1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright IBM Corp. 2002, 2006 6 * 7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 8 */ 9 10 #include <linux/kprobes.h> 11 #include <linux/ptrace.h> 12 #include <linux/preempt.h> 13 #include <linux/stop_machine.h> 14 #include <linux/kdebug.h> 15 #include <linux/uaccess.h> 16 #include <linux/extable.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/hardirq.h> 20 #include <linux/ftrace.h> 21 #include <asm/set_memory.h> 22 #include <asm/sections.h> 23 #include <asm/dis.h> 24 25 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 27 28 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 29 30 DEFINE_INSN_CACHE_OPS(dmainsn); 31 32 static void *alloc_dmainsn_page(void) 33 { 34 void *page; 35 36 page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA); 37 if (page) 38 set_memory_x((unsigned long) page, 1); 39 return page; 40 } 41 42 static void free_dmainsn_page(void *page) 43 { 44 set_memory_nx((unsigned long) page, 1); 45 free_page((unsigned long)page); 46 } 47 48 struct kprobe_insn_cache kprobe_dmainsn_slots = { 49 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), 50 .alloc = alloc_dmainsn_page, 51 .free = free_dmainsn_page, 52 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), 53 .insn_size = MAX_INSN_SIZE, 54 }; 55 56 static void copy_instruction(struct kprobe *p) 57 { 58 unsigned long ip = (unsigned long) p->addr; 59 s64 disp, new_disp; 60 u64 addr, new_addr; 61 62 if (ftrace_location(ip) == ip) { 63 /* 64 * If kprobes patches the instruction that is morphed by 65 * ftrace make sure that kprobes always sees the branch 66 * "jg .+24" that skips the mcount block or the "brcl 0,0" 67 * in case of hotpatch. 68 */ 69 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn); 70 p->ainsn.is_ftrace_insn = 1; 71 } else 72 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8)); 73 p->opcode = p->ainsn.insn[0]; 74 if (!probe_is_insn_relative_long(p->ainsn.insn)) 75 return; 76 /* 77 * For pc-relative instructions in RIL-b or RIL-c format patch the 78 * RI2 displacement field. We have already made sure that the insn 79 * slot for the patched instruction is within the same 2GB area 80 * as the original instruction (either kernel image or module area). 81 * Therefore the new displacement will always fit. 82 */ 83 disp = *(s32 *)&p->ainsn.insn[1]; 84 addr = (u64)(unsigned long)p->addr; 85 new_addr = (u64)(unsigned long)p->ainsn.insn; 86 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 87 *(s32 *)&p->ainsn.insn[1] = new_disp; 88 } 89 NOKPROBE_SYMBOL(copy_instruction); 90 91 static inline int is_kernel_addr(void *addr) 92 { 93 return addr < (void *)_end; 94 } 95 96 static int s390_get_insn_slot(struct kprobe *p) 97 { 98 /* 99 * Get an insn slot that is within the same 2GB area like the original 100 * instruction. That way instructions with a 32bit signed displacement 101 * field can be patched and executed within the insn slot. 102 */ 103 p->ainsn.insn = NULL; 104 if (is_kernel_addr(p->addr)) 105 p->ainsn.insn = get_dmainsn_slot(); 106 else if (is_module_addr(p->addr)) 107 p->ainsn.insn = get_insn_slot(); 108 return p->ainsn.insn ? 0 : -ENOMEM; 109 } 110 NOKPROBE_SYMBOL(s390_get_insn_slot); 111 112 static void s390_free_insn_slot(struct kprobe *p) 113 { 114 if (!p->ainsn.insn) 115 return; 116 if (is_kernel_addr(p->addr)) 117 free_dmainsn_slot(p->ainsn.insn, 0); 118 else 119 free_insn_slot(p->ainsn.insn, 0); 120 p->ainsn.insn = NULL; 121 } 122 NOKPROBE_SYMBOL(s390_free_insn_slot); 123 124 int arch_prepare_kprobe(struct kprobe *p) 125 { 126 if ((unsigned long) p->addr & 0x01) 127 return -EINVAL; 128 /* Make sure the probe isn't going on a difficult instruction */ 129 if (probe_is_prohibited_opcode(p->addr)) 130 return -EINVAL; 131 if (s390_get_insn_slot(p)) 132 return -ENOMEM; 133 copy_instruction(p); 134 return 0; 135 } 136 NOKPROBE_SYMBOL(arch_prepare_kprobe); 137 138 int arch_check_ftrace_location(struct kprobe *p) 139 { 140 return 0; 141 } 142 143 struct swap_insn_args { 144 struct kprobe *p; 145 unsigned int arm_kprobe : 1; 146 }; 147 148 static int swap_instruction(void *data) 149 { 150 struct swap_insn_args *args = data; 151 struct ftrace_insn new_insn, *insn; 152 struct kprobe *p = args->p; 153 size_t len; 154 155 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; 156 len = sizeof(new_insn.opc); 157 if (!p->ainsn.is_ftrace_insn) 158 goto skip_ftrace; 159 len = sizeof(new_insn); 160 insn = (struct ftrace_insn *) p->addr; 161 if (args->arm_kprobe) { 162 if (is_ftrace_nop(insn)) 163 new_insn.disp = KPROBE_ON_FTRACE_NOP; 164 else 165 new_insn.disp = KPROBE_ON_FTRACE_CALL; 166 } else { 167 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr); 168 if (insn->disp == KPROBE_ON_FTRACE_NOP) 169 ftrace_generate_nop_insn(&new_insn); 170 } 171 skip_ftrace: 172 s390_kernel_write(p->addr, &new_insn, len); 173 return 0; 174 } 175 NOKPROBE_SYMBOL(swap_instruction); 176 177 void arch_arm_kprobe(struct kprobe *p) 178 { 179 struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; 180 181 stop_machine_cpuslocked(swap_instruction, &args, NULL); 182 } 183 NOKPROBE_SYMBOL(arch_arm_kprobe); 184 185 void arch_disarm_kprobe(struct kprobe *p) 186 { 187 struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; 188 189 stop_machine_cpuslocked(swap_instruction, &args, NULL); 190 } 191 NOKPROBE_SYMBOL(arch_disarm_kprobe); 192 193 void arch_remove_kprobe(struct kprobe *p) 194 { 195 s390_free_insn_slot(p); 196 } 197 NOKPROBE_SYMBOL(arch_remove_kprobe); 198 199 static void enable_singlestep(struct kprobe_ctlblk *kcb, 200 struct pt_regs *regs, 201 unsigned long ip) 202 { 203 struct per_regs per_kprobe; 204 205 /* Set up the PER control registers %cr9-%cr11 */ 206 per_kprobe.control = PER_EVENT_IFETCH; 207 per_kprobe.start = ip; 208 per_kprobe.end = ip; 209 210 /* Save control regs and psw mask */ 211 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 212 kcb->kprobe_saved_imask = regs->psw.mask & 213 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 214 215 /* Set PER control regs, turns on single step for the given address */ 216 __ctl_load(per_kprobe, 9, 11); 217 regs->psw.mask |= PSW_MASK_PER; 218 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 219 regs->psw.addr = ip; 220 } 221 NOKPROBE_SYMBOL(enable_singlestep); 222 223 static void disable_singlestep(struct kprobe_ctlblk *kcb, 224 struct pt_regs *regs, 225 unsigned long ip) 226 { 227 /* Restore control regs and psw mask, set new psw address */ 228 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 229 regs->psw.mask &= ~PSW_MASK_PER; 230 regs->psw.mask |= kcb->kprobe_saved_imask; 231 regs->psw.addr = ip; 232 } 233 NOKPROBE_SYMBOL(disable_singlestep); 234 235 /* 236 * Activate a kprobe by storing its pointer to current_kprobe. The 237 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 238 * two kprobes can be active, see KPROBE_REENTER. 239 */ 240 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 241 { 242 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); 243 kcb->prev_kprobe.status = kcb->kprobe_status; 244 __this_cpu_write(current_kprobe, p); 245 } 246 NOKPROBE_SYMBOL(push_kprobe); 247 248 /* 249 * Deactivate a kprobe by backing up to the previous state. If the 250 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 251 * for any other state prev_kprobe.kp will be NULL. 252 */ 253 static void pop_kprobe(struct kprobe_ctlblk *kcb) 254 { 255 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 256 kcb->kprobe_status = kcb->prev_kprobe.status; 257 } 258 NOKPROBE_SYMBOL(pop_kprobe); 259 260 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 261 { 262 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 263 264 /* Replace the return addr with trampoline addr */ 265 regs->gprs[14] = (unsigned long) &kretprobe_trampoline; 266 } 267 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 268 269 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) 270 { 271 switch (kcb->kprobe_status) { 272 case KPROBE_HIT_SSDONE: 273 case KPROBE_HIT_ACTIVE: 274 kprobes_inc_nmissed_count(p); 275 break; 276 case KPROBE_HIT_SS: 277 case KPROBE_REENTER: 278 default: 279 /* 280 * A kprobe on the code path to single step an instruction 281 * is a BUG. The code path resides in the .kprobes.text 282 * section and is executed with interrupts disabled. 283 */ 284 pr_err("Invalid kprobe detected.\n"); 285 dump_kprobe(p); 286 BUG(); 287 } 288 } 289 NOKPROBE_SYMBOL(kprobe_reenter_check); 290 291 static int kprobe_handler(struct pt_regs *regs) 292 { 293 struct kprobe_ctlblk *kcb; 294 struct kprobe *p; 295 296 /* 297 * We want to disable preemption for the entire duration of kprobe 298 * processing. That includes the calls to the pre/post handlers 299 * and single stepping the kprobe instruction. 300 */ 301 preempt_disable(); 302 kcb = get_kprobe_ctlblk(); 303 p = get_kprobe((void *)(regs->psw.addr - 2)); 304 305 if (p) { 306 if (kprobe_running()) { 307 /* 308 * We have hit a kprobe while another is still 309 * active. This can happen in the pre and post 310 * handler. Single step the instruction of the 311 * new probe but do not call any handler function 312 * of this secondary kprobe. 313 * push_kprobe and pop_kprobe saves and restores 314 * the currently active kprobe. 315 */ 316 kprobe_reenter_check(kcb, p); 317 push_kprobe(kcb, p); 318 kcb->kprobe_status = KPROBE_REENTER; 319 } else { 320 /* 321 * If we have no pre-handler or it returned 0, we 322 * continue with single stepping. If we have a 323 * pre-handler and it returned non-zero, it prepped 324 * for calling the break_handler below on re-entry 325 * for jprobe processing, so get out doing nothing 326 * more here. 327 */ 328 push_kprobe(kcb, p); 329 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 330 if (p->pre_handler && p->pre_handler(p, regs)) 331 return 1; 332 kcb->kprobe_status = KPROBE_HIT_SS; 333 } 334 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 335 return 1; 336 } else if (kprobe_running()) { 337 p = __this_cpu_read(current_kprobe); 338 if (p->break_handler && p->break_handler(p, regs)) { 339 /* 340 * Continuation after the jprobe completed and 341 * caused the jprobe_return trap. The jprobe 342 * break_handler "returns" to the original 343 * function that still has the kprobe breakpoint 344 * installed. We continue with single stepping. 345 */ 346 kcb->kprobe_status = KPROBE_HIT_SS; 347 enable_singlestep(kcb, regs, 348 (unsigned long) p->ainsn.insn); 349 return 1; 350 } /* else: 351 * No kprobe at this address and the current kprobe 352 * has no break handler (no jprobe!). The kernel just 353 * exploded, let the standard trap handler pick up the 354 * pieces. 355 */ 356 } /* else: 357 * No kprobe at this address and no active kprobe. The trap has 358 * not been caused by a kprobe breakpoint. The race of breakpoint 359 * vs. kprobe remove does not exist because on s390 as we use 360 * stop_machine to arm/disarm the breakpoints. 361 */ 362 preempt_enable_no_resched(); 363 return 0; 364 } 365 NOKPROBE_SYMBOL(kprobe_handler); 366 367 /* 368 * Function return probe trampoline: 369 * - init_kprobes() establishes a probepoint here 370 * - When the probed function returns, this probe 371 * causes the handlers to fire 372 */ 373 static void __used kretprobe_trampoline_holder(void) 374 { 375 asm volatile(".global kretprobe_trampoline\n" 376 "kretprobe_trampoline: bcr 0,0\n"); 377 } 378 379 /* 380 * Called when the probe at kretprobe trampoline is hit 381 */ 382 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 383 { 384 struct kretprobe_instance *ri; 385 struct hlist_head *head, empty_rp; 386 struct hlist_node *tmp; 387 unsigned long flags, orig_ret_address; 388 unsigned long trampoline_address; 389 kprobe_opcode_t *correct_ret_addr; 390 391 INIT_HLIST_HEAD(&empty_rp); 392 kretprobe_hash_lock(current, &head, &flags); 393 394 /* 395 * It is possible to have multiple instances associated with a given 396 * task either because an multiple functions in the call path 397 * have a return probe installed on them, and/or more than one return 398 * return probe was registered for a target function. 399 * 400 * We can handle this because: 401 * - instances are always inserted at the head of the list 402 * - when multiple return probes are registered for the same 403 * function, the first instance's ret_addr will point to the 404 * real return address, and all the rest will point to 405 * kretprobe_trampoline 406 */ 407 ri = NULL; 408 orig_ret_address = 0; 409 correct_ret_addr = NULL; 410 trampoline_address = (unsigned long) &kretprobe_trampoline; 411 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 412 if (ri->task != current) 413 /* another task is sharing our hash bucket */ 414 continue; 415 416 orig_ret_address = (unsigned long) ri->ret_addr; 417 418 if (orig_ret_address != trampoline_address) 419 /* 420 * This is the real return address. Any other 421 * instances associated with this task are for 422 * other calls deeper on the call stack 423 */ 424 break; 425 } 426 427 kretprobe_assert(ri, orig_ret_address, trampoline_address); 428 429 correct_ret_addr = ri->ret_addr; 430 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 431 if (ri->task != current) 432 /* another task is sharing our hash bucket */ 433 continue; 434 435 orig_ret_address = (unsigned long) ri->ret_addr; 436 437 if (ri->rp && ri->rp->handler) { 438 ri->ret_addr = correct_ret_addr; 439 ri->rp->handler(ri, regs); 440 } 441 442 recycle_rp_inst(ri, &empty_rp); 443 444 if (orig_ret_address != trampoline_address) 445 /* 446 * This is the real return address. Any other 447 * instances associated with this task are for 448 * other calls deeper on the call stack 449 */ 450 break; 451 } 452 453 regs->psw.addr = orig_ret_address; 454 455 pop_kprobe(get_kprobe_ctlblk()); 456 kretprobe_hash_unlock(current, &flags); 457 preempt_enable_no_resched(); 458 459 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 460 hlist_del(&ri->hlist); 461 kfree(ri); 462 } 463 /* 464 * By returning a non-zero value, we are telling 465 * kprobe_handler() that we don't want the post_handler 466 * to run (and have re-enabled preemption) 467 */ 468 return 1; 469 } 470 NOKPROBE_SYMBOL(trampoline_probe_handler); 471 472 /* 473 * Called after single-stepping. p->addr is the address of the 474 * instruction whose first byte has been replaced by the "breakpoint" 475 * instruction. To avoid the SMP problems that can occur when we 476 * temporarily put back the original opcode to single-step, we 477 * single-stepped a copy of the instruction. The address of this 478 * copy is p->ainsn.insn. 479 */ 480 static void resume_execution(struct kprobe *p, struct pt_regs *regs) 481 { 482 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 483 unsigned long ip = regs->psw.addr; 484 int fixup = probe_get_fixup_type(p->ainsn.insn); 485 486 /* Check if the kprobes location is an enabled ftrace caller */ 487 if (p->ainsn.is_ftrace_insn) { 488 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr; 489 struct ftrace_insn call_insn; 490 491 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr); 492 /* 493 * A kprobe on an enabled ftrace call site actually single 494 * stepped an unconditional branch (ftrace nop equivalent). 495 * Now we need to fixup things and pretend that a brasl r0,... 496 * was executed instead. 497 */ 498 if (insn->disp == KPROBE_ON_FTRACE_CALL) { 499 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE; 500 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn); 501 } 502 } 503 504 if (fixup & FIXUP_PSW_NORMAL) 505 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 506 507 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 508 int ilen = insn_length(p->ainsn.insn[0] >> 8); 509 if (ip - (unsigned long) p->ainsn.insn == ilen) 510 ip = (unsigned long) p->addr + ilen; 511 } 512 513 if (fixup & FIXUP_RETURN_REGISTER) { 514 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 515 regs->gprs[reg] += (unsigned long) p->addr - 516 (unsigned long) p->ainsn.insn; 517 } 518 519 disable_singlestep(kcb, regs, ip); 520 } 521 NOKPROBE_SYMBOL(resume_execution); 522 523 static int post_kprobe_handler(struct pt_regs *regs) 524 { 525 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 526 struct kprobe *p = kprobe_running(); 527 528 if (!p) 529 return 0; 530 531 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 532 kcb->kprobe_status = KPROBE_HIT_SSDONE; 533 p->post_handler(p, regs, 0); 534 } 535 536 resume_execution(p, regs); 537 pop_kprobe(kcb); 538 preempt_enable_no_resched(); 539 540 /* 541 * if somebody else is singlestepping across a probe point, psw mask 542 * will have PER set, in which case, continue the remaining processing 543 * of do_single_step, as if this is not a probe hit. 544 */ 545 if (regs->psw.mask & PSW_MASK_PER) 546 return 0; 547 548 return 1; 549 } 550 NOKPROBE_SYMBOL(post_kprobe_handler); 551 552 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) 553 { 554 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 555 struct kprobe *p = kprobe_running(); 556 const struct exception_table_entry *entry; 557 558 switch(kcb->kprobe_status) { 559 case KPROBE_HIT_SS: 560 case KPROBE_REENTER: 561 /* 562 * We are here because the instruction being single 563 * stepped caused a page fault. We reset the current 564 * kprobe and the nip points back to the probe address 565 * and allow the page fault handler to continue as a 566 * normal page fault. 567 */ 568 disable_singlestep(kcb, regs, (unsigned long) p->addr); 569 pop_kprobe(kcb); 570 preempt_enable_no_resched(); 571 break; 572 case KPROBE_HIT_ACTIVE: 573 case KPROBE_HIT_SSDONE: 574 /* 575 * We increment the nmissed count for accounting, 576 * we can also use npre/npostfault count for accounting 577 * these specific fault cases. 578 */ 579 kprobes_inc_nmissed_count(p); 580 581 /* 582 * We come here because instructions in the pre/post 583 * handler caused the page_fault, this could happen 584 * if handler tries to access user space by 585 * copy_from_user(), get_user() etc. Let the 586 * user-specified handler try to fix it first. 587 */ 588 if (p->fault_handler && p->fault_handler(p, regs, trapnr)) 589 return 1; 590 591 /* 592 * In case the user-specified fault handler returned 593 * zero, try to fix up. 594 */ 595 entry = search_exception_tables(regs->psw.addr); 596 if (entry) { 597 regs->psw.addr = extable_fixup(entry); 598 return 1; 599 } 600 601 /* 602 * fixup_exception() could not handle it, 603 * Let do_page_fault() fix it. 604 */ 605 break; 606 default: 607 break; 608 } 609 return 0; 610 } 611 NOKPROBE_SYMBOL(kprobe_trap_handler); 612 613 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 614 { 615 int ret; 616 617 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 618 local_irq_disable(); 619 ret = kprobe_trap_handler(regs, trapnr); 620 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 621 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 622 return ret; 623 } 624 NOKPROBE_SYMBOL(kprobe_fault_handler); 625 626 /* 627 * Wrapper routine to for handling exceptions. 628 */ 629 int kprobe_exceptions_notify(struct notifier_block *self, 630 unsigned long val, void *data) 631 { 632 struct die_args *args = (struct die_args *) data; 633 struct pt_regs *regs = args->regs; 634 int ret = NOTIFY_DONE; 635 636 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 637 local_irq_disable(); 638 639 switch (val) { 640 case DIE_BPT: 641 if (kprobe_handler(regs)) 642 ret = NOTIFY_STOP; 643 break; 644 case DIE_SSTEP: 645 if (post_kprobe_handler(regs)) 646 ret = NOTIFY_STOP; 647 break; 648 case DIE_TRAP: 649 if (!preemptible() && kprobe_running() && 650 kprobe_trap_handler(regs, args->trapnr)) 651 ret = NOTIFY_STOP; 652 break; 653 default: 654 break; 655 } 656 657 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 658 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 659 660 return ret; 661 } 662 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 663 664 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 665 { 666 struct jprobe *jp = container_of(p, struct jprobe, kp); 667 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 668 unsigned long stack; 669 670 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 671 672 /* setup return addr to the jprobe handler routine */ 673 regs->psw.addr = (unsigned long) jp->entry; 674 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 675 676 /* r15 is the stack pointer */ 677 stack = (unsigned long) regs->gprs[15]; 678 679 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack)); 680 681 /* 682 * jprobes use jprobe_return() which skips the normal return 683 * path of the function, and this messes up the accounting of the 684 * function graph tracer to get messed up. 685 * 686 * Pause function graph tracing while performing the jprobe function. 687 */ 688 pause_graph_tracing(); 689 return 1; 690 } 691 NOKPROBE_SYMBOL(setjmp_pre_handler); 692 693 void jprobe_return(void) 694 { 695 asm volatile(".word 0x0002"); 696 } 697 NOKPROBE_SYMBOL(jprobe_return); 698 699 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 700 { 701 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 702 unsigned long stack; 703 704 /* It's OK to start function graph tracing again */ 705 unpause_graph_tracing(); 706 707 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15]; 708 709 /* Put the regs back */ 710 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 711 /* put the stack back */ 712 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack)); 713 preempt_enable_no_resched(); 714 return 1; 715 } 716 NOKPROBE_SYMBOL(longjmp_break_handler); 717 718 static struct kprobe trampoline = { 719 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 720 .pre_handler = trampoline_probe_handler 721 }; 722 723 int __init arch_init_kprobes(void) 724 { 725 return register_kprobe(&trampoline); 726 } 727 728 int arch_trampoline_kprobe(struct kprobe *p) 729 { 730 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; 731 } 732 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 733