xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision b9ccfda2)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 
35 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
36 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
37 
38 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
39 
40 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
41 {
42 	switch (insn[0] >> 8) {
43 	case 0x0c:	/* bassm */
44 	case 0x0b:	/* bsm	 */
45 	case 0x83:	/* diag  */
46 	case 0x44:	/* ex	 */
47 	case 0xac:	/* stnsm */
48 	case 0xad:	/* stosm */
49 		return -EINVAL;
50 	}
51 	switch (insn[0]) {
52 	case 0x0101:	/* pr	 */
53 	case 0xb25a:	/* bsa	 */
54 	case 0xb240:	/* bakr  */
55 	case 0xb258:	/* bsg	 */
56 	case 0xb218:	/* pc	 */
57 	case 0xb228:	/* pt	 */
58 	case 0xb98d:	/* epsw	 */
59 		return -EINVAL;
60 	}
61 	return 0;
62 }
63 
64 static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
65 {
66 	/* default fixup method */
67 	int fixup = FIXUP_PSW_NORMAL;
68 
69 	switch (insn[0] >> 8) {
70 	case 0x05:	/* balr	*/
71 	case 0x0d:	/* basr */
72 		fixup = FIXUP_RETURN_REGISTER;
73 		/* if r2 = 0, no branch will be taken */
74 		if ((insn[0] & 0x0f) == 0)
75 			fixup |= FIXUP_BRANCH_NOT_TAKEN;
76 		break;
77 	case 0x06:	/* bctr	*/
78 	case 0x07:	/* bcr	*/
79 		fixup = FIXUP_BRANCH_NOT_TAKEN;
80 		break;
81 	case 0x45:	/* bal	*/
82 	case 0x4d:	/* bas	*/
83 		fixup = FIXUP_RETURN_REGISTER;
84 		break;
85 	case 0x47:	/* bc	*/
86 	case 0x46:	/* bct	*/
87 	case 0x86:	/* bxh	*/
88 	case 0x87:	/* bxle	*/
89 		fixup = FIXUP_BRANCH_NOT_TAKEN;
90 		break;
91 	case 0x82:	/* lpsw	*/
92 		fixup = FIXUP_NOT_REQUIRED;
93 		break;
94 	case 0xb2:	/* lpswe */
95 		if ((insn[0] & 0xff) == 0xb2)
96 			fixup = FIXUP_NOT_REQUIRED;
97 		break;
98 	case 0xa7:	/* bras	*/
99 		if ((insn[0] & 0x0f) == 0x05)
100 			fixup |= FIXUP_RETURN_REGISTER;
101 		break;
102 	case 0xc0:
103 		if ((insn[0] & 0x0f) == 0x00 ||	/* larl  */
104 		    (insn[0] & 0x0f) == 0x05)	/* brasl */
105 		fixup |= FIXUP_RETURN_REGISTER;
106 		break;
107 	case 0xeb:
108 		if ((insn[2] & 0xff) == 0x44 ||	/* bxhg  */
109 		    (insn[2] & 0xff) == 0x45)	/* bxleg */
110 			fixup = FIXUP_BRANCH_NOT_TAKEN;
111 		break;
112 	case 0xe3:	/* bctg	*/
113 		if ((insn[2] & 0xff) == 0x46)
114 			fixup = FIXUP_BRANCH_NOT_TAKEN;
115 		break;
116 	}
117 	return fixup;
118 }
119 
120 int __kprobes arch_prepare_kprobe(struct kprobe *p)
121 {
122 	if ((unsigned long) p->addr & 0x01)
123 		return -EINVAL;
124 
125 	/* Make sure the probe isn't going on a difficult instruction */
126 	if (is_prohibited_opcode(p->addr))
127 		return -EINVAL;
128 
129 	p->opcode = *p->addr;
130 	memcpy(p->ainsn.insn, p->addr, ((p->opcode >> 14) + 3) & -2);
131 
132 	return 0;
133 }
134 
135 struct ins_replace_args {
136 	kprobe_opcode_t *ptr;
137 	kprobe_opcode_t opcode;
138 };
139 
140 static int __kprobes swap_instruction(void *aref)
141 {
142 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
143 	unsigned long status = kcb->kprobe_status;
144 	struct ins_replace_args *args = aref;
145 
146 	kcb->kprobe_status = KPROBE_SWAP_INST;
147 	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
148 	kcb->kprobe_status = status;
149 	return 0;
150 }
151 
152 void __kprobes arch_arm_kprobe(struct kprobe *p)
153 {
154 	struct ins_replace_args args;
155 
156 	args.ptr = p->addr;
157 	args.opcode = BREAKPOINT_INSTRUCTION;
158 	stop_machine(swap_instruction, &args, NULL);
159 }
160 
161 void __kprobes arch_disarm_kprobe(struct kprobe *p)
162 {
163 	struct ins_replace_args args;
164 
165 	args.ptr = p->addr;
166 	args.opcode = p->opcode;
167 	stop_machine(swap_instruction, &args, NULL);
168 }
169 
170 void __kprobes arch_remove_kprobe(struct kprobe *p)
171 {
172 }
173 
174 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
175 					struct pt_regs *regs,
176 					unsigned long ip)
177 {
178 	struct per_regs per_kprobe;
179 
180 	/* Set up the PER control registers %cr9-%cr11 */
181 	per_kprobe.control = PER_EVENT_IFETCH;
182 	per_kprobe.start = ip;
183 	per_kprobe.end = ip;
184 
185 	/* Save control regs and psw mask */
186 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
187 	kcb->kprobe_saved_imask = regs->psw.mask &
188 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
189 
190 	/* Set PER control regs, turns on single step for the given address */
191 	__ctl_load(per_kprobe, 9, 11);
192 	regs->psw.mask |= PSW_MASK_PER;
193 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
194 	regs->psw.addr = ip | PSW_ADDR_AMODE;
195 }
196 
197 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
198 					 struct pt_regs *regs,
199 					 unsigned long ip)
200 {
201 	/* Restore control regs and psw mask, set new psw address */
202 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
203 	regs->psw.mask &= ~PSW_MASK_PER;
204 	regs->psw.mask |= kcb->kprobe_saved_imask;
205 	regs->psw.addr = ip | PSW_ADDR_AMODE;
206 }
207 
208 /*
209  * Activate a kprobe by storing its pointer to current_kprobe. The
210  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
211  * two kprobes can be active, see KPROBE_REENTER.
212  */
213 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
214 {
215 	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
216 	kcb->prev_kprobe.status = kcb->kprobe_status;
217 	__get_cpu_var(current_kprobe) = p;
218 }
219 
220 /*
221  * Deactivate a kprobe by backing up to the previous state. If the
222  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
223  * for any other state prev_kprobe.kp will be NULL.
224  */
225 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
226 {
227 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
228 	kcb->kprobe_status = kcb->prev_kprobe.status;
229 }
230 
231 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
232 					struct pt_regs *regs)
233 {
234 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
235 
236 	/* Replace the return addr with trampoline addr */
237 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
238 }
239 
240 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
241 					   struct kprobe *p)
242 {
243 	switch (kcb->kprobe_status) {
244 	case KPROBE_HIT_SSDONE:
245 	case KPROBE_HIT_ACTIVE:
246 		kprobes_inc_nmissed_count(p);
247 		break;
248 	case KPROBE_HIT_SS:
249 	case KPROBE_REENTER:
250 	default:
251 		/*
252 		 * A kprobe on the code path to single step an instruction
253 		 * is a BUG. The code path resides in the .kprobes.text
254 		 * section and is executed with interrupts disabled.
255 		 */
256 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
257 		dump_kprobe(p);
258 		BUG();
259 	}
260 }
261 
262 static int __kprobes kprobe_handler(struct pt_regs *regs)
263 {
264 	struct kprobe_ctlblk *kcb;
265 	struct kprobe *p;
266 
267 	/*
268 	 * We want to disable preemption for the entire duration of kprobe
269 	 * processing. That includes the calls to the pre/post handlers
270 	 * and single stepping the kprobe instruction.
271 	 */
272 	preempt_disable();
273 	kcb = get_kprobe_ctlblk();
274 	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
275 
276 	if (p) {
277 		if (kprobe_running()) {
278 			/*
279 			 * We have hit a kprobe while another is still
280 			 * active. This can happen in the pre and post
281 			 * handler. Single step the instruction of the
282 			 * new probe but do not call any handler function
283 			 * of this secondary kprobe.
284 			 * push_kprobe and pop_kprobe saves and restores
285 			 * the currently active kprobe.
286 			 */
287 			kprobe_reenter_check(kcb, p);
288 			push_kprobe(kcb, p);
289 			kcb->kprobe_status = KPROBE_REENTER;
290 		} else {
291 			/*
292 			 * If we have no pre-handler or it returned 0, we
293 			 * continue with single stepping. If we have a
294 			 * pre-handler and it returned non-zero, it prepped
295 			 * for calling the break_handler below on re-entry
296 			 * for jprobe processing, so get out doing nothing
297 			 * more here.
298 			 */
299 			push_kprobe(kcb, p);
300 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
301 			if (p->pre_handler && p->pre_handler(p, regs))
302 				return 1;
303 			kcb->kprobe_status = KPROBE_HIT_SS;
304 		}
305 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
306 		return 1;
307 	} else if (kprobe_running()) {
308 		p = __get_cpu_var(current_kprobe);
309 		if (p->break_handler && p->break_handler(p, regs)) {
310 			/*
311 			 * Continuation after the jprobe completed and
312 			 * caused the jprobe_return trap. The jprobe
313 			 * break_handler "returns" to the original
314 			 * function that still has the kprobe breakpoint
315 			 * installed. We continue with single stepping.
316 			 */
317 			kcb->kprobe_status = KPROBE_HIT_SS;
318 			enable_singlestep(kcb, regs,
319 					  (unsigned long) p->ainsn.insn);
320 			return 1;
321 		} /* else:
322 		   * No kprobe at this address and the current kprobe
323 		   * has no break handler (no jprobe!). The kernel just
324 		   * exploded, let the standard trap handler pick up the
325 		   * pieces.
326 		   */
327 	} /* else:
328 	   * No kprobe at this address and no active kprobe. The trap has
329 	   * not been caused by a kprobe breakpoint. The race of breakpoint
330 	   * vs. kprobe remove does not exist because on s390 as we use
331 	   * stop_machine to arm/disarm the breakpoints.
332 	   */
333 	preempt_enable_no_resched();
334 	return 0;
335 }
336 
337 /*
338  * Function return probe trampoline:
339  *	- init_kprobes() establishes a probepoint here
340  *	- When the probed function returns, this probe
341  *		causes the handlers to fire
342  */
343 static void __used kretprobe_trampoline_holder(void)
344 {
345 	asm volatile(".global kretprobe_trampoline\n"
346 		     "kretprobe_trampoline: bcr 0,0\n");
347 }
348 
349 /*
350  * Called when the probe at kretprobe trampoline is hit
351  */
352 static int __kprobes trampoline_probe_handler(struct kprobe *p,
353 					      struct pt_regs *regs)
354 {
355 	struct kretprobe_instance *ri;
356 	struct hlist_head *head, empty_rp;
357 	struct hlist_node *node, *tmp;
358 	unsigned long flags, orig_ret_address;
359 	unsigned long trampoline_address;
360 	kprobe_opcode_t *correct_ret_addr;
361 
362 	INIT_HLIST_HEAD(&empty_rp);
363 	kretprobe_hash_lock(current, &head, &flags);
364 
365 	/*
366 	 * It is possible to have multiple instances associated with a given
367 	 * task either because an multiple functions in the call path
368 	 * have a return probe installed on them, and/or more than one return
369 	 * return probe was registered for a target function.
370 	 *
371 	 * We can handle this because:
372 	 *     - instances are always inserted at the head of the list
373 	 *     - when multiple return probes are registered for the same
374 	 *	 function, the first instance's ret_addr will point to the
375 	 *	 real return address, and all the rest will point to
376 	 *	 kretprobe_trampoline
377 	 */
378 	ri = NULL;
379 	orig_ret_address = 0;
380 	correct_ret_addr = NULL;
381 	trampoline_address = (unsigned long) &kretprobe_trampoline;
382 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
383 		if (ri->task != current)
384 			/* another task is sharing our hash bucket */
385 			continue;
386 
387 		orig_ret_address = (unsigned long) ri->ret_addr;
388 
389 		if (orig_ret_address != trampoline_address)
390 			/*
391 			 * This is the real return address. Any other
392 			 * instances associated with this task are for
393 			 * other calls deeper on the call stack
394 			 */
395 			break;
396 	}
397 
398 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
399 
400 	correct_ret_addr = ri->ret_addr;
401 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
402 		if (ri->task != current)
403 			/* another task is sharing our hash bucket */
404 			continue;
405 
406 		orig_ret_address = (unsigned long) ri->ret_addr;
407 
408 		if (ri->rp && ri->rp->handler) {
409 			ri->ret_addr = correct_ret_addr;
410 			ri->rp->handler(ri, regs);
411 		}
412 
413 		recycle_rp_inst(ri, &empty_rp);
414 
415 		if (orig_ret_address != trampoline_address)
416 			/*
417 			 * This is the real return address. Any other
418 			 * instances associated with this task are for
419 			 * other calls deeper on the call stack
420 			 */
421 			break;
422 	}
423 
424 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
425 
426 	pop_kprobe(get_kprobe_ctlblk());
427 	kretprobe_hash_unlock(current, &flags);
428 	preempt_enable_no_resched();
429 
430 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
431 		hlist_del(&ri->hlist);
432 		kfree(ri);
433 	}
434 	/*
435 	 * By returning a non-zero value, we are telling
436 	 * kprobe_handler() that we don't want the post_handler
437 	 * to run (and have re-enabled preemption)
438 	 */
439 	return 1;
440 }
441 
442 /*
443  * Called after single-stepping.  p->addr is the address of the
444  * instruction whose first byte has been replaced by the "breakpoint"
445  * instruction.  To avoid the SMP problems that can occur when we
446  * temporarily put back the original opcode to single-step, we
447  * single-stepped a copy of the instruction.  The address of this
448  * copy is p->ainsn.insn.
449  */
450 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
451 {
452 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
453 	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
454 	int fixup = get_fixup_type(p->ainsn.insn);
455 
456 	if (fixup & FIXUP_PSW_NORMAL)
457 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
458 
459 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
460 		int ilen = ((p->ainsn.insn[0] >> 14) + 3) & -2;
461 		if (ip - (unsigned long) p->ainsn.insn == ilen)
462 			ip = (unsigned long) p->addr + ilen;
463 	}
464 
465 	if (fixup & FIXUP_RETURN_REGISTER) {
466 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
467 		regs->gprs[reg] += (unsigned long) p->addr -
468 				   (unsigned long) p->ainsn.insn;
469 	}
470 
471 	disable_singlestep(kcb, regs, ip);
472 }
473 
474 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
475 {
476 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
477 	struct kprobe *p = kprobe_running();
478 
479 	if (!p)
480 		return 0;
481 
482 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
483 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
484 		p->post_handler(p, regs, 0);
485 	}
486 
487 	resume_execution(p, regs);
488 	pop_kprobe(kcb);
489 	preempt_enable_no_resched();
490 
491 	/*
492 	 * if somebody else is singlestepping across a probe point, psw mask
493 	 * will have PER set, in which case, continue the remaining processing
494 	 * of do_single_step, as if this is not a probe hit.
495 	 */
496 	if (regs->psw.mask & PSW_MASK_PER)
497 		return 0;
498 
499 	return 1;
500 }
501 
502 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
503 {
504 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
505 	struct kprobe *p = kprobe_running();
506 	const struct exception_table_entry *entry;
507 
508 	switch(kcb->kprobe_status) {
509 	case KPROBE_SWAP_INST:
510 		/* We are here because the instruction replacement failed */
511 		return 0;
512 	case KPROBE_HIT_SS:
513 	case KPROBE_REENTER:
514 		/*
515 		 * We are here because the instruction being single
516 		 * stepped caused a page fault. We reset the current
517 		 * kprobe and the nip points back to the probe address
518 		 * and allow the page fault handler to continue as a
519 		 * normal page fault.
520 		 */
521 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
522 		pop_kprobe(kcb);
523 		preempt_enable_no_resched();
524 		break;
525 	case KPROBE_HIT_ACTIVE:
526 	case KPROBE_HIT_SSDONE:
527 		/*
528 		 * We increment the nmissed count for accounting,
529 		 * we can also use npre/npostfault count for accouting
530 		 * these specific fault cases.
531 		 */
532 		kprobes_inc_nmissed_count(p);
533 
534 		/*
535 		 * We come here because instructions in the pre/post
536 		 * handler caused the page_fault, this could happen
537 		 * if handler tries to access user space by
538 		 * copy_from_user(), get_user() etc. Let the
539 		 * user-specified handler try to fix it first.
540 		 */
541 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
542 			return 1;
543 
544 		/*
545 		 * In case the user-specified fault handler returned
546 		 * zero, try to fix up.
547 		 */
548 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
549 		if (entry) {
550 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
551 			return 1;
552 		}
553 
554 		/*
555 		 * fixup_exception() could not handle it,
556 		 * Let do_page_fault() fix it.
557 		 */
558 		break;
559 	default:
560 		break;
561 	}
562 	return 0;
563 }
564 
565 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
566 {
567 	int ret;
568 
569 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
570 		local_irq_disable();
571 	ret = kprobe_trap_handler(regs, trapnr);
572 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
573 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
574 	return ret;
575 }
576 
577 /*
578  * Wrapper routine to for handling exceptions.
579  */
580 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
581 				       unsigned long val, void *data)
582 {
583 	struct die_args *args = (struct die_args *) data;
584 	struct pt_regs *regs = args->regs;
585 	int ret = NOTIFY_DONE;
586 
587 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
588 		local_irq_disable();
589 
590 	switch (val) {
591 	case DIE_BPT:
592 		if (kprobe_handler(regs))
593 			ret = NOTIFY_STOP;
594 		break;
595 	case DIE_SSTEP:
596 		if (post_kprobe_handler(regs))
597 			ret = NOTIFY_STOP;
598 		break;
599 	case DIE_TRAP:
600 		if (!preemptible() && kprobe_running() &&
601 		    kprobe_trap_handler(regs, args->trapnr))
602 			ret = NOTIFY_STOP;
603 		break;
604 	default:
605 		break;
606 	}
607 
608 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
609 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
610 
611 	return ret;
612 }
613 
614 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
615 {
616 	struct jprobe *jp = container_of(p, struct jprobe, kp);
617 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
618 	unsigned long stack;
619 
620 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
621 
622 	/* setup return addr to the jprobe handler routine */
623 	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
624 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
625 
626 	/* r15 is the stack pointer */
627 	stack = (unsigned long) regs->gprs[15];
628 
629 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
630 	return 1;
631 }
632 
633 void __kprobes jprobe_return(void)
634 {
635 	asm volatile(".word 0x0002");
636 }
637 
638 static void __used __kprobes jprobe_return_end(void)
639 {
640 	asm volatile("bcr 0,0");
641 }
642 
643 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
644 {
645 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
646 	unsigned long stack;
647 
648 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
649 
650 	/* Put the regs back */
651 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
652 	/* put the stack back */
653 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
654 	preempt_enable_no_resched();
655 	return 1;
656 }
657 
658 static struct kprobe trampoline = {
659 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
660 	.pre_handler = trampoline_probe_handler
661 };
662 
663 int __init arch_init_kprobes(void)
664 {
665 	return register_kprobe(&trampoline);
666 }
667 
668 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
669 {
670 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
671 }
672