1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright IBM Corp. 2002, 2006 6 * 7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 8 */ 9 10 #define pr_fmt(fmt) "kprobes: " fmt 11 12 #include <linux/moduleloader.h> 13 #include <linux/kprobes.h> 14 #include <linux/ptrace.h> 15 #include <linux/preempt.h> 16 #include <linux/stop_machine.h> 17 #include <linux/kdebug.h> 18 #include <linux/uaccess.h> 19 #include <linux/extable.h> 20 #include <linux/module.h> 21 #include <linux/slab.h> 22 #include <linux/hardirq.h> 23 #include <linux/ftrace.h> 24 #include <asm/set_memory.h> 25 #include <asm/sections.h> 26 #include <asm/dis.h> 27 #include "entry.h" 28 29 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 30 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 31 32 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 33 34 DEFINE_INSN_CACHE_OPS(s390_insn); 35 36 static int insn_page_in_use; 37 38 void *alloc_insn_page(void) 39 { 40 void *page; 41 42 page = module_alloc(PAGE_SIZE); 43 if (!page) 44 return NULL; 45 __set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X); 46 return page; 47 } 48 49 static void *alloc_s390_insn_page(void) 50 { 51 if (xchg(&insn_page_in_use, 1) == 1) 52 return NULL; 53 return &kprobes_insn_page; 54 } 55 56 static void free_s390_insn_page(void *page) 57 { 58 xchg(&insn_page_in_use, 0); 59 } 60 61 struct kprobe_insn_cache kprobe_s390_insn_slots = { 62 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex), 63 .alloc = alloc_s390_insn_page, 64 .free = free_s390_insn_page, 65 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages), 66 .insn_size = MAX_INSN_SIZE, 67 }; 68 69 static void copy_instruction(struct kprobe *p) 70 { 71 kprobe_opcode_t insn[MAX_INSN_SIZE]; 72 s64 disp, new_disp; 73 u64 addr, new_addr; 74 unsigned int len; 75 76 len = insn_length(*p->addr >> 8); 77 memcpy(&insn, p->addr, len); 78 p->opcode = insn[0]; 79 if (probe_is_insn_relative_long(&insn[0])) { 80 /* 81 * For pc-relative instructions in RIL-b or RIL-c format patch 82 * the RI2 displacement field. We have already made sure that 83 * the insn slot for the patched instruction is within the same 84 * 2GB area as the original instruction (either kernel image or 85 * module area). Therefore the new displacement will always fit. 86 */ 87 disp = *(s32 *)&insn[1]; 88 addr = (u64)(unsigned long)p->addr; 89 new_addr = (u64)(unsigned long)p->ainsn.insn; 90 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 91 *(s32 *)&insn[1] = new_disp; 92 } 93 s390_kernel_write(p->ainsn.insn, &insn, len); 94 } 95 NOKPROBE_SYMBOL(copy_instruction); 96 97 static int s390_get_insn_slot(struct kprobe *p) 98 { 99 /* 100 * Get an insn slot that is within the same 2GB area like the original 101 * instruction. That way instructions with a 32bit signed displacement 102 * field can be patched and executed within the insn slot. 103 */ 104 p->ainsn.insn = NULL; 105 if (is_kernel((unsigned long)p->addr)) 106 p->ainsn.insn = get_s390_insn_slot(); 107 else if (is_module_addr(p->addr)) 108 p->ainsn.insn = get_insn_slot(); 109 return p->ainsn.insn ? 0 : -ENOMEM; 110 } 111 NOKPROBE_SYMBOL(s390_get_insn_slot); 112 113 static void s390_free_insn_slot(struct kprobe *p) 114 { 115 if (!p->ainsn.insn) 116 return; 117 if (is_kernel((unsigned long)p->addr)) 118 free_s390_insn_slot(p->ainsn.insn, 0); 119 else 120 free_insn_slot(p->ainsn.insn, 0); 121 p->ainsn.insn = NULL; 122 } 123 NOKPROBE_SYMBOL(s390_free_insn_slot); 124 125 /* Check if paddr is at an instruction boundary */ 126 static bool can_probe(unsigned long paddr) 127 { 128 unsigned long addr, offset = 0; 129 kprobe_opcode_t insn; 130 struct kprobe *kp; 131 132 if (paddr & 0x01) 133 return false; 134 135 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) 136 return false; 137 138 /* Decode instructions */ 139 addr = paddr - offset; 140 while (addr < paddr) { 141 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn))) 142 return false; 143 144 if (insn >> 8 == 0) { 145 if (insn != BREAKPOINT_INSTRUCTION) { 146 /* 147 * Note that QEMU inserts opcode 0x0000 to implement 148 * software breakpoints for guests. Since the size of 149 * the original instruction is unknown, stop following 150 * instructions and prevent setting a kprobe. 151 */ 152 return false; 153 } 154 /* 155 * Check if the instruction has been modified by another 156 * kprobe, in which case the original instruction is 157 * decoded. 158 */ 159 kp = get_kprobe((void *)addr); 160 if (!kp) { 161 /* not a kprobe */ 162 return false; 163 } 164 insn = kp->opcode; 165 } 166 addr += insn_length(insn >> 8); 167 } 168 return addr == paddr; 169 } 170 171 int arch_prepare_kprobe(struct kprobe *p) 172 { 173 if (!can_probe((unsigned long)p->addr)) 174 return -EINVAL; 175 /* Make sure the probe isn't going on a difficult instruction */ 176 if (probe_is_prohibited_opcode(p->addr)) 177 return -EINVAL; 178 if (s390_get_insn_slot(p)) 179 return -ENOMEM; 180 copy_instruction(p); 181 return 0; 182 } 183 NOKPROBE_SYMBOL(arch_prepare_kprobe); 184 185 struct swap_insn_args { 186 struct kprobe *p; 187 unsigned int arm_kprobe : 1; 188 }; 189 190 static int swap_instruction(void *data) 191 { 192 struct swap_insn_args *args = data; 193 struct kprobe *p = args->p; 194 u16 opc; 195 196 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; 197 s390_kernel_write(p->addr, &opc, sizeof(opc)); 198 return 0; 199 } 200 NOKPROBE_SYMBOL(swap_instruction); 201 202 void arch_arm_kprobe(struct kprobe *p) 203 { 204 struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; 205 206 stop_machine_cpuslocked(swap_instruction, &args, NULL); 207 } 208 NOKPROBE_SYMBOL(arch_arm_kprobe); 209 210 void arch_disarm_kprobe(struct kprobe *p) 211 { 212 struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; 213 214 stop_machine_cpuslocked(swap_instruction, &args, NULL); 215 } 216 NOKPROBE_SYMBOL(arch_disarm_kprobe); 217 218 void arch_remove_kprobe(struct kprobe *p) 219 { 220 s390_free_insn_slot(p); 221 } 222 NOKPROBE_SYMBOL(arch_remove_kprobe); 223 224 static void enable_singlestep(struct kprobe_ctlblk *kcb, 225 struct pt_regs *regs, 226 unsigned long ip) 227 { 228 struct per_regs per_kprobe; 229 230 /* Set up the PER control registers %cr9-%cr11 */ 231 per_kprobe.control = PER_EVENT_IFETCH; 232 per_kprobe.start = ip; 233 per_kprobe.end = ip; 234 235 /* Save control regs and psw mask */ 236 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 237 kcb->kprobe_saved_imask = regs->psw.mask & 238 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 239 240 /* Set PER control regs, turns on single step for the given address */ 241 __ctl_load(per_kprobe, 9, 11); 242 regs->psw.mask |= PSW_MASK_PER; 243 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 244 regs->psw.addr = ip; 245 } 246 NOKPROBE_SYMBOL(enable_singlestep); 247 248 static void disable_singlestep(struct kprobe_ctlblk *kcb, 249 struct pt_regs *regs, 250 unsigned long ip) 251 { 252 /* Restore control regs and psw mask, set new psw address */ 253 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 254 regs->psw.mask &= ~PSW_MASK_PER; 255 regs->psw.mask |= kcb->kprobe_saved_imask; 256 regs->psw.addr = ip; 257 } 258 NOKPROBE_SYMBOL(disable_singlestep); 259 260 /* 261 * Activate a kprobe by storing its pointer to current_kprobe. The 262 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 263 * two kprobes can be active, see KPROBE_REENTER. 264 */ 265 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 266 { 267 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); 268 kcb->prev_kprobe.status = kcb->kprobe_status; 269 __this_cpu_write(current_kprobe, p); 270 } 271 NOKPROBE_SYMBOL(push_kprobe); 272 273 /* 274 * Deactivate a kprobe by backing up to the previous state. If the 275 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 276 * for any other state prev_kprobe.kp will be NULL. 277 */ 278 static void pop_kprobe(struct kprobe_ctlblk *kcb) 279 { 280 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 281 kcb->kprobe_status = kcb->prev_kprobe.status; 282 } 283 NOKPROBE_SYMBOL(pop_kprobe); 284 285 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 286 { 287 ri->ret_addr = (kprobe_opcode_t *)regs->gprs[14]; 288 ri->fp = (void *)regs->gprs[15]; 289 290 /* Replace the return addr with trampoline addr */ 291 regs->gprs[14] = (unsigned long)&__kretprobe_trampoline; 292 } 293 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 294 295 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) 296 { 297 switch (kcb->kprobe_status) { 298 case KPROBE_HIT_SSDONE: 299 case KPROBE_HIT_ACTIVE: 300 kprobes_inc_nmissed_count(p); 301 break; 302 case KPROBE_HIT_SS: 303 case KPROBE_REENTER: 304 default: 305 /* 306 * A kprobe on the code path to single step an instruction 307 * is a BUG. The code path resides in the .kprobes.text 308 * section and is executed with interrupts disabled. 309 */ 310 pr_err("Failed to recover from reentered kprobes.\n"); 311 dump_kprobe(p); 312 BUG(); 313 } 314 } 315 NOKPROBE_SYMBOL(kprobe_reenter_check); 316 317 static int kprobe_handler(struct pt_regs *regs) 318 { 319 struct kprobe_ctlblk *kcb; 320 struct kprobe *p; 321 322 /* 323 * We want to disable preemption for the entire duration of kprobe 324 * processing. That includes the calls to the pre/post handlers 325 * and single stepping the kprobe instruction. 326 */ 327 preempt_disable(); 328 kcb = get_kprobe_ctlblk(); 329 p = get_kprobe((void *)(regs->psw.addr - 2)); 330 331 if (p) { 332 if (kprobe_running()) { 333 /* 334 * We have hit a kprobe while another is still 335 * active. This can happen in the pre and post 336 * handler. Single step the instruction of the 337 * new probe but do not call any handler function 338 * of this secondary kprobe. 339 * push_kprobe and pop_kprobe saves and restores 340 * the currently active kprobe. 341 */ 342 kprobe_reenter_check(kcb, p); 343 push_kprobe(kcb, p); 344 kcb->kprobe_status = KPROBE_REENTER; 345 } else { 346 /* 347 * If we have no pre-handler or it returned 0, we 348 * continue with single stepping. If we have a 349 * pre-handler and it returned non-zero, it prepped 350 * for changing execution path, so get out doing 351 * nothing more here. 352 */ 353 push_kprobe(kcb, p); 354 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 355 if (p->pre_handler && p->pre_handler(p, regs)) { 356 pop_kprobe(kcb); 357 preempt_enable_no_resched(); 358 return 1; 359 } 360 kcb->kprobe_status = KPROBE_HIT_SS; 361 } 362 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 363 return 1; 364 } /* else: 365 * No kprobe at this address and no active kprobe. The trap has 366 * not been caused by a kprobe breakpoint. The race of breakpoint 367 * vs. kprobe remove does not exist because on s390 as we use 368 * stop_machine to arm/disarm the breakpoints. 369 */ 370 preempt_enable_no_resched(); 371 return 0; 372 } 373 NOKPROBE_SYMBOL(kprobe_handler); 374 375 void arch_kretprobe_fixup_return(struct pt_regs *regs, 376 kprobe_opcode_t *correct_ret_addr) 377 { 378 /* Replace fake return address with real one. */ 379 regs->gprs[14] = (unsigned long)correct_ret_addr; 380 } 381 NOKPROBE_SYMBOL(arch_kretprobe_fixup_return); 382 383 /* 384 * Called from __kretprobe_trampoline 385 */ 386 void trampoline_probe_handler(struct pt_regs *regs) 387 { 388 kretprobe_trampoline_handler(regs, (void *)regs->gprs[15]); 389 } 390 NOKPROBE_SYMBOL(trampoline_probe_handler); 391 392 /* assembler function that handles the kretprobes must not be probed itself */ 393 NOKPROBE_SYMBOL(__kretprobe_trampoline); 394 395 /* 396 * Called after single-stepping. p->addr is the address of the 397 * instruction whose first byte has been replaced by the "breakpoint" 398 * instruction. To avoid the SMP problems that can occur when we 399 * temporarily put back the original opcode to single-step, we 400 * single-stepped a copy of the instruction. The address of this 401 * copy is p->ainsn.insn. 402 */ 403 static void resume_execution(struct kprobe *p, struct pt_regs *regs) 404 { 405 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 406 unsigned long ip = regs->psw.addr; 407 int fixup = probe_get_fixup_type(p->ainsn.insn); 408 409 if (fixup & FIXUP_PSW_NORMAL) 410 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 411 412 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 413 int ilen = insn_length(p->ainsn.insn[0] >> 8); 414 if (ip - (unsigned long) p->ainsn.insn == ilen) 415 ip = (unsigned long) p->addr + ilen; 416 } 417 418 if (fixup & FIXUP_RETURN_REGISTER) { 419 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 420 regs->gprs[reg] += (unsigned long) p->addr - 421 (unsigned long) p->ainsn.insn; 422 } 423 424 disable_singlestep(kcb, regs, ip); 425 } 426 NOKPROBE_SYMBOL(resume_execution); 427 428 static int post_kprobe_handler(struct pt_regs *regs) 429 { 430 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 431 struct kprobe *p = kprobe_running(); 432 433 if (!p) 434 return 0; 435 436 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 437 kcb->kprobe_status = KPROBE_HIT_SSDONE; 438 p->post_handler(p, regs, 0); 439 } 440 441 resume_execution(p, regs); 442 pop_kprobe(kcb); 443 preempt_enable_no_resched(); 444 445 /* 446 * if somebody else is singlestepping across a probe point, psw mask 447 * will have PER set, in which case, continue the remaining processing 448 * of do_single_step, as if this is not a probe hit. 449 */ 450 if (regs->psw.mask & PSW_MASK_PER) 451 return 0; 452 453 return 1; 454 } 455 NOKPROBE_SYMBOL(post_kprobe_handler); 456 457 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) 458 { 459 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 460 struct kprobe *p = kprobe_running(); 461 462 switch(kcb->kprobe_status) { 463 case KPROBE_HIT_SS: 464 case KPROBE_REENTER: 465 /* 466 * We are here because the instruction being single 467 * stepped caused a page fault. We reset the current 468 * kprobe and the nip points back to the probe address 469 * and allow the page fault handler to continue as a 470 * normal page fault. 471 */ 472 disable_singlestep(kcb, regs, (unsigned long) p->addr); 473 pop_kprobe(kcb); 474 preempt_enable_no_resched(); 475 break; 476 case KPROBE_HIT_ACTIVE: 477 case KPROBE_HIT_SSDONE: 478 /* 479 * In case the user-specified fault handler returned 480 * zero, try to fix up. 481 */ 482 if (fixup_exception(regs)) 483 return 1; 484 /* 485 * fixup_exception() could not handle it, 486 * Let do_page_fault() fix it. 487 */ 488 break; 489 default: 490 break; 491 } 492 return 0; 493 } 494 NOKPROBE_SYMBOL(kprobe_trap_handler); 495 496 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 497 { 498 int ret; 499 500 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 501 local_irq_disable(); 502 ret = kprobe_trap_handler(regs, trapnr); 503 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 504 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 505 return ret; 506 } 507 NOKPROBE_SYMBOL(kprobe_fault_handler); 508 509 /* 510 * Wrapper routine to for handling exceptions. 511 */ 512 int kprobe_exceptions_notify(struct notifier_block *self, 513 unsigned long val, void *data) 514 { 515 struct die_args *args = (struct die_args *) data; 516 struct pt_regs *regs = args->regs; 517 int ret = NOTIFY_DONE; 518 519 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 520 local_irq_disable(); 521 522 switch (val) { 523 case DIE_BPT: 524 if (kprobe_handler(regs)) 525 ret = NOTIFY_STOP; 526 break; 527 case DIE_SSTEP: 528 if (post_kprobe_handler(regs)) 529 ret = NOTIFY_STOP; 530 break; 531 case DIE_TRAP: 532 if (!preemptible() && kprobe_running() && 533 kprobe_trap_handler(regs, args->trapnr)) 534 ret = NOTIFY_STOP; 535 break; 536 default: 537 break; 538 } 539 540 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 541 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 542 543 return ret; 544 } 545 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 546 547 int __init arch_init_kprobes(void) 548 { 549 return 0; 550 } 551 552 int arch_trampoline_kprobe(struct kprobe *p) 553 { 554 return 0; 555 } 556 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 557