xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24 
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27 
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29 
30 DEFINE_INSN_CACHE_OPS(dmainsn);
31 
32 static void *alloc_dmainsn_page(void)
33 {
34 	void *page;
35 
36 	page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
37 	if (page)
38 		set_memory_x((unsigned long) page, 1);
39 	return page;
40 }
41 
42 static void free_dmainsn_page(void *page)
43 {
44 	set_memory_nx((unsigned long) page, 1);
45 	free_page((unsigned long)page);
46 }
47 
48 struct kprobe_insn_cache kprobe_dmainsn_slots = {
49 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
50 	.alloc = alloc_dmainsn_page,
51 	.free = free_dmainsn_page,
52 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
53 	.insn_size = MAX_INSN_SIZE,
54 };
55 
56 static void copy_instruction(struct kprobe *p)
57 {
58 	unsigned long ip = (unsigned long) p->addr;
59 	s64 disp, new_disp;
60 	u64 addr, new_addr;
61 
62 	if (ftrace_location(ip) == ip) {
63 		/*
64 		 * If kprobes patches the instruction that is morphed by
65 		 * ftrace make sure that kprobes always sees the branch
66 		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
67 		 * in case of hotpatch.
68 		 */
69 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
70 		p->ainsn.is_ftrace_insn = 1;
71 	} else
72 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
73 	p->opcode = p->ainsn.insn[0];
74 	if (!probe_is_insn_relative_long(p->ainsn.insn))
75 		return;
76 	/*
77 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
78 	 * RI2 displacement field. We have already made sure that the insn
79 	 * slot for the patched instruction is within the same 2GB area
80 	 * as the original instruction (either kernel image or module area).
81 	 * Therefore the new displacement will always fit.
82 	 */
83 	disp = *(s32 *)&p->ainsn.insn[1];
84 	addr = (u64)(unsigned long)p->addr;
85 	new_addr = (u64)(unsigned long)p->ainsn.insn;
86 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
87 	*(s32 *)&p->ainsn.insn[1] = new_disp;
88 }
89 NOKPROBE_SYMBOL(copy_instruction);
90 
91 static inline int is_kernel_addr(void *addr)
92 {
93 	return addr < (void *)_end;
94 }
95 
96 static int s390_get_insn_slot(struct kprobe *p)
97 {
98 	/*
99 	 * Get an insn slot that is within the same 2GB area like the original
100 	 * instruction. That way instructions with a 32bit signed displacement
101 	 * field can be patched and executed within the insn slot.
102 	 */
103 	p->ainsn.insn = NULL;
104 	if (is_kernel_addr(p->addr))
105 		p->ainsn.insn = get_dmainsn_slot();
106 	else if (is_module_addr(p->addr))
107 		p->ainsn.insn = get_insn_slot();
108 	return p->ainsn.insn ? 0 : -ENOMEM;
109 }
110 NOKPROBE_SYMBOL(s390_get_insn_slot);
111 
112 static void s390_free_insn_slot(struct kprobe *p)
113 {
114 	if (!p->ainsn.insn)
115 		return;
116 	if (is_kernel_addr(p->addr))
117 		free_dmainsn_slot(p->ainsn.insn, 0);
118 	else
119 		free_insn_slot(p->ainsn.insn, 0);
120 	p->ainsn.insn = NULL;
121 }
122 NOKPROBE_SYMBOL(s390_free_insn_slot);
123 
124 int arch_prepare_kprobe(struct kprobe *p)
125 {
126 	if ((unsigned long) p->addr & 0x01)
127 		return -EINVAL;
128 	/* Make sure the probe isn't going on a difficult instruction */
129 	if (probe_is_prohibited_opcode(p->addr))
130 		return -EINVAL;
131 	if (s390_get_insn_slot(p))
132 		return -ENOMEM;
133 	copy_instruction(p);
134 	return 0;
135 }
136 NOKPROBE_SYMBOL(arch_prepare_kprobe);
137 
138 int arch_check_ftrace_location(struct kprobe *p)
139 {
140 	return 0;
141 }
142 
143 struct swap_insn_args {
144 	struct kprobe *p;
145 	unsigned int arm_kprobe : 1;
146 };
147 
148 static int swap_instruction(void *data)
149 {
150 	struct swap_insn_args *args = data;
151 	struct ftrace_insn new_insn, *insn;
152 	struct kprobe *p = args->p;
153 	size_t len;
154 
155 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
156 	len = sizeof(new_insn.opc);
157 	if (!p->ainsn.is_ftrace_insn)
158 		goto skip_ftrace;
159 	len = sizeof(new_insn);
160 	insn = (struct ftrace_insn *) p->addr;
161 	if (args->arm_kprobe) {
162 		if (is_ftrace_nop(insn))
163 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
164 		else
165 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
166 	} else {
167 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
168 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
169 			ftrace_generate_nop_insn(&new_insn);
170 	}
171 skip_ftrace:
172 	s390_kernel_write(p->addr, &new_insn, len);
173 	return 0;
174 }
175 NOKPROBE_SYMBOL(swap_instruction);
176 
177 void arch_arm_kprobe(struct kprobe *p)
178 {
179 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
180 
181 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
182 }
183 NOKPROBE_SYMBOL(arch_arm_kprobe);
184 
185 void arch_disarm_kprobe(struct kprobe *p)
186 {
187 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
188 
189 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
190 }
191 NOKPROBE_SYMBOL(arch_disarm_kprobe);
192 
193 void arch_remove_kprobe(struct kprobe *p)
194 {
195 	s390_free_insn_slot(p);
196 }
197 NOKPROBE_SYMBOL(arch_remove_kprobe);
198 
199 static void enable_singlestep(struct kprobe_ctlblk *kcb,
200 			      struct pt_regs *regs,
201 			      unsigned long ip)
202 {
203 	struct per_regs per_kprobe;
204 
205 	/* Set up the PER control registers %cr9-%cr11 */
206 	per_kprobe.control = PER_EVENT_IFETCH;
207 	per_kprobe.start = ip;
208 	per_kprobe.end = ip;
209 
210 	/* Save control regs and psw mask */
211 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
212 	kcb->kprobe_saved_imask = regs->psw.mask &
213 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
214 
215 	/* Set PER control regs, turns on single step for the given address */
216 	__ctl_load(per_kprobe, 9, 11);
217 	regs->psw.mask |= PSW_MASK_PER;
218 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
219 	regs->psw.addr = ip;
220 }
221 NOKPROBE_SYMBOL(enable_singlestep);
222 
223 static void disable_singlestep(struct kprobe_ctlblk *kcb,
224 			       struct pt_regs *regs,
225 			       unsigned long ip)
226 {
227 	/* Restore control regs and psw mask, set new psw address */
228 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
229 	regs->psw.mask &= ~PSW_MASK_PER;
230 	regs->psw.mask |= kcb->kprobe_saved_imask;
231 	regs->psw.addr = ip;
232 }
233 NOKPROBE_SYMBOL(disable_singlestep);
234 
235 /*
236  * Activate a kprobe by storing its pointer to current_kprobe. The
237  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
238  * two kprobes can be active, see KPROBE_REENTER.
239  */
240 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
241 {
242 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
243 	kcb->prev_kprobe.status = kcb->kprobe_status;
244 	__this_cpu_write(current_kprobe, p);
245 }
246 NOKPROBE_SYMBOL(push_kprobe);
247 
248 /*
249  * Deactivate a kprobe by backing up to the previous state. If the
250  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
251  * for any other state prev_kprobe.kp will be NULL.
252  */
253 static void pop_kprobe(struct kprobe_ctlblk *kcb)
254 {
255 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
256 	kcb->kprobe_status = kcb->prev_kprobe.status;
257 }
258 NOKPROBE_SYMBOL(pop_kprobe);
259 
260 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
261 {
262 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
263 
264 	/* Replace the return addr with trampoline addr */
265 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
266 }
267 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
268 
269 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
270 {
271 	switch (kcb->kprobe_status) {
272 	case KPROBE_HIT_SSDONE:
273 	case KPROBE_HIT_ACTIVE:
274 		kprobes_inc_nmissed_count(p);
275 		break;
276 	case KPROBE_HIT_SS:
277 	case KPROBE_REENTER:
278 	default:
279 		/*
280 		 * A kprobe on the code path to single step an instruction
281 		 * is a BUG. The code path resides in the .kprobes.text
282 		 * section and is executed with interrupts disabled.
283 		 */
284 		pr_err("Invalid kprobe detected.\n");
285 		dump_kprobe(p);
286 		BUG();
287 	}
288 }
289 NOKPROBE_SYMBOL(kprobe_reenter_check);
290 
291 static int kprobe_handler(struct pt_regs *regs)
292 {
293 	struct kprobe_ctlblk *kcb;
294 	struct kprobe *p;
295 
296 	/*
297 	 * We want to disable preemption for the entire duration of kprobe
298 	 * processing. That includes the calls to the pre/post handlers
299 	 * and single stepping the kprobe instruction.
300 	 */
301 	preempt_disable();
302 	kcb = get_kprobe_ctlblk();
303 	p = get_kprobe((void *)(regs->psw.addr - 2));
304 
305 	if (p) {
306 		if (kprobe_running()) {
307 			/*
308 			 * We have hit a kprobe while another is still
309 			 * active. This can happen in the pre and post
310 			 * handler. Single step the instruction of the
311 			 * new probe but do not call any handler function
312 			 * of this secondary kprobe.
313 			 * push_kprobe and pop_kprobe saves and restores
314 			 * the currently active kprobe.
315 			 */
316 			kprobe_reenter_check(kcb, p);
317 			push_kprobe(kcb, p);
318 			kcb->kprobe_status = KPROBE_REENTER;
319 		} else {
320 			/*
321 			 * If we have no pre-handler or it returned 0, we
322 			 * continue with single stepping. If we have a
323 			 * pre-handler and it returned non-zero, it prepped
324 			 * for calling the break_handler below on re-entry
325 			 * for jprobe processing, so get out doing nothing
326 			 * more here.
327 			 */
328 			push_kprobe(kcb, p);
329 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
330 			if (p->pre_handler && p->pre_handler(p, regs))
331 				return 1;
332 			kcb->kprobe_status = KPROBE_HIT_SS;
333 		}
334 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
335 		return 1;
336 	} else if (kprobe_running()) {
337 		p = __this_cpu_read(current_kprobe);
338 		if (p->break_handler && p->break_handler(p, regs)) {
339 			/*
340 			 * Continuation after the jprobe completed and
341 			 * caused the jprobe_return trap. The jprobe
342 			 * break_handler "returns" to the original
343 			 * function that still has the kprobe breakpoint
344 			 * installed. We continue with single stepping.
345 			 */
346 			kcb->kprobe_status = KPROBE_HIT_SS;
347 			enable_singlestep(kcb, regs,
348 					  (unsigned long) p->ainsn.insn);
349 			return 1;
350 		} /* else:
351 		   * No kprobe at this address and the current kprobe
352 		   * has no break handler (no jprobe!). The kernel just
353 		   * exploded, let the standard trap handler pick up the
354 		   * pieces.
355 		   */
356 	} /* else:
357 	   * No kprobe at this address and no active kprobe. The trap has
358 	   * not been caused by a kprobe breakpoint. The race of breakpoint
359 	   * vs. kprobe remove does not exist because on s390 as we use
360 	   * stop_machine to arm/disarm the breakpoints.
361 	   */
362 	preempt_enable_no_resched();
363 	return 0;
364 }
365 NOKPROBE_SYMBOL(kprobe_handler);
366 
367 /*
368  * Function return probe trampoline:
369  *	- init_kprobes() establishes a probepoint here
370  *	- When the probed function returns, this probe
371  *		causes the handlers to fire
372  */
373 static void __used kretprobe_trampoline_holder(void)
374 {
375 	asm volatile(".global kretprobe_trampoline\n"
376 		     "kretprobe_trampoline: bcr 0,0\n");
377 }
378 
379 /*
380  * Called when the probe at kretprobe trampoline is hit
381  */
382 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
383 {
384 	struct kretprobe_instance *ri;
385 	struct hlist_head *head, empty_rp;
386 	struct hlist_node *tmp;
387 	unsigned long flags, orig_ret_address;
388 	unsigned long trampoline_address;
389 	kprobe_opcode_t *correct_ret_addr;
390 
391 	INIT_HLIST_HEAD(&empty_rp);
392 	kretprobe_hash_lock(current, &head, &flags);
393 
394 	/*
395 	 * It is possible to have multiple instances associated with a given
396 	 * task either because an multiple functions in the call path
397 	 * have a return probe installed on them, and/or more than one return
398 	 * return probe was registered for a target function.
399 	 *
400 	 * We can handle this because:
401 	 *     - instances are always inserted at the head of the list
402 	 *     - when multiple return probes are registered for the same
403 	 *	 function, the first instance's ret_addr will point to the
404 	 *	 real return address, and all the rest will point to
405 	 *	 kretprobe_trampoline
406 	 */
407 	ri = NULL;
408 	orig_ret_address = 0;
409 	correct_ret_addr = NULL;
410 	trampoline_address = (unsigned long) &kretprobe_trampoline;
411 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
412 		if (ri->task != current)
413 			/* another task is sharing our hash bucket */
414 			continue;
415 
416 		orig_ret_address = (unsigned long) ri->ret_addr;
417 
418 		if (orig_ret_address != trampoline_address)
419 			/*
420 			 * This is the real return address. Any other
421 			 * instances associated with this task are for
422 			 * other calls deeper on the call stack
423 			 */
424 			break;
425 	}
426 
427 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
428 
429 	correct_ret_addr = ri->ret_addr;
430 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
431 		if (ri->task != current)
432 			/* another task is sharing our hash bucket */
433 			continue;
434 
435 		orig_ret_address = (unsigned long) ri->ret_addr;
436 
437 		if (ri->rp && ri->rp->handler) {
438 			ri->ret_addr = correct_ret_addr;
439 			ri->rp->handler(ri, regs);
440 		}
441 
442 		recycle_rp_inst(ri, &empty_rp);
443 
444 		if (orig_ret_address != trampoline_address)
445 			/*
446 			 * This is the real return address. Any other
447 			 * instances associated with this task are for
448 			 * other calls deeper on the call stack
449 			 */
450 			break;
451 	}
452 
453 	regs->psw.addr = orig_ret_address;
454 
455 	pop_kprobe(get_kprobe_ctlblk());
456 	kretprobe_hash_unlock(current, &flags);
457 	preempt_enable_no_resched();
458 
459 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
460 		hlist_del(&ri->hlist);
461 		kfree(ri);
462 	}
463 	/*
464 	 * By returning a non-zero value, we are telling
465 	 * kprobe_handler() that we don't want the post_handler
466 	 * to run (and have re-enabled preemption)
467 	 */
468 	return 1;
469 }
470 NOKPROBE_SYMBOL(trampoline_probe_handler);
471 
472 /*
473  * Called after single-stepping.  p->addr is the address of the
474  * instruction whose first byte has been replaced by the "breakpoint"
475  * instruction.  To avoid the SMP problems that can occur when we
476  * temporarily put back the original opcode to single-step, we
477  * single-stepped a copy of the instruction.  The address of this
478  * copy is p->ainsn.insn.
479  */
480 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
481 {
482 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
483 	unsigned long ip = regs->psw.addr;
484 	int fixup = probe_get_fixup_type(p->ainsn.insn);
485 
486 	/* Check if the kprobes location is an enabled ftrace caller */
487 	if (p->ainsn.is_ftrace_insn) {
488 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
489 		struct ftrace_insn call_insn;
490 
491 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
492 		/*
493 		 * A kprobe on an enabled ftrace call site actually single
494 		 * stepped an unconditional branch (ftrace nop equivalent).
495 		 * Now we need to fixup things and pretend that a brasl r0,...
496 		 * was executed instead.
497 		 */
498 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
499 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
500 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
501 		}
502 	}
503 
504 	if (fixup & FIXUP_PSW_NORMAL)
505 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
506 
507 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
508 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
509 		if (ip - (unsigned long) p->ainsn.insn == ilen)
510 			ip = (unsigned long) p->addr + ilen;
511 	}
512 
513 	if (fixup & FIXUP_RETURN_REGISTER) {
514 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
515 		regs->gprs[reg] += (unsigned long) p->addr -
516 				   (unsigned long) p->ainsn.insn;
517 	}
518 
519 	disable_singlestep(kcb, regs, ip);
520 }
521 NOKPROBE_SYMBOL(resume_execution);
522 
523 static int post_kprobe_handler(struct pt_regs *regs)
524 {
525 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
526 	struct kprobe *p = kprobe_running();
527 
528 	if (!p)
529 		return 0;
530 
531 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
532 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
533 		p->post_handler(p, regs, 0);
534 	}
535 
536 	resume_execution(p, regs);
537 	pop_kprobe(kcb);
538 	preempt_enable_no_resched();
539 
540 	/*
541 	 * if somebody else is singlestepping across a probe point, psw mask
542 	 * will have PER set, in which case, continue the remaining processing
543 	 * of do_single_step, as if this is not a probe hit.
544 	 */
545 	if (regs->psw.mask & PSW_MASK_PER)
546 		return 0;
547 
548 	return 1;
549 }
550 NOKPROBE_SYMBOL(post_kprobe_handler);
551 
552 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
553 {
554 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
555 	struct kprobe *p = kprobe_running();
556 	const struct exception_table_entry *entry;
557 
558 	switch(kcb->kprobe_status) {
559 	case KPROBE_HIT_SS:
560 	case KPROBE_REENTER:
561 		/*
562 		 * We are here because the instruction being single
563 		 * stepped caused a page fault. We reset the current
564 		 * kprobe and the nip points back to the probe address
565 		 * and allow the page fault handler to continue as a
566 		 * normal page fault.
567 		 */
568 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
569 		pop_kprobe(kcb);
570 		preempt_enable_no_resched();
571 		break;
572 	case KPROBE_HIT_ACTIVE:
573 	case KPROBE_HIT_SSDONE:
574 		/*
575 		 * We increment the nmissed count for accounting,
576 		 * we can also use npre/npostfault count for accounting
577 		 * these specific fault cases.
578 		 */
579 		kprobes_inc_nmissed_count(p);
580 
581 		/*
582 		 * We come here because instructions in the pre/post
583 		 * handler caused the page_fault, this could happen
584 		 * if handler tries to access user space by
585 		 * copy_from_user(), get_user() etc. Let the
586 		 * user-specified handler try to fix it first.
587 		 */
588 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
589 			return 1;
590 
591 		/*
592 		 * In case the user-specified fault handler returned
593 		 * zero, try to fix up.
594 		 */
595 		entry = search_exception_tables(regs->psw.addr);
596 		if (entry) {
597 			regs->psw.addr = extable_fixup(entry);
598 			return 1;
599 		}
600 
601 		/*
602 		 * fixup_exception() could not handle it,
603 		 * Let do_page_fault() fix it.
604 		 */
605 		break;
606 	default:
607 		break;
608 	}
609 	return 0;
610 }
611 NOKPROBE_SYMBOL(kprobe_trap_handler);
612 
613 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
614 {
615 	int ret;
616 
617 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
618 		local_irq_disable();
619 	ret = kprobe_trap_handler(regs, trapnr);
620 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
621 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
622 	return ret;
623 }
624 NOKPROBE_SYMBOL(kprobe_fault_handler);
625 
626 /*
627  * Wrapper routine to for handling exceptions.
628  */
629 int kprobe_exceptions_notify(struct notifier_block *self,
630 			     unsigned long val, void *data)
631 {
632 	struct die_args *args = (struct die_args *) data;
633 	struct pt_regs *regs = args->regs;
634 	int ret = NOTIFY_DONE;
635 
636 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
637 		local_irq_disable();
638 
639 	switch (val) {
640 	case DIE_BPT:
641 		if (kprobe_handler(regs))
642 			ret = NOTIFY_STOP;
643 		break;
644 	case DIE_SSTEP:
645 		if (post_kprobe_handler(regs))
646 			ret = NOTIFY_STOP;
647 		break;
648 	case DIE_TRAP:
649 		if (!preemptible() && kprobe_running() &&
650 		    kprobe_trap_handler(regs, args->trapnr))
651 			ret = NOTIFY_STOP;
652 		break;
653 	default:
654 		break;
655 	}
656 
657 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
658 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
659 
660 	return ret;
661 }
662 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
663 
664 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
665 {
666 	struct jprobe *jp = container_of(p, struct jprobe, kp);
667 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
668 	unsigned long stack;
669 
670 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
671 
672 	/* setup return addr to the jprobe handler routine */
673 	regs->psw.addr = (unsigned long) jp->entry;
674 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
675 
676 	/* r15 is the stack pointer */
677 	stack = (unsigned long) regs->gprs[15];
678 
679 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
680 
681 	/*
682 	 * jprobes use jprobe_return() which skips the normal return
683 	 * path of the function, and this messes up the accounting of the
684 	 * function graph tracer to get messed up.
685 	 *
686 	 * Pause function graph tracing while performing the jprobe function.
687 	 */
688 	pause_graph_tracing();
689 	return 1;
690 }
691 NOKPROBE_SYMBOL(setjmp_pre_handler);
692 
693 void jprobe_return(void)
694 {
695 	asm volatile(".word 0x0002");
696 }
697 NOKPROBE_SYMBOL(jprobe_return);
698 
699 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
700 {
701 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
702 	unsigned long stack;
703 
704 	/* It's OK to start function graph tracing again */
705 	unpause_graph_tracing();
706 
707 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
708 
709 	/* Put the regs back */
710 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
711 	/* put the stack back */
712 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
713 	preempt_enable_no_resched();
714 	return 1;
715 }
716 NOKPROBE_SYMBOL(longjmp_break_handler);
717 
718 static struct kprobe trampoline = {
719 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
720 	.pre_handler = trampoline_probe_handler
721 };
722 
723 int __init arch_init_kprobes(void)
724 {
725 	return register_kprobe(&trampoline);
726 }
727 
728 int arch_trampoline_kprobe(struct kprobe *p)
729 {
730 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
731 }
732 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
733