xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 8a26af30)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <asm/cacheflush.h>
33 #include <asm/sections.h>
34 #include <asm/dis.h>
35 
36 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
37 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
38 
39 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
40 
41 DEFINE_INSN_CACHE_OPS(dmainsn);
42 
43 static void *alloc_dmainsn_page(void)
44 {
45 	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
46 }
47 
48 static void free_dmainsn_page(void *page)
49 {
50 	free_page((unsigned long)page);
51 }
52 
53 struct kprobe_insn_cache kprobe_dmainsn_slots = {
54 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
55 	.alloc = alloc_dmainsn_page,
56 	.free = free_dmainsn_page,
57 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
58 	.insn_size = MAX_INSN_SIZE,
59 };
60 
61 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
62 {
63 	if (!is_known_insn((unsigned char *)insn))
64 		return -EINVAL;
65 	switch (insn[0] >> 8) {
66 	case 0x0c:	/* bassm */
67 	case 0x0b:	/* bsm	 */
68 	case 0x83:	/* diag  */
69 	case 0x44:	/* ex	 */
70 	case 0xac:	/* stnsm */
71 	case 0xad:	/* stosm */
72 		return -EINVAL;
73 	case 0xc6:
74 		switch (insn[0] & 0x0f) {
75 		case 0x00: /* exrl   */
76 			return -EINVAL;
77 		}
78 	}
79 	switch (insn[0]) {
80 	case 0x0101:	/* pr	 */
81 	case 0xb25a:	/* bsa	 */
82 	case 0xb240:	/* bakr  */
83 	case 0xb258:	/* bsg	 */
84 	case 0xb218:	/* pc	 */
85 	case 0xb228:	/* pt	 */
86 	case 0xb98d:	/* epsw	 */
87 		return -EINVAL;
88 	}
89 	return 0;
90 }
91 
92 static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
93 {
94 	/* default fixup method */
95 	int fixup = FIXUP_PSW_NORMAL;
96 
97 	switch (insn[0] >> 8) {
98 	case 0x05:	/* balr	*/
99 	case 0x0d:	/* basr */
100 		fixup = FIXUP_RETURN_REGISTER;
101 		/* if r2 = 0, no branch will be taken */
102 		if ((insn[0] & 0x0f) == 0)
103 			fixup |= FIXUP_BRANCH_NOT_TAKEN;
104 		break;
105 	case 0x06:	/* bctr	*/
106 	case 0x07:	/* bcr	*/
107 		fixup = FIXUP_BRANCH_NOT_TAKEN;
108 		break;
109 	case 0x45:	/* bal	*/
110 	case 0x4d:	/* bas	*/
111 		fixup = FIXUP_RETURN_REGISTER;
112 		break;
113 	case 0x47:	/* bc	*/
114 	case 0x46:	/* bct	*/
115 	case 0x86:	/* bxh	*/
116 	case 0x87:	/* bxle	*/
117 		fixup = FIXUP_BRANCH_NOT_TAKEN;
118 		break;
119 	case 0x82:	/* lpsw	*/
120 		fixup = FIXUP_NOT_REQUIRED;
121 		break;
122 	case 0xb2:	/* lpswe */
123 		if ((insn[0] & 0xff) == 0xb2)
124 			fixup = FIXUP_NOT_REQUIRED;
125 		break;
126 	case 0xa7:	/* bras	*/
127 		if ((insn[0] & 0x0f) == 0x05)
128 			fixup |= FIXUP_RETURN_REGISTER;
129 		break;
130 	case 0xc0:
131 		if ((insn[0] & 0x0f) == 0x05)	/* brasl */
132 			fixup |= FIXUP_RETURN_REGISTER;
133 		break;
134 	case 0xeb:
135 		switch (insn[2] & 0xff) {
136 		case 0x44: /* bxhg  */
137 		case 0x45: /* bxleg */
138 			fixup = FIXUP_BRANCH_NOT_TAKEN;
139 			break;
140 		}
141 		break;
142 	case 0xe3:	/* bctg	*/
143 		if ((insn[2] & 0xff) == 0x46)
144 			fixup = FIXUP_BRANCH_NOT_TAKEN;
145 		break;
146 	case 0xec:
147 		switch (insn[2] & 0xff) {
148 		case 0xe5: /* clgrb */
149 		case 0xe6: /* cgrb  */
150 		case 0xf6: /* crb   */
151 		case 0xf7: /* clrb  */
152 		case 0xfc: /* cgib  */
153 		case 0xfd: /* cglib */
154 		case 0xfe: /* cib   */
155 		case 0xff: /* clib  */
156 			fixup = FIXUP_BRANCH_NOT_TAKEN;
157 			break;
158 		}
159 		break;
160 	}
161 	return fixup;
162 }
163 
164 static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn)
165 {
166 	/* Check if we have a RIL-b or RIL-c format instruction which
167 	 * we need to modify in order to avoid instruction emulation. */
168 	switch (insn[0] >> 8) {
169 	case 0xc0:
170 		if ((insn[0] & 0x0f) == 0x00) /* larl */
171 			return true;
172 		break;
173 	case 0xc4:
174 		switch (insn[0] & 0x0f) {
175 		case 0x02: /* llhrl  */
176 		case 0x04: /* lghrl  */
177 		case 0x05: /* lhrl   */
178 		case 0x06: /* llghrl */
179 		case 0x07: /* sthrl  */
180 		case 0x08: /* lgrl   */
181 		case 0x0b: /* stgrl  */
182 		case 0x0c: /* lgfrl  */
183 		case 0x0d: /* lrl    */
184 		case 0x0e: /* llgfrl */
185 		case 0x0f: /* strl   */
186 			return true;
187 		}
188 		break;
189 	case 0xc6:
190 		switch (insn[0] & 0x0f) {
191 		case 0x02: /* pfdrl  */
192 		case 0x04: /* cghrl  */
193 		case 0x05: /* chrl   */
194 		case 0x06: /* clghrl */
195 		case 0x07: /* clhrl  */
196 		case 0x08: /* cgrl   */
197 		case 0x0a: /* clgrl  */
198 		case 0x0c: /* cgfrl  */
199 		case 0x0d: /* crl    */
200 		case 0x0e: /* clgfrl */
201 		case 0x0f: /* clrl   */
202 			return true;
203 		}
204 		break;
205 	}
206 	return false;
207 }
208 
209 static void __kprobes copy_instruction(struct kprobe *p)
210 {
211 	s64 disp, new_disp;
212 	u64 addr, new_addr;
213 
214 	memcpy(p->ainsn.insn, p->addr, insn_length(p->opcode >> 8));
215 	if (!is_insn_relative_long(p->ainsn.insn))
216 		return;
217 	/*
218 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
219 	 * RI2 displacement field. We have already made sure that the insn
220 	 * slot for the patched instruction is within the same 2GB area
221 	 * as the original instruction (either kernel image or module area).
222 	 * Therefore the new displacement will always fit.
223 	 */
224 	disp = *(s32 *)&p->ainsn.insn[1];
225 	addr = (u64)(unsigned long)p->addr;
226 	new_addr = (u64)(unsigned long)p->ainsn.insn;
227 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
228 	*(s32 *)&p->ainsn.insn[1] = new_disp;
229 }
230 
231 static inline int is_kernel_addr(void *addr)
232 {
233 	return addr < (void *)_end;
234 }
235 
236 static inline int is_module_addr(void *addr)
237 {
238 #ifdef CONFIG_64BIT
239 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
240 	if (addr < (void *)MODULES_VADDR)
241 		return 0;
242 	if (addr > (void *)MODULES_END)
243 		return 0;
244 #endif
245 	return 1;
246 }
247 
248 static int __kprobes s390_get_insn_slot(struct kprobe *p)
249 {
250 	/*
251 	 * Get an insn slot that is within the same 2GB area like the original
252 	 * instruction. That way instructions with a 32bit signed displacement
253 	 * field can be patched and executed within the insn slot.
254 	 */
255 	p->ainsn.insn = NULL;
256 	if (is_kernel_addr(p->addr))
257 		p->ainsn.insn = get_dmainsn_slot();
258 	else if (is_module_addr(p->addr))
259 		p->ainsn.insn = get_insn_slot();
260 	return p->ainsn.insn ? 0 : -ENOMEM;
261 }
262 
263 static void __kprobes s390_free_insn_slot(struct kprobe *p)
264 {
265 	if (!p->ainsn.insn)
266 		return;
267 	if (is_kernel_addr(p->addr))
268 		free_dmainsn_slot(p->ainsn.insn, 0);
269 	else
270 		free_insn_slot(p->ainsn.insn, 0);
271 	p->ainsn.insn = NULL;
272 }
273 
274 int __kprobes arch_prepare_kprobe(struct kprobe *p)
275 {
276 	if ((unsigned long) p->addr & 0x01)
277 		return -EINVAL;
278 	/* Make sure the probe isn't going on a difficult instruction */
279 	if (is_prohibited_opcode(p->addr))
280 		return -EINVAL;
281 	if (s390_get_insn_slot(p))
282 		return -ENOMEM;
283 	p->opcode = *p->addr;
284 	copy_instruction(p);
285 	return 0;
286 }
287 
288 struct ins_replace_args {
289 	kprobe_opcode_t *ptr;
290 	kprobe_opcode_t opcode;
291 };
292 
293 static int __kprobes swap_instruction(void *aref)
294 {
295 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
296 	unsigned long status = kcb->kprobe_status;
297 	struct ins_replace_args *args = aref;
298 
299 	kcb->kprobe_status = KPROBE_SWAP_INST;
300 	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
301 	kcb->kprobe_status = status;
302 	return 0;
303 }
304 
305 void __kprobes arch_arm_kprobe(struct kprobe *p)
306 {
307 	struct ins_replace_args args;
308 
309 	args.ptr = p->addr;
310 	args.opcode = BREAKPOINT_INSTRUCTION;
311 	stop_machine(swap_instruction, &args, NULL);
312 }
313 
314 void __kprobes arch_disarm_kprobe(struct kprobe *p)
315 {
316 	struct ins_replace_args args;
317 
318 	args.ptr = p->addr;
319 	args.opcode = p->opcode;
320 	stop_machine(swap_instruction, &args, NULL);
321 }
322 
323 void __kprobes arch_remove_kprobe(struct kprobe *p)
324 {
325 	s390_free_insn_slot(p);
326 }
327 
328 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
329 					struct pt_regs *regs,
330 					unsigned long ip)
331 {
332 	struct per_regs per_kprobe;
333 
334 	/* Set up the PER control registers %cr9-%cr11 */
335 	per_kprobe.control = PER_EVENT_IFETCH;
336 	per_kprobe.start = ip;
337 	per_kprobe.end = ip;
338 
339 	/* Save control regs and psw mask */
340 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
341 	kcb->kprobe_saved_imask = regs->psw.mask &
342 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
343 
344 	/* Set PER control regs, turns on single step for the given address */
345 	__ctl_load(per_kprobe, 9, 11);
346 	regs->psw.mask |= PSW_MASK_PER;
347 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
348 	regs->psw.addr = ip | PSW_ADDR_AMODE;
349 }
350 
351 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
352 					 struct pt_regs *regs,
353 					 unsigned long ip)
354 {
355 	/* Restore control regs and psw mask, set new psw address */
356 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
357 	regs->psw.mask &= ~PSW_MASK_PER;
358 	regs->psw.mask |= kcb->kprobe_saved_imask;
359 	regs->psw.addr = ip | PSW_ADDR_AMODE;
360 }
361 
362 /*
363  * Activate a kprobe by storing its pointer to current_kprobe. The
364  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
365  * two kprobes can be active, see KPROBE_REENTER.
366  */
367 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
368 {
369 	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
370 	kcb->prev_kprobe.status = kcb->kprobe_status;
371 	__get_cpu_var(current_kprobe) = p;
372 }
373 
374 /*
375  * Deactivate a kprobe by backing up to the previous state. If the
376  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
377  * for any other state prev_kprobe.kp will be NULL.
378  */
379 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
380 {
381 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
382 	kcb->kprobe_status = kcb->prev_kprobe.status;
383 }
384 
385 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
386 					struct pt_regs *regs)
387 {
388 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
389 
390 	/* Replace the return addr with trampoline addr */
391 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
392 }
393 
394 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
395 					   struct kprobe *p)
396 {
397 	switch (kcb->kprobe_status) {
398 	case KPROBE_HIT_SSDONE:
399 	case KPROBE_HIT_ACTIVE:
400 		kprobes_inc_nmissed_count(p);
401 		break;
402 	case KPROBE_HIT_SS:
403 	case KPROBE_REENTER:
404 	default:
405 		/*
406 		 * A kprobe on the code path to single step an instruction
407 		 * is a BUG. The code path resides in the .kprobes.text
408 		 * section and is executed with interrupts disabled.
409 		 */
410 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
411 		dump_kprobe(p);
412 		BUG();
413 	}
414 }
415 
416 static int __kprobes kprobe_handler(struct pt_regs *regs)
417 {
418 	struct kprobe_ctlblk *kcb;
419 	struct kprobe *p;
420 
421 	/*
422 	 * We want to disable preemption for the entire duration of kprobe
423 	 * processing. That includes the calls to the pre/post handlers
424 	 * and single stepping the kprobe instruction.
425 	 */
426 	preempt_disable();
427 	kcb = get_kprobe_ctlblk();
428 	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
429 
430 	if (p) {
431 		if (kprobe_running()) {
432 			/*
433 			 * We have hit a kprobe while another is still
434 			 * active. This can happen in the pre and post
435 			 * handler. Single step the instruction of the
436 			 * new probe but do not call any handler function
437 			 * of this secondary kprobe.
438 			 * push_kprobe and pop_kprobe saves and restores
439 			 * the currently active kprobe.
440 			 */
441 			kprobe_reenter_check(kcb, p);
442 			push_kprobe(kcb, p);
443 			kcb->kprobe_status = KPROBE_REENTER;
444 		} else {
445 			/*
446 			 * If we have no pre-handler or it returned 0, we
447 			 * continue with single stepping. If we have a
448 			 * pre-handler and it returned non-zero, it prepped
449 			 * for calling the break_handler below on re-entry
450 			 * for jprobe processing, so get out doing nothing
451 			 * more here.
452 			 */
453 			push_kprobe(kcb, p);
454 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
455 			if (p->pre_handler && p->pre_handler(p, regs))
456 				return 1;
457 			kcb->kprobe_status = KPROBE_HIT_SS;
458 		}
459 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
460 		return 1;
461 	} else if (kprobe_running()) {
462 		p = __get_cpu_var(current_kprobe);
463 		if (p->break_handler && p->break_handler(p, regs)) {
464 			/*
465 			 * Continuation after the jprobe completed and
466 			 * caused the jprobe_return trap. The jprobe
467 			 * break_handler "returns" to the original
468 			 * function that still has the kprobe breakpoint
469 			 * installed. We continue with single stepping.
470 			 */
471 			kcb->kprobe_status = KPROBE_HIT_SS;
472 			enable_singlestep(kcb, regs,
473 					  (unsigned long) p->ainsn.insn);
474 			return 1;
475 		} /* else:
476 		   * No kprobe at this address and the current kprobe
477 		   * has no break handler (no jprobe!). The kernel just
478 		   * exploded, let the standard trap handler pick up the
479 		   * pieces.
480 		   */
481 	} /* else:
482 	   * No kprobe at this address and no active kprobe. The trap has
483 	   * not been caused by a kprobe breakpoint. The race of breakpoint
484 	   * vs. kprobe remove does not exist because on s390 as we use
485 	   * stop_machine to arm/disarm the breakpoints.
486 	   */
487 	preempt_enable_no_resched();
488 	return 0;
489 }
490 
491 /*
492  * Function return probe trampoline:
493  *	- init_kprobes() establishes a probepoint here
494  *	- When the probed function returns, this probe
495  *		causes the handlers to fire
496  */
497 static void __used kretprobe_trampoline_holder(void)
498 {
499 	asm volatile(".global kretprobe_trampoline\n"
500 		     "kretprobe_trampoline: bcr 0,0\n");
501 }
502 
503 /*
504  * Called when the probe at kretprobe trampoline is hit
505  */
506 static int __kprobes trampoline_probe_handler(struct kprobe *p,
507 					      struct pt_regs *regs)
508 {
509 	struct kretprobe_instance *ri;
510 	struct hlist_head *head, empty_rp;
511 	struct hlist_node *tmp;
512 	unsigned long flags, orig_ret_address;
513 	unsigned long trampoline_address;
514 	kprobe_opcode_t *correct_ret_addr;
515 
516 	INIT_HLIST_HEAD(&empty_rp);
517 	kretprobe_hash_lock(current, &head, &flags);
518 
519 	/*
520 	 * It is possible to have multiple instances associated with a given
521 	 * task either because an multiple functions in the call path
522 	 * have a return probe installed on them, and/or more than one return
523 	 * return probe was registered for a target function.
524 	 *
525 	 * We can handle this because:
526 	 *     - instances are always inserted at the head of the list
527 	 *     - when multiple return probes are registered for the same
528 	 *	 function, the first instance's ret_addr will point to the
529 	 *	 real return address, and all the rest will point to
530 	 *	 kretprobe_trampoline
531 	 */
532 	ri = NULL;
533 	orig_ret_address = 0;
534 	correct_ret_addr = NULL;
535 	trampoline_address = (unsigned long) &kretprobe_trampoline;
536 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
537 		if (ri->task != current)
538 			/* another task is sharing our hash bucket */
539 			continue;
540 
541 		orig_ret_address = (unsigned long) ri->ret_addr;
542 
543 		if (orig_ret_address != trampoline_address)
544 			/*
545 			 * This is the real return address. Any other
546 			 * instances associated with this task are for
547 			 * other calls deeper on the call stack
548 			 */
549 			break;
550 	}
551 
552 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
553 
554 	correct_ret_addr = ri->ret_addr;
555 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
556 		if (ri->task != current)
557 			/* another task is sharing our hash bucket */
558 			continue;
559 
560 		orig_ret_address = (unsigned long) ri->ret_addr;
561 
562 		if (ri->rp && ri->rp->handler) {
563 			ri->ret_addr = correct_ret_addr;
564 			ri->rp->handler(ri, regs);
565 		}
566 
567 		recycle_rp_inst(ri, &empty_rp);
568 
569 		if (orig_ret_address != trampoline_address)
570 			/*
571 			 * This is the real return address. Any other
572 			 * instances associated with this task are for
573 			 * other calls deeper on the call stack
574 			 */
575 			break;
576 	}
577 
578 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
579 
580 	pop_kprobe(get_kprobe_ctlblk());
581 	kretprobe_hash_unlock(current, &flags);
582 	preempt_enable_no_resched();
583 
584 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
585 		hlist_del(&ri->hlist);
586 		kfree(ri);
587 	}
588 	/*
589 	 * By returning a non-zero value, we are telling
590 	 * kprobe_handler() that we don't want the post_handler
591 	 * to run (and have re-enabled preemption)
592 	 */
593 	return 1;
594 }
595 
596 /*
597  * Called after single-stepping.  p->addr is the address of the
598  * instruction whose first byte has been replaced by the "breakpoint"
599  * instruction.  To avoid the SMP problems that can occur when we
600  * temporarily put back the original opcode to single-step, we
601  * single-stepped a copy of the instruction.  The address of this
602  * copy is p->ainsn.insn.
603  */
604 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
605 {
606 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
607 	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
608 	int fixup = get_fixup_type(p->ainsn.insn);
609 
610 	if (fixup & FIXUP_PSW_NORMAL)
611 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
612 
613 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
614 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
615 		if (ip - (unsigned long) p->ainsn.insn == ilen)
616 			ip = (unsigned long) p->addr + ilen;
617 	}
618 
619 	if (fixup & FIXUP_RETURN_REGISTER) {
620 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
621 		regs->gprs[reg] += (unsigned long) p->addr -
622 				   (unsigned long) p->ainsn.insn;
623 	}
624 
625 	disable_singlestep(kcb, regs, ip);
626 }
627 
628 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
629 {
630 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
631 	struct kprobe *p = kprobe_running();
632 
633 	if (!p)
634 		return 0;
635 
636 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
637 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
638 		p->post_handler(p, regs, 0);
639 	}
640 
641 	resume_execution(p, regs);
642 	pop_kprobe(kcb);
643 	preempt_enable_no_resched();
644 
645 	/*
646 	 * if somebody else is singlestepping across a probe point, psw mask
647 	 * will have PER set, in which case, continue the remaining processing
648 	 * of do_single_step, as if this is not a probe hit.
649 	 */
650 	if (regs->psw.mask & PSW_MASK_PER)
651 		return 0;
652 
653 	return 1;
654 }
655 
656 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
657 {
658 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
659 	struct kprobe *p = kprobe_running();
660 	const struct exception_table_entry *entry;
661 
662 	switch(kcb->kprobe_status) {
663 	case KPROBE_SWAP_INST:
664 		/* We are here because the instruction replacement failed */
665 		return 0;
666 	case KPROBE_HIT_SS:
667 	case KPROBE_REENTER:
668 		/*
669 		 * We are here because the instruction being single
670 		 * stepped caused a page fault. We reset the current
671 		 * kprobe and the nip points back to the probe address
672 		 * and allow the page fault handler to continue as a
673 		 * normal page fault.
674 		 */
675 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
676 		pop_kprobe(kcb);
677 		preempt_enable_no_resched();
678 		break;
679 	case KPROBE_HIT_ACTIVE:
680 	case KPROBE_HIT_SSDONE:
681 		/*
682 		 * We increment the nmissed count for accounting,
683 		 * we can also use npre/npostfault count for accounting
684 		 * these specific fault cases.
685 		 */
686 		kprobes_inc_nmissed_count(p);
687 
688 		/*
689 		 * We come here because instructions in the pre/post
690 		 * handler caused the page_fault, this could happen
691 		 * if handler tries to access user space by
692 		 * copy_from_user(), get_user() etc. Let the
693 		 * user-specified handler try to fix it first.
694 		 */
695 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
696 			return 1;
697 
698 		/*
699 		 * In case the user-specified fault handler returned
700 		 * zero, try to fix up.
701 		 */
702 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
703 		if (entry) {
704 			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
705 			return 1;
706 		}
707 
708 		/*
709 		 * fixup_exception() could not handle it,
710 		 * Let do_page_fault() fix it.
711 		 */
712 		break;
713 	default:
714 		break;
715 	}
716 	return 0;
717 }
718 
719 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
720 {
721 	int ret;
722 
723 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
724 		local_irq_disable();
725 	ret = kprobe_trap_handler(regs, trapnr);
726 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
727 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
728 	return ret;
729 }
730 
731 /*
732  * Wrapper routine to for handling exceptions.
733  */
734 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
735 				       unsigned long val, void *data)
736 {
737 	struct die_args *args = (struct die_args *) data;
738 	struct pt_regs *regs = args->regs;
739 	int ret = NOTIFY_DONE;
740 
741 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
742 		local_irq_disable();
743 
744 	switch (val) {
745 	case DIE_BPT:
746 		if (kprobe_handler(regs))
747 			ret = NOTIFY_STOP;
748 		break;
749 	case DIE_SSTEP:
750 		if (post_kprobe_handler(regs))
751 			ret = NOTIFY_STOP;
752 		break;
753 	case DIE_TRAP:
754 		if (!preemptible() && kprobe_running() &&
755 		    kprobe_trap_handler(regs, args->trapnr))
756 			ret = NOTIFY_STOP;
757 		break;
758 	default:
759 		break;
760 	}
761 
762 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
763 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
764 
765 	return ret;
766 }
767 
768 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
769 {
770 	struct jprobe *jp = container_of(p, struct jprobe, kp);
771 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
772 	unsigned long stack;
773 
774 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
775 
776 	/* setup return addr to the jprobe handler routine */
777 	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
778 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
779 
780 	/* r15 is the stack pointer */
781 	stack = (unsigned long) regs->gprs[15];
782 
783 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
784 	return 1;
785 }
786 
787 void __kprobes jprobe_return(void)
788 {
789 	asm volatile(".word 0x0002");
790 }
791 
792 static void __used __kprobes jprobe_return_end(void)
793 {
794 	asm volatile("bcr 0,0");
795 }
796 
797 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
798 {
799 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
800 	unsigned long stack;
801 
802 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
803 
804 	/* Put the regs back */
805 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
806 	/* put the stack back */
807 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
808 	preempt_enable_no_resched();
809 	return 1;
810 }
811 
812 static struct kprobe trampoline = {
813 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
814 	.pre_handler = trampoline_probe_handler
815 };
816 
817 int __init arch_init_kprobes(void)
818 {
819 	return register_kprobe(&trampoline);
820 }
821 
822 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
823 {
824 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
825 }
826