xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 8730046c)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/extable.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/hardirq.h>
33 #include <linux/ftrace.h>
34 #include <asm/cacheflush.h>
35 #include <asm/sections.h>
36 #include <linux/uaccess.h>
37 #include <asm/dis.h>
38 
39 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 
42 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
43 
44 DEFINE_INSN_CACHE_OPS(dmainsn);
45 
46 static void *alloc_dmainsn_page(void)
47 {
48 	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
49 }
50 
51 static void free_dmainsn_page(void *page)
52 {
53 	free_page((unsigned long)page);
54 }
55 
56 struct kprobe_insn_cache kprobe_dmainsn_slots = {
57 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
58 	.alloc = alloc_dmainsn_page,
59 	.free = free_dmainsn_page,
60 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
61 	.insn_size = MAX_INSN_SIZE,
62 };
63 
64 static void copy_instruction(struct kprobe *p)
65 {
66 	unsigned long ip = (unsigned long) p->addr;
67 	s64 disp, new_disp;
68 	u64 addr, new_addr;
69 
70 	if (ftrace_location(ip) == ip) {
71 		/*
72 		 * If kprobes patches the instruction that is morphed by
73 		 * ftrace make sure that kprobes always sees the branch
74 		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
75 		 * in case of hotpatch.
76 		 */
77 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
78 		p->ainsn.is_ftrace_insn = 1;
79 	} else
80 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
81 	p->opcode = p->ainsn.insn[0];
82 	if (!probe_is_insn_relative_long(p->ainsn.insn))
83 		return;
84 	/*
85 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
86 	 * RI2 displacement field. We have already made sure that the insn
87 	 * slot for the patched instruction is within the same 2GB area
88 	 * as the original instruction (either kernel image or module area).
89 	 * Therefore the new displacement will always fit.
90 	 */
91 	disp = *(s32 *)&p->ainsn.insn[1];
92 	addr = (u64)(unsigned long)p->addr;
93 	new_addr = (u64)(unsigned long)p->ainsn.insn;
94 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
95 	*(s32 *)&p->ainsn.insn[1] = new_disp;
96 }
97 NOKPROBE_SYMBOL(copy_instruction);
98 
99 static inline int is_kernel_addr(void *addr)
100 {
101 	return addr < (void *)_end;
102 }
103 
104 static int s390_get_insn_slot(struct kprobe *p)
105 {
106 	/*
107 	 * Get an insn slot that is within the same 2GB area like the original
108 	 * instruction. That way instructions with a 32bit signed displacement
109 	 * field can be patched and executed within the insn slot.
110 	 */
111 	p->ainsn.insn = NULL;
112 	if (is_kernel_addr(p->addr))
113 		p->ainsn.insn = get_dmainsn_slot();
114 	else if (is_module_addr(p->addr))
115 		p->ainsn.insn = get_insn_slot();
116 	return p->ainsn.insn ? 0 : -ENOMEM;
117 }
118 NOKPROBE_SYMBOL(s390_get_insn_slot);
119 
120 static void s390_free_insn_slot(struct kprobe *p)
121 {
122 	if (!p->ainsn.insn)
123 		return;
124 	if (is_kernel_addr(p->addr))
125 		free_dmainsn_slot(p->ainsn.insn, 0);
126 	else
127 		free_insn_slot(p->ainsn.insn, 0);
128 	p->ainsn.insn = NULL;
129 }
130 NOKPROBE_SYMBOL(s390_free_insn_slot);
131 
132 int arch_prepare_kprobe(struct kprobe *p)
133 {
134 	if ((unsigned long) p->addr & 0x01)
135 		return -EINVAL;
136 	/* Make sure the probe isn't going on a difficult instruction */
137 	if (probe_is_prohibited_opcode(p->addr))
138 		return -EINVAL;
139 	if (s390_get_insn_slot(p))
140 		return -ENOMEM;
141 	copy_instruction(p);
142 	return 0;
143 }
144 NOKPROBE_SYMBOL(arch_prepare_kprobe);
145 
146 int arch_check_ftrace_location(struct kprobe *p)
147 {
148 	return 0;
149 }
150 
151 struct swap_insn_args {
152 	struct kprobe *p;
153 	unsigned int arm_kprobe : 1;
154 };
155 
156 static int swap_instruction(void *data)
157 {
158 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
159 	unsigned long status = kcb->kprobe_status;
160 	struct swap_insn_args *args = data;
161 	struct ftrace_insn new_insn, *insn;
162 	struct kprobe *p = args->p;
163 	size_t len;
164 
165 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
166 	len = sizeof(new_insn.opc);
167 	if (!p->ainsn.is_ftrace_insn)
168 		goto skip_ftrace;
169 	len = sizeof(new_insn);
170 	insn = (struct ftrace_insn *) p->addr;
171 	if (args->arm_kprobe) {
172 		if (is_ftrace_nop(insn))
173 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
174 		else
175 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
176 	} else {
177 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
178 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
179 			ftrace_generate_nop_insn(&new_insn);
180 	}
181 skip_ftrace:
182 	kcb->kprobe_status = KPROBE_SWAP_INST;
183 	s390_kernel_write(p->addr, &new_insn, len);
184 	kcb->kprobe_status = status;
185 	return 0;
186 }
187 NOKPROBE_SYMBOL(swap_instruction);
188 
189 void arch_arm_kprobe(struct kprobe *p)
190 {
191 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
192 
193 	stop_machine(swap_instruction, &args, NULL);
194 }
195 NOKPROBE_SYMBOL(arch_arm_kprobe);
196 
197 void arch_disarm_kprobe(struct kprobe *p)
198 {
199 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
200 
201 	stop_machine(swap_instruction, &args, NULL);
202 }
203 NOKPROBE_SYMBOL(arch_disarm_kprobe);
204 
205 void arch_remove_kprobe(struct kprobe *p)
206 {
207 	s390_free_insn_slot(p);
208 }
209 NOKPROBE_SYMBOL(arch_remove_kprobe);
210 
211 static void enable_singlestep(struct kprobe_ctlblk *kcb,
212 			      struct pt_regs *regs,
213 			      unsigned long ip)
214 {
215 	struct per_regs per_kprobe;
216 
217 	/* Set up the PER control registers %cr9-%cr11 */
218 	per_kprobe.control = PER_EVENT_IFETCH;
219 	per_kprobe.start = ip;
220 	per_kprobe.end = ip;
221 
222 	/* Save control regs and psw mask */
223 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
224 	kcb->kprobe_saved_imask = regs->psw.mask &
225 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
226 
227 	/* Set PER control regs, turns on single step for the given address */
228 	__ctl_load(per_kprobe, 9, 11);
229 	regs->psw.mask |= PSW_MASK_PER;
230 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
231 	regs->psw.addr = ip;
232 }
233 NOKPROBE_SYMBOL(enable_singlestep);
234 
235 static void disable_singlestep(struct kprobe_ctlblk *kcb,
236 			       struct pt_regs *regs,
237 			       unsigned long ip)
238 {
239 	/* Restore control regs and psw mask, set new psw address */
240 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
241 	regs->psw.mask &= ~PSW_MASK_PER;
242 	regs->psw.mask |= kcb->kprobe_saved_imask;
243 	regs->psw.addr = ip;
244 }
245 NOKPROBE_SYMBOL(disable_singlestep);
246 
247 /*
248  * Activate a kprobe by storing its pointer to current_kprobe. The
249  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
250  * two kprobes can be active, see KPROBE_REENTER.
251  */
252 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
253 {
254 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
255 	kcb->prev_kprobe.status = kcb->kprobe_status;
256 	__this_cpu_write(current_kprobe, p);
257 }
258 NOKPROBE_SYMBOL(push_kprobe);
259 
260 /*
261  * Deactivate a kprobe by backing up to the previous state. If the
262  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
263  * for any other state prev_kprobe.kp will be NULL.
264  */
265 static void pop_kprobe(struct kprobe_ctlblk *kcb)
266 {
267 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
268 	kcb->kprobe_status = kcb->prev_kprobe.status;
269 }
270 NOKPROBE_SYMBOL(pop_kprobe);
271 
272 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
273 {
274 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
275 
276 	/* Replace the return addr with trampoline addr */
277 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
278 }
279 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
280 
281 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
282 {
283 	switch (kcb->kprobe_status) {
284 	case KPROBE_HIT_SSDONE:
285 	case KPROBE_HIT_ACTIVE:
286 		kprobes_inc_nmissed_count(p);
287 		break;
288 	case KPROBE_HIT_SS:
289 	case KPROBE_REENTER:
290 	default:
291 		/*
292 		 * A kprobe on the code path to single step an instruction
293 		 * is a BUG. The code path resides in the .kprobes.text
294 		 * section and is executed with interrupts disabled.
295 		 */
296 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
297 		dump_kprobe(p);
298 		BUG();
299 	}
300 }
301 NOKPROBE_SYMBOL(kprobe_reenter_check);
302 
303 static int kprobe_handler(struct pt_regs *regs)
304 {
305 	struct kprobe_ctlblk *kcb;
306 	struct kprobe *p;
307 
308 	/*
309 	 * We want to disable preemption for the entire duration of kprobe
310 	 * processing. That includes the calls to the pre/post handlers
311 	 * and single stepping the kprobe instruction.
312 	 */
313 	preempt_disable();
314 	kcb = get_kprobe_ctlblk();
315 	p = get_kprobe((void *)(regs->psw.addr - 2));
316 
317 	if (p) {
318 		if (kprobe_running()) {
319 			/*
320 			 * We have hit a kprobe while another is still
321 			 * active. This can happen in the pre and post
322 			 * handler. Single step the instruction of the
323 			 * new probe but do not call any handler function
324 			 * of this secondary kprobe.
325 			 * push_kprobe and pop_kprobe saves and restores
326 			 * the currently active kprobe.
327 			 */
328 			kprobe_reenter_check(kcb, p);
329 			push_kprobe(kcb, p);
330 			kcb->kprobe_status = KPROBE_REENTER;
331 		} else {
332 			/*
333 			 * If we have no pre-handler or it returned 0, we
334 			 * continue with single stepping. If we have a
335 			 * pre-handler and it returned non-zero, it prepped
336 			 * for calling the break_handler below on re-entry
337 			 * for jprobe processing, so get out doing nothing
338 			 * more here.
339 			 */
340 			push_kprobe(kcb, p);
341 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
342 			if (p->pre_handler && p->pre_handler(p, regs))
343 				return 1;
344 			kcb->kprobe_status = KPROBE_HIT_SS;
345 		}
346 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
347 		return 1;
348 	} else if (kprobe_running()) {
349 		p = __this_cpu_read(current_kprobe);
350 		if (p->break_handler && p->break_handler(p, regs)) {
351 			/*
352 			 * Continuation after the jprobe completed and
353 			 * caused the jprobe_return trap. The jprobe
354 			 * break_handler "returns" to the original
355 			 * function that still has the kprobe breakpoint
356 			 * installed. We continue with single stepping.
357 			 */
358 			kcb->kprobe_status = KPROBE_HIT_SS;
359 			enable_singlestep(kcb, regs,
360 					  (unsigned long) p->ainsn.insn);
361 			return 1;
362 		} /* else:
363 		   * No kprobe at this address and the current kprobe
364 		   * has no break handler (no jprobe!). The kernel just
365 		   * exploded, let the standard trap handler pick up the
366 		   * pieces.
367 		   */
368 	} /* else:
369 	   * No kprobe at this address and no active kprobe. The trap has
370 	   * not been caused by a kprobe breakpoint. The race of breakpoint
371 	   * vs. kprobe remove does not exist because on s390 as we use
372 	   * stop_machine to arm/disarm the breakpoints.
373 	   */
374 	preempt_enable_no_resched();
375 	return 0;
376 }
377 NOKPROBE_SYMBOL(kprobe_handler);
378 
379 /*
380  * Function return probe trampoline:
381  *	- init_kprobes() establishes a probepoint here
382  *	- When the probed function returns, this probe
383  *		causes the handlers to fire
384  */
385 static void __used kretprobe_trampoline_holder(void)
386 {
387 	asm volatile(".global kretprobe_trampoline\n"
388 		     "kretprobe_trampoline: bcr 0,0\n");
389 }
390 
391 /*
392  * Called when the probe at kretprobe trampoline is hit
393  */
394 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
395 {
396 	struct kretprobe_instance *ri;
397 	struct hlist_head *head, empty_rp;
398 	struct hlist_node *tmp;
399 	unsigned long flags, orig_ret_address;
400 	unsigned long trampoline_address;
401 	kprobe_opcode_t *correct_ret_addr;
402 
403 	INIT_HLIST_HEAD(&empty_rp);
404 	kretprobe_hash_lock(current, &head, &flags);
405 
406 	/*
407 	 * It is possible to have multiple instances associated with a given
408 	 * task either because an multiple functions in the call path
409 	 * have a return probe installed on them, and/or more than one return
410 	 * return probe was registered for a target function.
411 	 *
412 	 * We can handle this because:
413 	 *     - instances are always inserted at the head of the list
414 	 *     - when multiple return probes are registered for the same
415 	 *	 function, the first instance's ret_addr will point to the
416 	 *	 real return address, and all the rest will point to
417 	 *	 kretprobe_trampoline
418 	 */
419 	ri = NULL;
420 	orig_ret_address = 0;
421 	correct_ret_addr = NULL;
422 	trampoline_address = (unsigned long) &kretprobe_trampoline;
423 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
424 		if (ri->task != current)
425 			/* another task is sharing our hash bucket */
426 			continue;
427 
428 		orig_ret_address = (unsigned long) ri->ret_addr;
429 
430 		if (orig_ret_address != trampoline_address)
431 			/*
432 			 * This is the real return address. Any other
433 			 * instances associated with this task are for
434 			 * other calls deeper on the call stack
435 			 */
436 			break;
437 	}
438 
439 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
440 
441 	correct_ret_addr = ri->ret_addr;
442 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
443 		if (ri->task != current)
444 			/* another task is sharing our hash bucket */
445 			continue;
446 
447 		orig_ret_address = (unsigned long) ri->ret_addr;
448 
449 		if (ri->rp && ri->rp->handler) {
450 			ri->ret_addr = correct_ret_addr;
451 			ri->rp->handler(ri, regs);
452 		}
453 
454 		recycle_rp_inst(ri, &empty_rp);
455 
456 		if (orig_ret_address != trampoline_address)
457 			/*
458 			 * This is the real return address. Any other
459 			 * instances associated with this task are for
460 			 * other calls deeper on the call stack
461 			 */
462 			break;
463 	}
464 
465 	regs->psw.addr = orig_ret_address;
466 
467 	pop_kprobe(get_kprobe_ctlblk());
468 	kretprobe_hash_unlock(current, &flags);
469 	preempt_enable_no_resched();
470 
471 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
472 		hlist_del(&ri->hlist);
473 		kfree(ri);
474 	}
475 	/*
476 	 * By returning a non-zero value, we are telling
477 	 * kprobe_handler() that we don't want the post_handler
478 	 * to run (and have re-enabled preemption)
479 	 */
480 	return 1;
481 }
482 NOKPROBE_SYMBOL(trampoline_probe_handler);
483 
484 /*
485  * Called after single-stepping.  p->addr is the address of the
486  * instruction whose first byte has been replaced by the "breakpoint"
487  * instruction.  To avoid the SMP problems that can occur when we
488  * temporarily put back the original opcode to single-step, we
489  * single-stepped a copy of the instruction.  The address of this
490  * copy is p->ainsn.insn.
491  */
492 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
493 {
494 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
495 	unsigned long ip = regs->psw.addr;
496 	int fixup = probe_get_fixup_type(p->ainsn.insn);
497 
498 	/* Check if the kprobes location is an enabled ftrace caller */
499 	if (p->ainsn.is_ftrace_insn) {
500 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
501 		struct ftrace_insn call_insn;
502 
503 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
504 		/*
505 		 * A kprobe on an enabled ftrace call site actually single
506 		 * stepped an unconditional branch (ftrace nop equivalent).
507 		 * Now we need to fixup things and pretend that a brasl r0,...
508 		 * was executed instead.
509 		 */
510 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
511 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
512 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
513 		}
514 	}
515 
516 	if (fixup & FIXUP_PSW_NORMAL)
517 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
518 
519 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
520 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
521 		if (ip - (unsigned long) p->ainsn.insn == ilen)
522 			ip = (unsigned long) p->addr + ilen;
523 	}
524 
525 	if (fixup & FIXUP_RETURN_REGISTER) {
526 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
527 		regs->gprs[reg] += (unsigned long) p->addr -
528 				   (unsigned long) p->ainsn.insn;
529 	}
530 
531 	disable_singlestep(kcb, regs, ip);
532 }
533 NOKPROBE_SYMBOL(resume_execution);
534 
535 static int post_kprobe_handler(struct pt_regs *regs)
536 {
537 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
538 	struct kprobe *p = kprobe_running();
539 
540 	if (!p)
541 		return 0;
542 
543 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
544 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
545 		p->post_handler(p, regs, 0);
546 	}
547 
548 	resume_execution(p, regs);
549 	pop_kprobe(kcb);
550 	preempt_enable_no_resched();
551 
552 	/*
553 	 * if somebody else is singlestepping across a probe point, psw mask
554 	 * will have PER set, in which case, continue the remaining processing
555 	 * of do_single_step, as if this is not a probe hit.
556 	 */
557 	if (regs->psw.mask & PSW_MASK_PER)
558 		return 0;
559 
560 	return 1;
561 }
562 NOKPROBE_SYMBOL(post_kprobe_handler);
563 
564 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
565 {
566 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
567 	struct kprobe *p = kprobe_running();
568 	const struct exception_table_entry *entry;
569 
570 	switch(kcb->kprobe_status) {
571 	case KPROBE_SWAP_INST:
572 		/* We are here because the instruction replacement failed */
573 		return 0;
574 	case KPROBE_HIT_SS:
575 	case KPROBE_REENTER:
576 		/*
577 		 * We are here because the instruction being single
578 		 * stepped caused a page fault. We reset the current
579 		 * kprobe and the nip points back to the probe address
580 		 * and allow the page fault handler to continue as a
581 		 * normal page fault.
582 		 */
583 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
584 		pop_kprobe(kcb);
585 		preempt_enable_no_resched();
586 		break;
587 	case KPROBE_HIT_ACTIVE:
588 	case KPROBE_HIT_SSDONE:
589 		/*
590 		 * We increment the nmissed count for accounting,
591 		 * we can also use npre/npostfault count for accounting
592 		 * these specific fault cases.
593 		 */
594 		kprobes_inc_nmissed_count(p);
595 
596 		/*
597 		 * We come here because instructions in the pre/post
598 		 * handler caused the page_fault, this could happen
599 		 * if handler tries to access user space by
600 		 * copy_from_user(), get_user() etc. Let the
601 		 * user-specified handler try to fix it first.
602 		 */
603 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
604 			return 1;
605 
606 		/*
607 		 * In case the user-specified fault handler returned
608 		 * zero, try to fix up.
609 		 */
610 		entry = search_exception_tables(regs->psw.addr);
611 		if (entry) {
612 			regs->psw.addr = extable_fixup(entry);
613 			return 1;
614 		}
615 
616 		/*
617 		 * fixup_exception() could not handle it,
618 		 * Let do_page_fault() fix it.
619 		 */
620 		break;
621 	default:
622 		break;
623 	}
624 	return 0;
625 }
626 NOKPROBE_SYMBOL(kprobe_trap_handler);
627 
628 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
629 {
630 	int ret;
631 
632 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
633 		local_irq_disable();
634 	ret = kprobe_trap_handler(regs, trapnr);
635 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
636 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
637 	return ret;
638 }
639 NOKPROBE_SYMBOL(kprobe_fault_handler);
640 
641 /*
642  * Wrapper routine to for handling exceptions.
643  */
644 int kprobe_exceptions_notify(struct notifier_block *self,
645 			     unsigned long val, void *data)
646 {
647 	struct die_args *args = (struct die_args *) data;
648 	struct pt_regs *regs = args->regs;
649 	int ret = NOTIFY_DONE;
650 
651 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
652 		local_irq_disable();
653 
654 	switch (val) {
655 	case DIE_BPT:
656 		if (kprobe_handler(regs))
657 			ret = NOTIFY_STOP;
658 		break;
659 	case DIE_SSTEP:
660 		if (post_kprobe_handler(regs))
661 			ret = NOTIFY_STOP;
662 		break;
663 	case DIE_TRAP:
664 		if (!preemptible() && kprobe_running() &&
665 		    kprobe_trap_handler(regs, args->trapnr))
666 			ret = NOTIFY_STOP;
667 		break;
668 	default:
669 		break;
670 	}
671 
672 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
673 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
674 
675 	return ret;
676 }
677 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
678 
679 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
680 {
681 	struct jprobe *jp = container_of(p, struct jprobe, kp);
682 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
683 	unsigned long stack;
684 
685 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
686 
687 	/* setup return addr to the jprobe handler routine */
688 	regs->psw.addr = (unsigned long) jp->entry;
689 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
690 
691 	/* r15 is the stack pointer */
692 	stack = (unsigned long) regs->gprs[15];
693 
694 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
695 
696 	/*
697 	 * jprobes use jprobe_return() which skips the normal return
698 	 * path of the function, and this messes up the accounting of the
699 	 * function graph tracer to get messed up.
700 	 *
701 	 * Pause function graph tracing while performing the jprobe function.
702 	 */
703 	pause_graph_tracing();
704 	return 1;
705 }
706 NOKPROBE_SYMBOL(setjmp_pre_handler);
707 
708 void jprobe_return(void)
709 {
710 	asm volatile(".word 0x0002");
711 }
712 NOKPROBE_SYMBOL(jprobe_return);
713 
714 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
715 {
716 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
717 	unsigned long stack;
718 
719 	/* It's OK to start function graph tracing again */
720 	unpause_graph_tracing();
721 
722 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
723 
724 	/* Put the regs back */
725 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
726 	/* put the stack back */
727 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
728 	preempt_enable_no_resched();
729 	return 1;
730 }
731 NOKPROBE_SYMBOL(longjmp_break_handler);
732 
733 static struct kprobe trampoline = {
734 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
735 	.pre_handler = trampoline_probe_handler
736 };
737 
738 int __init arch_init_kprobes(void)
739 {
740 	return register_kprobe(&trampoline);
741 }
742 
743 int arch_trampoline_kprobe(struct kprobe *p)
744 {
745 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
746 }
747 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
748