1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <asm/cacheflush.h> 29 #include <asm/sections.h> 30 #include <asm/uaccess.h> 31 #include <linux/module.h> 32 33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 35 36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 37 38 int __kprobes arch_prepare_kprobe(struct kprobe *p) 39 { 40 /* Make sure the probe isn't going on a difficult instruction */ 41 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr)) 42 return -EINVAL; 43 44 if ((unsigned long)p->addr & 0x01) 45 return -EINVAL; 46 47 /* Use the get_insn_slot() facility for correctness */ 48 if (!(p->ainsn.insn = get_insn_slot())) 49 return -ENOMEM; 50 51 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 52 53 get_instruction_type(&p->ainsn); 54 p->opcode = *p->addr; 55 return 0; 56 } 57 58 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction) 59 { 60 switch (*(__u8 *) instruction) { 61 case 0x0c: /* bassm */ 62 case 0x0b: /* bsm */ 63 case 0x83: /* diag */ 64 case 0x44: /* ex */ 65 return -EINVAL; 66 } 67 switch (*(__u16 *) instruction) { 68 case 0x0101: /* pr */ 69 case 0xb25a: /* bsa */ 70 case 0xb240: /* bakr */ 71 case 0xb258: /* bsg */ 72 case 0xb218: /* pc */ 73 case 0xb228: /* pt */ 74 return -EINVAL; 75 } 76 return 0; 77 } 78 79 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn) 80 { 81 /* default fixup method */ 82 ainsn->fixup = FIXUP_PSW_NORMAL; 83 84 /* save r1 operand */ 85 ainsn->reg = (*ainsn->insn & 0xf0) >> 4; 86 87 /* save the instruction length (pop 5-5) in bytes */ 88 switch (*(__u8 *) (ainsn->insn) >> 6) { 89 case 0: 90 ainsn->ilen = 2; 91 break; 92 case 1: 93 case 2: 94 ainsn->ilen = 4; 95 break; 96 case 3: 97 ainsn->ilen = 6; 98 break; 99 } 100 101 switch (*(__u8 *) ainsn->insn) { 102 case 0x05: /* balr */ 103 case 0x0d: /* basr */ 104 ainsn->fixup = FIXUP_RETURN_REGISTER; 105 /* if r2 = 0, no branch will be taken */ 106 if ((*ainsn->insn & 0x0f) == 0) 107 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN; 108 break; 109 case 0x06: /* bctr */ 110 case 0x07: /* bcr */ 111 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 112 break; 113 case 0x45: /* bal */ 114 case 0x4d: /* bas */ 115 ainsn->fixup = FIXUP_RETURN_REGISTER; 116 break; 117 case 0x47: /* bc */ 118 case 0x46: /* bct */ 119 case 0x86: /* bxh */ 120 case 0x87: /* bxle */ 121 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 122 break; 123 case 0x82: /* lpsw */ 124 ainsn->fixup = FIXUP_NOT_REQUIRED; 125 break; 126 case 0xb2: /* lpswe */ 127 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) { 128 ainsn->fixup = FIXUP_NOT_REQUIRED; 129 } 130 break; 131 case 0xa7: /* bras */ 132 if ((*ainsn->insn & 0x0f) == 0x05) { 133 ainsn->fixup |= FIXUP_RETURN_REGISTER; 134 } 135 break; 136 case 0xc0: 137 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */ 138 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */ 139 ainsn->fixup |= FIXUP_RETURN_REGISTER; 140 break; 141 case 0xeb: 142 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */ 143 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */ 144 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 145 } 146 break; 147 case 0xe3: /* bctg */ 148 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) { 149 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 150 } 151 break; 152 } 153 } 154 155 static int __kprobes swap_instruction(void *aref) 156 { 157 struct ins_replace_args *args = aref; 158 u32 *addr; 159 u32 instr; 160 int err = -EFAULT; 161 162 /* 163 * Text segment is read-only, hence we use stura to bypass dynamic 164 * address translation to exchange the instruction. Since stura 165 * always operates on four bytes, but we only want to exchange two 166 * bytes do some calculations to get things right. In addition we 167 * shall not cross any page boundaries (vmalloc area!) when writing 168 * the new instruction. 169 */ 170 addr = (u32 *)((unsigned long)args->ptr & -4UL); 171 if ((unsigned long)args->ptr & 2) 172 instr = ((*addr) & 0xffff0000) | args->new; 173 else 174 instr = ((*addr) & 0x0000ffff) | args->new << 16; 175 176 asm volatile( 177 " lra %1,0(%1)\n" 178 "0: stura %2,%1\n" 179 "1: la %0,0\n" 180 "2:\n" 181 EX_TABLE(0b,2b) 182 : "+d" (err) 183 : "a" (addr), "d" (instr) 184 : "memory", "cc"); 185 186 return err; 187 } 188 189 void __kprobes arch_arm_kprobe(struct kprobe *p) 190 { 191 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 192 unsigned long status = kcb->kprobe_status; 193 struct ins_replace_args args; 194 195 args.ptr = p->addr; 196 args.old = p->opcode; 197 args.new = BREAKPOINT_INSTRUCTION; 198 199 kcb->kprobe_status = KPROBE_SWAP_INST; 200 stop_machine(swap_instruction, &args, NULL); 201 kcb->kprobe_status = status; 202 } 203 204 void __kprobes arch_disarm_kprobe(struct kprobe *p) 205 { 206 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 207 unsigned long status = kcb->kprobe_status; 208 struct ins_replace_args args; 209 210 args.ptr = p->addr; 211 args.old = BREAKPOINT_INSTRUCTION; 212 args.new = p->opcode; 213 214 kcb->kprobe_status = KPROBE_SWAP_INST; 215 stop_machine(swap_instruction, &args, NULL); 216 kcb->kprobe_status = status; 217 } 218 219 void __kprobes arch_remove_kprobe(struct kprobe *p) 220 { 221 if (p->ainsn.insn) { 222 free_insn_slot(p->ainsn.insn, 0); 223 p->ainsn.insn = NULL; 224 } 225 } 226 227 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 228 { 229 per_cr_bits kprobe_per_regs[1]; 230 231 memset(kprobe_per_regs, 0, sizeof(per_cr_bits)); 232 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE; 233 234 /* Set up the per control reg info, will pass to lctl */ 235 kprobe_per_regs[0].em_instruction_fetch = 1; 236 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn; 237 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1; 238 239 /* Set the PER control regs, turns on single step for this address */ 240 __ctl_load(kprobe_per_regs, 9, 11); 241 regs->psw.mask |= PSW_MASK_PER; 242 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); 243 } 244 245 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 246 { 247 kcb->prev_kprobe.kp = kprobe_running(); 248 kcb->prev_kprobe.status = kcb->kprobe_status; 249 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask; 250 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl, 251 sizeof(kcb->kprobe_saved_ctl)); 252 } 253 254 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 255 { 256 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 257 kcb->kprobe_status = kcb->prev_kprobe.status; 258 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask; 259 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl, 260 sizeof(kcb->kprobe_saved_ctl)); 261 } 262 263 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 264 struct kprobe_ctlblk *kcb) 265 { 266 __get_cpu_var(current_kprobe) = p; 267 /* Save the interrupt and per flags */ 268 kcb->kprobe_saved_imask = regs->psw.mask & 269 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); 270 /* Save the control regs that govern PER */ 271 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 272 } 273 274 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 275 struct pt_regs *regs) 276 { 277 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 278 279 /* Replace the return addr with trampoline addr */ 280 regs->gprs[14] = (unsigned long)&kretprobe_trampoline; 281 } 282 283 static int __kprobes kprobe_handler(struct pt_regs *regs) 284 { 285 struct kprobe *p; 286 int ret = 0; 287 unsigned long *addr = (unsigned long *) 288 ((regs->psw.addr & PSW_ADDR_INSN) - 2); 289 struct kprobe_ctlblk *kcb; 290 291 /* 292 * We don't want to be preempted for the entire 293 * duration of kprobe processing 294 */ 295 preempt_disable(); 296 kcb = get_kprobe_ctlblk(); 297 298 /* Check we're not actually recursing */ 299 if (kprobe_running()) { 300 p = get_kprobe(addr); 301 if (p) { 302 if (kcb->kprobe_status == KPROBE_HIT_SS && 303 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { 304 regs->psw.mask &= ~PSW_MASK_PER; 305 regs->psw.mask |= kcb->kprobe_saved_imask; 306 goto no_kprobe; 307 } 308 /* We have reentered the kprobe_handler(), since 309 * another probe was hit while within the handler. 310 * We here save the original kprobes variables and 311 * just single step on the instruction of the new probe 312 * without calling any user handlers. 313 */ 314 save_previous_kprobe(kcb); 315 set_current_kprobe(p, regs, kcb); 316 kprobes_inc_nmissed_count(p); 317 prepare_singlestep(p, regs); 318 kcb->kprobe_status = KPROBE_REENTER; 319 return 1; 320 } else { 321 p = __get_cpu_var(current_kprobe); 322 if (p->break_handler && p->break_handler(p, regs)) { 323 goto ss_probe; 324 } 325 } 326 goto no_kprobe; 327 } 328 329 p = get_kprobe(addr); 330 if (!p) 331 /* 332 * No kprobe at this address. The fault has not been 333 * caused by a kprobe breakpoint. The race of breakpoint 334 * vs. kprobe remove does not exist because on s390 we 335 * use stop_machine to arm/disarm the breakpoints. 336 */ 337 goto no_kprobe; 338 339 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 340 set_current_kprobe(p, regs, kcb); 341 if (p->pre_handler && p->pre_handler(p, regs)) 342 /* handler has already set things up, so skip ss setup */ 343 return 1; 344 345 ss_probe: 346 prepare_singlestep(p, regs); 347 kcb->kprobe_status = KPROBE_HIT_SS; 348 return 1; 349 350 no_kprobe: 351 preempt_enable_no_resched(); 352 return ret; 353 } 354 355 /* 356 * Function return probe trampoline: 357 * - init_kprobes() establishes a probepoint here 358 * - When the probed function returns, this probe 359 * causes the handlers to fire 360 */ 361 static void __used kretprobe_trampoline_holder(void) 362 { 363 asm volatile(".global kretprobe_trampoline\n" 364 "kretprobe_trampoline: bcr 0,0\n"); 365 } 366 367 /* 368 * Called when the probe at kretprobe trampoline is hit 369 */ 370 static int __kprobes trampoline_probe_handler(struct kprobe *p, 371 struct pt_regs *regs) 372 { 373 struct kretprobe_instance *ri = NULL; 374 struct hlist_head *head, empty_rp; 375 struct hlist_node *node, *tmp; 376 unsigned long flags, orig_ret_address = 0; 377 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 378 379 INIT_HLIST_HEAD(&empty_rp); 380 kretprobe_hash_lock(current, &head, &flags); 381 382 /* 383 * It is possible to have multiple instances associated with a given 384 * task either because an multiple functions in the call path 385 * have a return probe installed on them, and/or more than one return 386 * return probe was registered for a target function. 387 * 388 * We can handle this because: 389 * - instances are always inserted at the head of the list 390 * - when multiple return probes are registered for the same 391 * function, the first instance's ret_addr will point to the 392 * real return address, and all the rest will point to 393 * kretprobe_trampoline 394 */ 395 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 396 if (ri->task != current) 397 /* another task is sharing our hash bucket */ 398 continue; 399 400 if (ri->rp && ri->rp->handler) 401 ri->rp->handler(ri, regs); 402 403 orig_ret_address = (unsigned long)ri->ret_addr; 404 recycle_rp_inst(ri, &empty_rp); 405 406 if (orig_ret_address != trampoline_address) { 407 /* 408 * This is the real return address. Any other 409 * instances associated with this task are for 410 * other calls deeper on the call stack 411 */ 412 break; 413 } 414 } 415 kretprobe_assert(ri, orig_ret_address, trampoline_address); 416 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; 417 418 reset_current_kprobe(); 419 kretprobe_hash_unlock(current, &flags); 420 preempt_enable_no_resched(); 421 422 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 423 hlist_del(&ri->hlist); 424 kfree(ri); 425 } 426 /* 427 * By returning a non-zero value, we are telling 428 * kprobe_handler() that we don't want the post_handler 429 * to run (and have re-enabled preemption) 430 */ 431 return 1; 432 } 433 434 /* 435 * Called after single-stepping. p->addr is the address of the 436 * instruction whose first byte has been replaced by the "breakpoint" 437 * instruction. To avoid the SMP problems that can occur when we 438 * temporarily put back the original opcode to single-step, we 439 * single-stepped a copy of the instruction. The address of this 440 * copy is p->ainsn.insn. 441 */ 442 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 443 { 444 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 445 446 regs->psw.addr &= PSW_ADDR_INSN; 447 448 if (p->ainsn.fixup & FIXUP_PSW_NORMAL) 449 regs->psw.addr = (unsigned long)p->addr + 450 ((unsigned long)regs->psw.addr - 451 (unsigned long)p->ainsn.insn); 452 453 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN) 454 if ((unsigned long)regs->psw.addr - 455 (unsigned long)p->ainsn.insn == p->ainsn.ilen) 456 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen; 457 458 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER) 459 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr + 460 (regs->gprs[p->ainsn.reg] - 461 (unsigned long)p->ainsn.insn)) 462 | PSW_ADDR_AMODE; 463 464 regs->psw.addr |= PSW_ADDR_AMODE; 465 /* turn off PER mode */ 466 regs->psw.mask &= ~PSW_MASK_PER; 467 /* Restore the original per control regs */ 468 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 469 regs->psw.mask |= kcb->kprobe_saved_imask; 470 } 471 472 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 473 { 474 struct kprobe *cur = kprobe_running(); 475 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 476 477 if (!cur) 478 return 0; 479 480 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 481 kcb->kprobe_status = KPROBE_HIT_SSDONE; 482 cur->post_handler(cur, regs, 0); 483 } 484 485 resume_execution(cur, regs); 486 487 /*Restore back the original saved kprobes variables and continue. */ 488 if (kcb->kprobe_status == KPROBE_REENTER) { 489 restore_previous_kprobe(kcb); 490 goto out; 491 } 492 reset_current_kprobe(); 493 out: 494 preempt_enable_no_resched(); 495 496 /* 497 * if somebody else is singlestepping across a probe point, psw mask 498 * will have PER set, in which case, continue the remaining processing 499 * of do_single_step, as if this is not a probe hit. 500 */ 501 if (regs->psw.mask & PSW_MASK_PER) { 502 return 0; 503 } 504 505 return 1; 506 } 507 508 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 509 { 510 struct kprobe *cur = kprobe_running(); 511 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 512 const struct exception_table_entry *entry; 513 514 switch(kcb->kprobe_status) { 515 case KPROBE_SWAP_INST: 516 /* We are here because the instruction replacement failed */ 517 return 0; 518 case KPROBE_HIT_SS: 519 case KPROBE_REENTER: 520 /* 521 * We are here because the instruction being single 522 * stepped caused a page fault. We reset the current 523 * kprobe and the nip points back to the probe address 524 * and allow the page fault handler to continue as a 525 * normal page fault. 526 */ 527 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE; 528 regs->psw.mask &= ~PSW_MASK_PER; 529 regs->psw.mask |= kcb->kprobe_saved_imask; 530 if (kcb->kprobe_status == KPROBE_REENTER) 531 restore_previous_kprobe(kcb); 532 else 533 reset_current_kprobe(); 534 preempt_enable_no_resched(); 535 break; 536 case KPROBE_HIT_ACTIVE: 537 case KPROBE_HIT_SSDONE: 538 /* 539 * We increment the nmissed count for accounting, 540 * we can also use npre/npostfault count for accouting 541 * these specific fault cases. 542 */ 543 kprobes_inc_nmissed_count(cur); 544 545 /* 546 * We come here because instructions in the pre/post 547 * handler caused the page_fault, this could happen 548 * if handler tries to access user space by 549 * copy_from_user(), get_user() etc. Let the 550 * user-specified handler try to fix it first. 551 */ 552 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 553 return 1; 554 555 /* 556 * In case the user-specified fault handler returned 557 * zero, try to fix up. 558 */ 559 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 560 if (entry) { 561 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE; 562 return 1; 563 } 564 565 /* 566 * fixup_exception() could not handle it, 567 * Let do_page_fault() fix it. 568 */ 569 break; 570 default: 571 break; 572 } 573 return 0; 574 } 575 576 /* 577 * Wrapper routine to for handling exceptions. 578 */ 579 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 580 unsigned long val, void *data) 581 { 582 struct die_args *args = (struct die_args *)data; 583 int ret = NOTIFY_DONE; 584 585 switch (val) { 586 case DIE_BPT: 587 if (kprobe_handler(args->regs)) 588 ret = NOTIFY_STOP; 589 break; 590 case DIE_SSTEP: 591 if (post_kprobe_handler(args->regs)) 592 ret = NOTIFY_STOP; 593 break; 594 case DIE_TRAP: 595 /* kprobe_running() needs smp_processor_id() */ 596 preempt_disable(); 597 if (kprobe_running() && 598 kprobe_fault_handler(args->regs, args->trapnr)) 599 ret = NOTIFY_STOP; 600 preempt_enable(); 601 break; 602 default: 603 break; 604 } 605 return ret; 606 } 607 608 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 609 { 610 struct jprobe *jp = container_of(p, struct jprobe, kp); 611 unsigned long addr; 612 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 613 614 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 615 616 /* setup return addr to the jprobe handler routine */ 617 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE; 618 619 /* r14 is the function return address */ 620 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14]; 621 /* r15 is the stack pointer */ 622 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15]; 623 addr = (unsigned long)kcb->jprobe_saved_r15; 624 625 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, 626 MIN_STACK_SIZE(addr)); 627 return 1; 628 } 629 630 void __kprobes jprobe_return(void) 631 { 632 asm volatile(".word 0x0002"); 633 } 634 635 void __kprobes jprobe_return_end(void) 636 { 637 asm volatile("bcr 0,0"); 638 } 639 640 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 641 { 642 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 643 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15); 644 645 /* Put the regs back */ 646 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 647 /* put the stack back */ 648 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, 649 MIN_STACK_SIZE(stack_addr)); 650 preempt_enable_no_resched(); 651 return 1; 652 } 653 654 static struct kprobe trampoline_p = { 655 .addr = (kprobe_opcode_t *) & kretprobe_trampoline, 656 .pre_handler = trampoline_probe_handler 657 }; 658 659 int __init arch_init_kprobes(void) 660 { 661 return register_kprobe(&trampoline_p); 662 } 663 664 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 665 { 666 if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline) 667 return 1; 668 return 0; 669 } 670