x45: /* bal */ 119 case 0x4d: /* bas */ 120 ainsn->fixup = FIXUP_RETURN_REGISTER; 121 break; 122 case 0x47: /* bc */ 123 case 0x46: /* bct */ 124 case 0x86: /* bxh */ 125 case 0x87: /* bxle */ 126 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 127 break; 128 case 0x82: /* lpsw */ 129 ainsn->fixup = FIXUP_NOT_REQUIRED; 130 break; 131 case 0xb2: /* lpswe */ 132 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) { 133 ainsn->fixup = FIXUP_NOT_REQUIRED; 134 } 135 break; 136 case 0xa7: /* bras */ 137 if ((*ainsn->insn & 0x0f) == 0x05) { 138 ainsn->fixup |= FIXUP_RETURN_REGISTER; 139 } 140 break; 141 case 0xc0: 142 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */ 143 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */ 144 ainsn->fixup |= FIXUP_RETURN_REGISTER; 145 break; 146 case 0xeb: 147 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */ 148 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */ 149 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 150 } 151 break; 152 case 0xe3: /* bctg */ 153 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) { 154 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 155 } 156 break; 157 } 158 } 159 160 static int __kprobes swap_instruction(void *aref) 161 { 162 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 163 unsigned long status = kcb->kprobe_status; 164 struct ins_replace_args *args = aref; 165 int rc; 166 167 kcb->kprobe_status = KPROBE_SWAP_INST; 168 rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new)); 169 kcb->kprobe_status = status; 170 return rc; 171 } 172 173 void __kprobes arch_arm_kprobe(struct kprobe *p) 174 { 175 struct ins_replace_args args; 176 177 args.ptr = p->addr; 178 args.old = p->opcode; 179 args.new = BREAKPOINT_INSTRUCTION; 180 stop_machine(swap_instruction, &args, NULL); 181 } 182 183 void __kprobes arch_disarm_kprobe(struct kprobe *p) 184 { 185 struct ins_replace_args args; 186 187 args.ptr = p->addr; 188 args.old = BREAKPOINT_INSTRUCTION; 189 args.new = p->opcode; 190 stop_machine(swap_instruction, &args, NULL); 191 } 192 193 void __kprobes arch_remove_kprobe(struct kprobe *p) 194 { 195 if (p->ainsn.insn) { 196 free_insn_slot(p->ainsn.insn, 0); 197 p->ainsn.insn = NULL; 198 } 199 } 200 201 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 202 { 203 per_cr_bits kprobe_per_regs[1]; 204 205 memset(kprobe_per_regs, 0, sizeof(per_cr_bits)); 206 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE; 207 208 /* Set up the per control reg info, will pass to lctl */ 209 kprobe_per_regs[0].em_instruction_fetch = 1; 210 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn; 211 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1; 212 213 /* Set the PER control regs, turns on single step for this address */ 214 __ctl_load(kprobe_per_regs, 9, 11); 215 regs->psw.mask |= PSW_MASK_PER; 216 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 217 } 218 219 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 220 { 221 kcb->prev_kprobe.kp = kprobe_running(); 222 kcb->prev_kprobe.status = kcb->kprobe_status; 223 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask; 224 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl, 225 sizeof(kcb->kprobe_saved_ctl)); 226 } 227 228 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 229 { 230 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 231 kcb->kprobe_status = kcb->prev_kprobe.status; 232 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask; 233 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl, 234 sizeof(kcb->kprobe_saved_ctl)); 235 } 236 237 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 238 struct kprobe_ctlblk *kcb) 239 { 240 __get_cpu_var(current_kprobe) = p; 241 /* Save the interrupt and per flags */ 242 kcb->kprobe_saved_imask = regs->psw.mask & 243 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 244 /* Save the control regs that govern PER */ 245 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 246 } 247 248 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 249 struct pt_regs *regs) 250 { 251 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 252 253 /* Replace the return addr with trampoline addr */ 254 regs->gprs[14] = (unsigned long)&kretprobe_trampoline; 255 } 256 257 static int __kprobes kprobe_handler(struct pt_regs *regs) 258 { 259 struct kprobe *p; 260 int ret = 0; 261 unsigned long *addr = (unsigned long *) 262 ((regs->psw.addr & PSW_ADDR_INSN) - 2); 263 struct kprobe_ctlblk *kcb; 264 265 /* 266 * We don't want to be preempted for the entire 267 * duration of kprobe processing 268 */ 269 preempt_disable(); 270 kcb = get_kprobe_ctlblk(); 271 272 /* Check we're not actually recursing */ 273 if (kprobe_running()) { 274 p = get_kprobe(addr); 275 if (p) { 276 if (kcb->kprobe_status == KPROBE_HIT_SS && 277 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { 278 regs->psw.mask &= ~PSW_MASK_PER; 279 regs->psw.mask |= kcb->kprobe_saved_imask; 280 goto no_kprobe; 281 } 282 /* We have reentered the kprobe_handler(), since 283 * another probe was hit while within the handler. 284 * We here save the original kprobes variables and 285 * just single step on the instruction of the new probe 286 * without calling any user handlers. 287 */ 288 save_previous_kprobe(kcb); 289 set_current_kprobe(p, regs, kcb); 290 kprobes_inc_nmissed_count(p); 291 prepare_singlestep(p, regs); 292 kcb->kprobe_status = KPROBE_REENTER; 293 return 1; 294 } else { 295 p = __get_cpu_var(current_kprobe); 296 if (p->break_handler && p->break_handler(p, regs)) { 297 goto ss_probe; 298 } 299 } 300 goto no_kprobe; 301 } 302 303 p = get_kprobe(addr); 304 if (!p) 305 /* 306 * No kprobe at this address. The fault has not been 307 * caused by a kprobe breakpoint. The race of breakpoint 308 * vs. kprobe remove does not exist because on s390 we 309 * use stop_machine to arm/disarm the breakpoints. 310 */ 311 goto no_kprobe; 312 313 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 314 set_current_kprobe(p, regs, kcb); 315 if (p->pre_handler && p->pre_handler(p, regs)) 316 /* handler has already set things up, so skip ss setup */ 317 return 1; 318 319 ss_probe: 320 prepare_singlestep(p, regs); 321 kcb->kprobe_status = KPROBE_HIT_SS; 322 return 1; 323 324 no_kprobe: 325 preempt_enable_no_resched(); 326 return ret; 327 } 328 329 /* 330 * Function return probe trampoline: 331 * - init_kprobes() establishes a probepoint here 332 * - When the probed function returns, this probe 333 * causes the handlers to fire 334 */ 335 static void __used kretprobe_trampoline_holder(void) 336 { 337 asm volatile(".global kretprobe_trampoline\n" 338 "kretprobe_trampoline: bcr 0,0\n"); 339 } 340 341 /* 342 * Called when the probe at kretprobe trampoline is hit 343 */ 344 static int __kprobes trampoline_probe_handler(struct kprobe *p, 345 struct pt_regs *regs) 346 { 347 struct kretprobe_instance *ri = NULL; 348 struct hlist_head *head, empty_rp; 349 struct hlist_node *node, *tmp; 350 unsigned long flags, orig_ret_address = 0; 351 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 352 kprobe_opcode_t *correct_ret_addr = NULL; 353 354 INIT_HLIST_HEAD(&empty_rp); 355 kretprobe_hash_lock(current, &head, &flags); 356 357 /* 358 * It is possible to have multiple instances associated with a given 359 * task either because an multiple functions in the call path 360 * have a return probe installed on them, and/or more than one return 361 * return probe was registered for a target function. 362 * 363 * We can handle this because: 364 * - instances are always inserted at the head of the list 365 * - when multiple return probes are registered for the same 366 * function, the first instance's ret_addr will point to the 367 * real return address, and all the rest will point to 368 * kretprobe_trampoline 369 */ 370 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 371 if (ri->task != current) 372 /* another task is sharing our hash bucket */ 373 continue; 374 375 orig_ret_address = (unsigned long)ri->ret_addr; 376 377 if (orig_ret_address != trampoline_address) 378 /* 379 * This is the real return address. Any other 380 * instances associated with this task are for 381 * other calls deeper on the call stack 382 */ 383 break; 384 } 385 386 kretprobe_assert(ri, orig_ret_address, trampoline_address); 387 388 correct_ret_addr = ri->ret_addr; 389 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 390 if (ri->task != current) 391 /* another task is sharing our hash bucket */ 392 continue; 393 394 orig_ret_address = (unsigned long)ri->ret_addr; 395 396 if (ri->rp && ri->rp->handler) { 397 ri->ret_addr = correct_ret_addr; 398 ri->rp->handler(ri, regs); 399 } 400 401 recycle_rp_inst(ri, &empty_rp); 402 403 if (orig_ret_address != trampoline_address) { 404 /* 405 * This is the real return address. Any other 406 * instances associated with this task are for 407 * other calls deeper on the call stack 408 */ 409 break; 410 } 411 } 412 413 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; 414 415 reset_current_kprobe(); 416 kretprobe_hash_unlock(current, &flags); 417 preempt_enable_no_resched(); 418 419 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 420 hlist_del(&ri->hlist); 421 kfree(ri); 422 } 423 /* 424 * By returning a non-zero value, we are telling 425 * kprobe_handler() that we don't want the post_handler 426 * to run (and have re-enabled preemption) 427 */ 428 return 1; 429 } 430 431 /* 432 * Called after single-stepping. p->addr is the address of the 433 * instruction whose first byte has been replaced by the "breakpoint" 434 * instruction. To avoid the SMP problems that can occur when we 435 * temporarily put back the original opcode to single-step, we 436 * single-stepped a copy of the instruction. The address of this 437 * copy is p->ainsn.insn. 438 */ 439 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 440 { 441 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 442 443 regs->psw.addr &= PSW_ADDR_INSN; 444 445 if (p->ainsn.fixup & FIXUP_PSW_NORMAL) 446 regs->psw.addr = (unsigned long)p->addr + 447 ((unsigned long)regs->psw.addr - 448 (unsigned long)p->ainsn.insn); 449 450 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN) 451 if ((unsigned long)regs->psw.addr - 452 (unsigned long)p->ainsn.insn == p->ainsn.ilen) 453 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen; 454 455 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER) 456 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr + 457 (regs->gprs[p->ainsn.reg] - 458 (unsigned long)p->ainsn.insn)) 459 | PSW_ADDR_AMODE; 460 461 regs->psw.addr |= PSW_ADDR_AMODE; 462 /* turn off PER mode */ 463 regs->psw.mask &= ~PSW_MASK_PER; 464 /* Restore the original per control regs */ 465 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 466 regs->psw.mask |= kcb->kprobe_saved_imask; 467 } 468 469 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 470 { 471 struct kprobe *cur = kprobe_running(); 472 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 473 474 if (!cur) 475 return 0; 476 477 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 478 kcb->kprobe_status = KPROBE_HIT_SSDONE; 479 cur->post_handler(cur, regs, 0); 480 } 481 482 resume_execution(cur, regs); 483 484 /*Restore back the original saved kprobes variables and continue. */ 485 if (kcb->kprobe_status == KPROBE_REENTER) { 486 restore_previous_kprobe(kcb); 487 goto out; 488 } 489 reset_current_kprobe(); 490 out: 491 preempt_enable_no_resched(); 492 493 /* 494 * if somebody else is singlestepping across a probe point, psw mask 495 * will have PER set, in which case, continue the remaining processing 496 * of do_single_step, as if this is not a probe hit. 497 */ 498 if (regs->psw.mask & PSW_MASK_PER) { 499 return 0; 500 } 501 502 return 1; 503 } 504 505 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr) 506 { 507 struct kprobe *cur = kprobe_running(); 508 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 509 const struct exception_table_entry *entry; 510 511 switch(kcb->kprobe_status) { 512 case KPROBE_SWAP_INST: 513 /* We are here because the instruction replacement failed */ 514 return 0; 515 case KPROBE_HIT_SS: 516 case KPROBE_REENTER: 517 /* 518 * We are here because the instruction being single 519 * stepped caused a page fault. We reset the current 520 * kprobe and the nip points back to the probe address 521 * and allow the page fault handler to continue as a 522 * normal page fault. 523 */ 524 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE; 525 regs->psw.mask &= ~PSW_MASK_PER; 526 regs->psw.mask |= kcb->kprobe_saved_imask; 527 if (kcb->kprobe_status == KPROBE_REENTER) 528 restore_previous_kprobe(kcb); 529 else { 530 reset_current_kprobe(); 531 } 532 preempt_enable_no_resched(); 533 break; 534 case KPROBE_HIT_ACTIVE: 535 case KPROBE_HIT_SSDONE: 536 /* 537 * We increment the nmissed count for accounting, 538 * we can also use npre/npostfault count for accouting 539 * these specific fault cases. 540 */ 541 kprobes_inc_nmissed_count(cur); 542 543 /* 544 * We come here because instructions in the pre/post 545 * handler caused the page_fault, this could happen 546 * if handler tries to access user space by 547 * copy_from_user(), get_user() etc. Let the 548 * user-specified handler try to fix it first. 549 */ 550 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 551 return 1; 552 553 /* 554 * In case the user-specified fault handler returned 555 * zero, try to fix up. 556 */ 557 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 558 if (entry) { 559 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE; 560 return 1; 561 } 562 563 /* 564 * fixup_exception() could not handle it, 565 * Let do_page_fault() fix it. 566 */ 567 break; 568 default: 569 break; 570 } 571 return 0; 572 } 573 574 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 575 { 576 int ret; 577 578 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 579 local_irq_disable(); 580 ret = kprobe_trap_handler(regs, trapnr); 581 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 582 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 583 return ret; 584 } 585 586 /* 587 * Wrapper routine to for handling exceptions. 588 */ 589 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 590 unsigned long val, void *data) 591 { 592 struct die_args *args = (struct die_args *)data; 593 struct pt_regs *regs = args->regs; 594 int ret = NOTIFY_DONE; 595 596 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 597 local_irq_disable(); 598 599 switch (val) { 600 case DIE_BPT: 601 if (kprobe_handler(args->regs)) 602 ret = NOTIFY_STOP; 603 break; 604 case DIE_SSTEP: 605 if (post_kprobe_handler(args->regs)) 606 ret = NOTIFY_STOP; 607 break; 608 case DIE_TRAP: 609 if (!preemptible() && kprobe_running() && 610 kprobe_trap_handler(args->regs, args->trapnr)) 611 ret = NOTIFY_STOP; 612 break; 613 default: 614 break; 615 } 616 617 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 618 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 619 620 return ret; 621 } 622 623 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 624 { 625 struct jprobe *jp = container_of(p, struct jprobe, kp); 626 unsigned long addr; 627 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 628 629 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 630 631 /* setup return addr to the jprobe handler routine */ 632 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE; 633 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 634 635 /* r14 is the function return address */ 636 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14]; 637 /* r15 is the stack pointer */ 638 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15]; 639 addr = (unsigned long)kcb->jprobe_saved_r15; 640 641 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, 642 MIN_STACK_SIZE(addr)); 643 return 1; 644 } 645 646 void __kprobes jprobe_return(void) 647 { 648 asm volatile(".word 0x0002"); 649 } 650 651 void __kprobes jprobe_return_end(void) 652 { 653 asm volatile("bcr 0,0"); 654 } 655 656 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 657 { 658 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 659 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15); 660 661 /* Put the regs back */ 662 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 663 /* put the stack back */ 664 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, 665 MIN_STACK_SIZE(stack_addr)); 666 preempt_enable_no_resched(); 667 return 1; 668 } 669 670 static struct kprobe trampoline_p = { 671 .addr = (kprobe_opcode_t *) & kretprobe_trampoline, 672 .pre_handler = trampoline_probe_handler 673 }; 674 675 int __init arch_init_kprobes(void) 676 { 677 return register_kprobe(&trampoline_p); 678 } 679 680 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 681 { 682 if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline) 683 return 1; 684 return 0; 685 } 686