xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 93d90ad7)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <linux/ftrace.h>
33 #include <asm/cacheflush.h>
34 #include <asm/sections.h>
35 #include <asm/dis.h>
36 
37 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
38 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
39 
40 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
41 
42 DEFINE_INSN_CACHE_OPS(dmainsn);
43 
44 static void *alloc_dmainsn_page(void)
45 {
46 	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
47 }
48 
49 static void free_dmainsn_page(void *page)
50 {
51 	free_page((unsigned long)page);
52 }
53 
54 struct kprobe_insn_cache kprobe_dmainsn_slots = {
55 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
56 	.alloc = alloc_dmainsn_page,
57 	.free = free_dmainsn_page,
58 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
59 	.insn_size = MAX_INSN_SIZE,
60 };
61 
62 static void copy_instruction(struct kprobe *p)
63 {
64 	unsigned long ip = (unsigned long) p->addr;
65 	s64 disp, new_disp;
66 	u64 addr, new_addr;
67 
68 	if (ftrace_location(ip) == ip) {
69 		/*
70 		 * If kprobes patches the instruction that is morphed by
71 		 * ftrace make sure that kprobes always sees the branch
72 		 * "jg .+24" that skips the mcount block
73 		 */
74 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
75 		p->ainsn.is_ftrace_insn = 1;
76 	} else
77 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
78 	p->opcode = p->ainsn.insn[0];
79 	if (!probe_is_insn_relative_long(p->ainsn.insn))
80 		return;
81 	/*
82 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
83 	 * RI2 displacement field. We have already made sure that the insn
84 	 * slot for the patched instruction is within the same 2GB area
85 	 * as the original instruction (either kernel image or module area).
86 	 * Therefore the new displacement will always fit.
87 	 */
88 	disp = *(s32 *)&p->ainsn.insn[1];
89 	addr = (u64)(unsigned long)p->addr;
90 	new_addr = (u64)(unsigned long)p->ainsn.insn;
91 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
92 	*(s32 *)&p->ainsn.insn[1] = new_disp;
93 }
94 NOKPROBE_SYMBOL(copy_instruction);
95 
96 static inline int is_kernel_addr(void *addr)
97 {
98 	return addr < (void *)_end;
99 }
100 
101 static int s390_get_insn_slot(struct kprobe *p)
102 {
103 	/*
104 	 * Get an insn slot that is within the same 2GB area like the original
105 	 * instruction. That way instructions with a 32bit signed displacement
106 	 * field can be patched and executed within the insn slot.
107 	 */
108 	p->ainsn.insn = NULL;
109 	if (is_kernel_addr(p->addr))
110 		p->ainsn.insn = get_dmainsn_slot();
111 	else if (is_module_addr(p->addr))
112 		p->ainsn.insn = get_insn_slot();
113 	return p->ainsn.insn ? 0 : -ENOMEM;
114 }
115 NOKPROBE_SYMBOL(s390_get_insn_slot);
116 
117 static void s390_free_insn_slot(struct kprobe *p)
118 {
119 	if (!p->ainsn.insn)
120 		return;
121 	if (is_kernel_addr(p->addr))
122 		free_dmainsn_slot(p->ainsn.insn, 0);
123 	else
124 		free_insn_slot(p->ainsn.insn, 0);
125 	p->ainsn.insn = NULL;
126 }
127 NOKPROBE_SYMBOL(s390_free_insn_slot);
128 
129 int arch_prepare_kprobe(struct kprobe *p)
130 {
131 	if ((unsigned long) p->addr & 0x01)
132 		return -EINVAL;
133 	/* Make sure the probe isn't going on a difficult instruction */
134 	if (probe_is_prohibited_opcode(p->addr))
135 		return -EINVAL;
136 	if (s390_get_insn_slot(p))
137 		return -ENOMEM;
138 	copy_instruction(p);
139 	return 0;
140 }
141 NOKPROBE_SYMBOL(arch_prepare_kprobe);
142 
143 int arch_check_ftrace_location(struct kprobe *p)
144 {
145 	return 0;
146 }
147 
148 struct swap_insn_args {
149 	struct kprobe *p;
150 	unsigned int arm_kprobe : 1;
151 };
152 
153 static int swap_instruction(void *data)
154 {
155 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
156 	unsigned long status = kcb->kprobe_status;
157 	struct swap_insn_args *args = data;
158 	struct ftrace_insn new_insn, *insn;
159 	struct kprobe *p = args->p;
160 	size_t len;
161 
162 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
163 	len = sizeof(new_insn.opc);
164 	if (!p->ainsn.is_ftrace_insn)
165 		goto skip_ftrace;
166 	len = sizeof(new_insn);
167 	insn = (struct ftrace_insn *) p->addr;
168 	if (args->arm_kprobe) {
169 		if (is_ftrace_nop(insn))
170 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
171 		else
172 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
173 	} else {
174 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
175 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
176 			ftrace_generate_nop_insn(&new_insn);
177 	}
178 skip_ftrace:
179 	kcb->kprobe_status = KPROBE_SWAP_INST;
180 	probe_kernel_write(p->addr, &new_insn, len);
181 	kcb->kprobe_status = status;
182 	return 0;
183 }
184 NOKPROBE_SYMBOL(swap_instruction);
185 
186 void arch_arm_kprobe(struct kprobe *p)
187 {
188 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
189 
190 	stop_machine(swap_instruction, &args, NULL);
191 }
192 NOKPROBE_SYMBOL(arch_arm_kprobe);
193 
194 void arch_disarm_kprobe(struct kprobe *p)
195 {
196 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
197 
198 	stop_machine(swap_instruction, &args, NULL);
199 }
200 NOKPROBE_SYMBOL(arch_disarm_kprobe);
201 
202 void arch_remove_kprobe(struct kprobe *p)
203 {
204 	s390_free_insn_slot(p);
205 }
206 NOKPROBE_SYMBOL(arch_remove_kprobe);
207 
208 static void enable_singlestep(struct kprobe_ctlblk *kcb,
209 			      struct pt_regs *regs,
210 			      unsigned long ip)
211 {
212 	struct per_regs per_kprobe;
213 
214 	/* Set up the PER control registers %cr9-%cr11 */
215 	per_kprobe.control = PER_EVENT_IFETCH;
216 	per_kprobe.start = ip;
217 	per_kprobe.end = ip;
218 
219 	/* Save control regs and psw mask */
220 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
221 	kcb->kprobe_saved_imask = regs->psw.mask &
222 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
223 
224 	/* Set PER control regs, turns on single step for the given address */
225 	__ctl_load(per_kprobe, 9, 11);
226 	regs->psw.mask |= PSW_MASK_PER;
227 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
228 	regs->psw.addr = ip | PSW_ADDR_AMODE;
229 }
230 NOKPROBE_SYMBOL(enable_singlestep);
231 
232 static void disable_singlestep(struct kprobe_ctlblk *kcb,
233 			       struct pt_regs *regs,
234 			       unsigned long ip)
235 {
236 	/* Restore control regs and psw mask, set new psw address */
237 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
238 	regs->psw.mask &= ~PSW_MASK_PER;
239 	regs->psw.mask |= kcb->kprobe_saved_imask;
240 	regs->psw.addr = ip | PSW_ADDR_AMODE;
241 }
242 NOKPROBE_SYMBOL(disable_singlestep);
243 
244 /*
245  * Activate a kprobe by storing its pointer to current_kprobe. The
246  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
247  * two kprobes can be active, see KPROBE_REENTER.
248  */
249 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
250 {
251 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
252 	kcb->prev_kprobe.status = kcb->kprobe_status;
253 	__this_cpu_write(current_kprobe, p);
254 }
255 NOKPROBE_SYMBOL(push_kprobe);
256 
257 /*
258  * Deactivate a kprobe by backing up to the previous state. If the
259  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
260  * for any other state prev_kprobe.kp will be NULL.
261  */
262 static void pop_kprobe(struct kprobe_ctlblk *kcb)
263 {
264 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
265 	kcb->kprobe_status = kcb->prev_kprobe.status;
266 }
267 NOKPROBE_SYMBOL(pop_kprobe);
268 
269 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
270 {
271 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
272 
273 	/* Replace the return addr with trampoline addr */
274 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
275 }
276 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
277 
278 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
279 {
280 	switch (kcb->kprobe_status) {
281 	case KPROBE_HIT_SSDONE:
282 	case KPROBE_HIT_ACTIVE:
283 		kprobes_inc_nmissed_count(p);
284 		break;
285 	case KPROBE_HIT_SS:
286 	case KPROBE_REENTER:
287 	default:
288 		/*
289 		 * A kprobe on the code path to single step an instruction
290 		 * is a BUG. The code path resides in the .kprobes.text
291 		 * section and is executed with interrupts disabled.
292 		 */
293 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
294 		dump_kprobe(p);
295 		BUG();
296 	}
297 }
298 NOKPROBE_SYMBOL(kprobe_reenter_check);
299 
300 static int kprobe_handler(struct pt_regs *regs)
301 {
302 	struct kprobe_ctlblk *kcb;
303 	struct kprobe *p;
304 
305 	/*
306 	 * We want to disable preemption for the entire duration of kprobe
307 	 * processing. That includes the calls to the pre/post handlers
308 	 * and single stepping the kprobe instruction.
309 	 */
310 	preempt_disable();
311 	kcb = get_kprobe_ctlblk();
312 	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
313 
314 	if (p) {
315 		if (kprobe_running()) {
316 			/*
317 			 * We have hit a kprobe while another is still
318 			 * active. This can happen in the pre and post
319 			 * handler. Single step the instruction of the
320 			 * new probe but do not call any handler function
321 			 * of this secondary kprobe.
322 			 * push_kprobe and pop_kprobe saves and restores
323 			 * the currently active kprobe.
324 			 */
325 			kprobe_reenter_check(kcb, p);
326 			push_kprobe(kcb, p);
327 			kcb->kprobe_status = KPROBE_REENTER;
328 		} else {
329 			/*
330 			 * If we have no pre-handler or it returned 0, we
331 			 * continue with single stepping. If we have a
332 			 * pre-handler and it returned non-zero, it prepped
333 			 * for calling the break_handler below on re-entry
334 			 * for jprobe processing, so get out doing nothing
335 			 * more here.
336 			 */
337 			push_kprobe(kcb, p);
338 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
339 			if (p->pre_handler && p->pre_handler(p, regs))
340 				return 1;
341 			kcb->kprobe_status = KPROBE_HIT_SS;
342 		}
343 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
344 		return 1;
345 	} else if (kprobe_running()) {
346 		p = __this_cpu_read(current_kprobe);
347 		if (p->break_handler && p->break_handler(p, regs)) {
348 			/*
349 			 * Continuation after the jprobe completed and
350 			 * caused the jprobe_return trap. The jprobe
351 			 * break_handler "returns" to the original
352 			 * function that still has the kprobe breakpoint
353 			 * installed. We continue with single stepping.
354 			 */
355 			kcb->kprobe_status = KPROBE_HIT_SS;
356 			enable_singlestep(kcb, regs,
357 					  (unsigned long) p->ainsn.insn);
358 			return 1;
359 		} /* else:
360 		   * No kprobe at this address and the current kprobe
361 		   * has no break handler (no jprobe!). The kernel just
362 		   * exploded, let the standard trap handler pick up the
363 		   * pieces.
364 		   */
365 	} /* else:
366 	   * No kprobe at this address and no active kprobe. The trap has
367 	   * not been caused by a kprobe breakpoint. The race of breakpoint
368 	   * vs. kprobe remove does not exist because on s390 as we use
369 	   * stop_machine to arm/disarm the breakpoints.
370 	   */
371 	preempt_enable_no_resched();
372 	return 0;
373 }
374 NOKPROBE_SYMBOL(kprobe_handler);
375 
376 /*
377  * Function return probe trampoline:
378  *	- init_kprobes() establishes a probepoint here
379  *	- When the probed function returns, this probe
380  *		causes the handlers to fire
381  */
382 static void __used kretprobe_trampoline_holder(void)
383 {
384 	asm volatile(".global kretprobe_trampoline\n"
385 		     "kretprobe_trampoline: bcr 0,0\n");
386 }
387 
388 /*
389  * Called when the probe at kretprobe trampoline is hit
390  */
391 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
392 {
393 	struct kretprobe_instance *ri;
394 	struct hlist_head *head, empty_rp;
395 	struct hlist_node *tmp;
396 	unsigned long flags, orig_ret_address;
397 	unsigned long trampoline_address;
398 	kprobe_opcode_t *correct_ret_addr;
399 
400 	INIT_HLIST_HEAD(&empty_rp);
401 	kretprobe_hash_lock(current, &head, &flags);
402 
403 	/*
404 	 * It is possible to have multiple instances associated with a given
405 	 * task either because an multiple functions in the call path
406 	 * have a return probe installed on them, and/or more than one return
407 	 * return probe was registered for a target function.
408 	 *
409 	 * We can handle this because:
410 	 *     - instances are always inserted at the head of the list
411 	 *     - when multiple return probes are registered for the same
412 	 *	 function, the first instance's ret_addr will point to the
413 	 *	 real return address, and all the rest will point to
414 	 *	 kretprobe_trampoline
415 	 */
416 	ri = NULL;
417 	orig_ret_address = 0;
418 	correct_ret_addr = NULL;
419 	trampoline_address = (unsigned long) &kretprobe_trampoline;
420 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
421 		if (ri->task != current)
422 			/* another task is sharing our hash bucket */
423 			continue;
424 
425 		orig_ret_address = (unsigned long) ri->ret_addr;
426 
427 		if (orig_ret_address != trampoline_address)
428 			/*
429 			 * This is the real return address. Any other
430 			 * instances associated with this task are for
431 			 * other calls deeper on the call stack
432 			 */
433 			break;
434 	}
435 
436 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
437 
438 	correct_ret_addr = ri->ret_addr;
439 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
440 		if (ri->task != current)
441 			/* another task is sharing our hash bucket */
442 			continue;
443 
444 		orig_ret_address = (unsigned long) ri->ret_addr;
445 
446 		if (ri->rp && ri->rp->handler) {
447 			ri->ret_addr = correct_ret_addr;
448 			ri->rp->handler(ri, regs);
449 		}
450 
451 		recycle_rp_inst(ri, &empty_rp);
452 
453 		if (orig_ret_address != trampoline_address)
454 			/*
455 			 * This is the real return address. Any other
456 			 * instances associated with this task are for
457 			 * other calls deeper on the call stack
458 			 */
459 			break;
460 	}
461 
462 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
463 
464 	pop_kprobe(get_kprobe_ctlblk());
465 	kretprobe_hash_unlock(current, &flags);
466 	preempt_enable_no_resched();
467 
468 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
469 		hlist_del(&ri->hlist);
470 		kfree(ri);
471 	}
472 	/*
473 	 * By returning a non-zero value, we are telling
474 	 * kprobe_handler() that we don't want the post_handler
475 	 * to run (and have re-enabled preemption)
476 	 */
477 	return 1;
478 }
479 NOKPROBE_SYMBOL(trampoline_probe_handler);
480 
481 /*
482  * Called after single-stepping.  p->addr is the address of the
483  * instruction whose first byte has been replaced by the "breakpoint"
484  * instruction.  To avoid the SMP problems that can occur when we
485  * temporarily put back the original opcode to single-step, we
486  * single-stepped a copy of the instruction.  The address of this
487  * copy is p->ainsn.insn.
488  */
489 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
490 {
491 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
492 	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
493 	int fixup = probe_get_fixup_type(p->ainsn.insn);
494 
495 	/* Check if the kprobes location is an enabled ftrace caller */
496 	if (p->ainsn.is_ftrace_insn) {
497 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
498 		struct ftrace_insn call_insn;
499 
500 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
501 		/*
502 		 * A kprobe on an enabled ftrace call site actually single
503 		 * stepped an unconditional branch (ftrace nop equivalent).
504 		 * Now we need to fixup things and pretend that a brasl r0,...
505 		 * was executed instead.
506 		 */
507 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
508 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
509 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
510 		}
511 	}
512 
513 	if (fixup & FIXUP_PSW_NORMAL)
514 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
515 
516 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
517 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
518 		if (ip - (unsigned long) p->ainsn.insn == ilen)
519 			ip = (unsigned long) p->addr + ilen;
520 	}
521 
522 	if (fixup & FIXUP_RETURN_REGISTER) {
523 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
524 		regs->gprs[reg] += (unsigned long) p->addr -
525 				   (unsigned long) p->ainsn.insn;
526 	}
527 
528 	disable_singlestep(kcb, regs, ip);
529 }
530 NOKPROBE_SYMBOL(resume_execution);
531 
532 static int post_kprobe_handler(struct pt_regs *regs)
533 {
534 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
535 	struct kprobe *p = kprobe_running();
536 
537 	if (!p)
538 		return 0;
539 
540 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
541 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
542 		p->post_handler(p, regs, 0);
543 	}
544 
545 	resume_execution(p, regs);
546 	pop_kprobe(kcb);
547 	preempt_enable_no_resched();
548 
549 	/*
550 	 * if somebody else is singlestepping across a probe point, psw mask
551 	 * will have PER set, in which case, continue the remaining processing
552 	 * of do_single_step, as if this is not a probe hit.
553 	 */
554 	if (regs->psw.mask & PSW_MASK_PER)
555 		return 0;
556 
557 	return 1;
558 }
559 NOKPROBE_SYMBOL(post_kprobe_handler);
560 
561 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
562 {
563 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
564 	struct kprobe *p = kprobe_running();
565 	const struct exception_table_entry *entry;
566 
567 	switch(kcb->kprobe_status) {
568 	case KPROBE_SWAP_INST:
569 		/* We are here because the instruction replacement failed */
570 		return 0;
571 	case KPROBE_HIT_SS:
572 	case KPROBE_REENTER:
573 		/*
574 		 * We are here because the instruction being single
575 		 * stepped caused a page fault. We reset the current
576 		 * kprobe and the nip points back to the probe address
577 		 * and allow the page fault handler to continue as a
578 		 * normal page fault.
579 		 */
580 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
581 		pop_kprobe(kcb);
582 		preempt_enable_no_resched();
583 		break;
584 	case KPROBE_HIT_ACTIVE:
585 	case KPROBE_HIT_SSDONE:
586 		/*
587 		 * We increment the nmissed count for accounting,
588 		 * we can also use npre/npostfault count for accounting
589 		 * these specific fault cases.
590 		 */
591 		kprobes_inc_nmissed_count(p);
592 
593 		/*
594 		 * We come here because instructions in the pre/post
595 		 * handler caused the page_fault, this could happen
596 		 * if handler tries to access user space by
597 		 * copy_from_user(), get_user() etc. Let the
598 		 * user-specified handler try to fix it first.
599 		 */
600 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
601 			return 1;
602 
603 		/*
604 		 * In case the user-specified fault handler returned
605 		 * zero, try to fix up.
606 		 */
607 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
608 		if (entry) {
609 			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
610 			return 1;
611 		}
612 
613 		/*
614 		 * fixup_exception() could not handle it,
615 		 * Let do_page_fault() fix it.
616 		 */
617 		break;
618 	default:
619 		break;
620 	}
621 	return 0;
622 }
623 NOKPROBE_SYMBOL(kprobe_trap_handler);
624 
625 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
626 {
627 	int ret;
628 
629 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
630 		local_irq_disable();
631 	ret = kprobe_trap_handler(regs, trapnr);
632 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
633 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
634 	return ret;
635 }
636 NOKPROBE_SYMBOL(kprobe_fault_handler);
637 
638 /*
639  * Wrapper routine to for handling exceptions.
640  */
641 int kprobe_exceptions_notify(struct notifier_block *self,
642 			     unsigned long val, void *data)
643 {
644 	struct die_args *args = (struct die_args *) data;
645 	struct pt_regs *regs = args->regs;
646 	int ret = NOTIFY_DONE;
647 
648 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
649 		local_irq_disable();
650 
651 	switch (val) {
652 	case DIE_BPT:
653 		if (kprobe_handler(regs))
654 			ret = NOTIFY_STOP;
655 		break;
656 	case DIE_SSTEP:
657 		if (post_kprobe_handler(regs))
658 			ret = NOTIFY_STOP;
659 		break;
660 	case DIE_TRAP:
661 		if (!preemptible() && kprobe_running() &&
662 		    kprobe_trap_handler(regs, args->trapnr))
663 			ret = NOTIFY_STOP;
664 		break;
665 	default:
666 		break;
667 	}
668 
669 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
670 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
671 
672 	return ret;
673 }
674 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
675 
676 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
677 {
678 	struct jprobe *jp = container_of(p, struct jprobe, kp);
679 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
680 	unsigned long stack;
681 
682 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
683 
684 	/* setup return addr to the jprobe handler routine */
685 	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
686 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
687 
688 	/* r15 is the stack pointer */
689 	stack = (unsigned long) regs->gprs[15];
690 
691 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
692 	return 1;
693 }
694 NOKPROBE_SYMBOL(setjmp_pre_handler);
695 
696 void jprobe_return(void)
697 {
698 	asm volatile(".word 0x0002");
699 }
700 NOKPROBE_SYMBOL(jprobe_return);
701 
702 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
703 {
704 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
705 	unsigned long stack;
706 
707 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
708 
709 	/* Put the regs back */
710 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
711 	/* put the stack back */
712 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
713 	preempt_enable_no_resched();
714 	return 1;
715 }
716 NOKPROBE_SYMBOL(longjmp_break_handler);
717 
718 static struct kprobe trampoline = {
719 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
720 	.pre_handler = trampoline_probe_handler
721 };
722 
723 int __init arch_init_kprobes(void)
724 {
725 	return register_kprobe(&trampoline);
726 }
727 
728 int arch_trampoline_kprobe(struct kprobe *p)
729 {
730 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
731 }
732 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
733