xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 711aab1d)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/extable.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/hardirq.h>
33 #include <linux/ftrace.h>
34 #include <asm/set_memory.h>
35 #include <asm/sections.h>
36 #include <linux/uaccess.h>
37 #include <asm/dis.h>
38 
39 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 
42 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
43 
44 DEFINE_INSN_CACHE_OPS(dmainsn);
45 
46 static void *alloc_dmainsn_page(void)
47 {
48 	void *page;
49 
50 	page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
51 	if (page)
52 		set_memory_x((unsigned long) page, 1);
53 	return page;
54 }
55 
56 static void free_dmainsn_page(void *page)
57 {
58 	set_memory_nx((unsigned long) page, 1);
59 	free_page((unsigned long)page);
60 }
61 
62 struct kprobe_insn_cache kprobe_dmainsn_slots = {
63 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
64 	.alloc = alloc_dmainsn_page,
65 	.free = free_dmainsn_page,
66 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
67 	.insn_size = MAX_INSN_SIZE,
68 };
69 
70 static void copy_instruction(struct kprobe *p)
71 {
72 	unsigned long ip = (unsigned long) p->addr;
73 	s64 disp, new_disp;
74 	u64 addr, new_addr;
75 
76 	if (ftrace_location(ip) == ip) {
77 		/*
78 		 * If kprobes patches the instruction that is morphed by
79 		 * ftrace make sure that kprobes always sees the branch
80 		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
81 		 * in case of hotpatch.
82 		 */
83 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
84 		p->ainsn.is_ftrace_insn = 1;
85 	} else
86 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
87 	p->opcode = p->ainsn.insn[0];
88 	if (!probe_is_insn_relative_long(p->ainsn.insn))
89 		return;
90 	/*
91 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
92 	 * RI2 displacement field. We have already made sure that the insn
93 	 * slot for the patched instruction is within the same 2GB area
94 	 * as the original instruction (either kernel image or module area).
95 	 * Therefore the new displacement will always fit.
96 	 */
97 	disp = *(s32 *)&p->ainsn.insn[1];
98 	addr = (u64)(unsigned long)p->addr;
99 	new_addr = (u64)(unsigned long)p->ainsn.insn;
100 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
101 	*(s32 *)&p->ainsn.insn[1] = new_disp;
102 }
103 NOKPROBE_SYMBOL(copy_instruction);
104 
105 static inline int is_kernel_addr(void *addr)
106 {
107 	return addr < (void *)_end;
108 }
109 
110 static int s390_get_insn_slot(struct kprobe *p)
111 {
112 	/*
113 	 * Get an insn slot that is within the same 2GB area like the original
114 	 * instruction. That way instructions with a 32bit signed displacement
115 	 * field can be patched and executed within the insn slot.
116 	 */
117 	p->ainsn.insn = NULL;
118 	if (is_kernel_addr(p->addr))
119 		p->ainsn.insn = get_dmainsn_slot();
120 	else if (is_module_addr(p->addr))
121 		p->ainsn.insn = get_insn_slot();
122 	return p->ainsn.insn ? 0 : -ENOMEM;
123 }
124 NOKPROBE_SYMBOL(s390_get_insn_slot);
125 
126 static void s390_free_insn_slot(struct kprobe *p)
127 {
128 	if (!p->ainsn.insn)
129 		return;
130 	if (is_kernel_addr(p->addr))
131 		free_dmainsn_slot(p->ainsn.insn, 0);
132 	else
133 		free_insn_slot(p->ainsn.insn, 0);
134 	p->ainsn.insn = NULL;
135 }
136 NOKPROBE_SYMBOL(s390_free_insn_slot);
137 
138 int arch_prepare_kprobe(struct kprobe *p)
139 {
140 	if ((unsigned long) p->addr & 0x01)
141 		return -EINVAL;
142 	/* Make sure the probe isn't going on a difficult instruction */
143 	if (probe_is_prohibited_opcode(p->addr))
144 		return -EINVAL;
145 	if (s390_get_insn_slot(p))
146 		return -ENOMEM;
147 	copy_instruction(p);
148 	return 0;
149 }
150 NOKPROBE_SYMBOL(arch_prepare_kprobe);
151 
152 int arch_check_ftrace_location(struct kprobe *p)
153 {
154 	return 0;
155 }
156 
157 struct swap_insn_args {
158 	struct kprobe *p;
159 	unsigned int arm_kprobe : 1;
160 };
161 
162 static int swap_instruction(void *data)
163 {
164 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
165 	unsigned long status = kcb->kprobe_status;
166 	struct swap_insn_args *args = data;
167 	struct ftrace_insn new_insn, *insn;
168 	struct kprobe *p = args->p;
169 	size_t len;
170 
171 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
172 	len = sizeof(new_insn.opc);
173 	if (!p->ainsn.is_ftrace_insn)
174 		goto skip_ftrace;
175 	len = sizeof(new_insn);
176 	insn = (struct ftrace_insn *) p->addr;
177 	if (args->arm_kprobe) {
178 		if (is_ftrace_nop(insn))
179 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
180 		else
181 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
182 	} else {
183 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
184 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
185 			ftrace_generate_nop_insn(&new_insn);
186 	}
187 skip_ftrace:
188 	kcb->kprobe_status = KPROBE_SWAP_INST;
189 	s390_kernel_write(p->addr, &new_insn, len);
190 	kcb->kprobe_status = status;
191 	return 0;
192 }
193 NOKPROBE_SYMBOL(swap_instruction);
194 
195 void arch_arm_kprobe(struct kprobe *p)
196 {
197 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
198 
199 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
200 }
201 NOKPROBE_SYMBOL(arch_arm_kprobe);
202 
203 void arch_disarm_kprobe(struct kprobe *p)
204 {
205 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
206 
207 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
208 }
209 NOKPROBE_SYMBOL(arch_disarm_kprobe);
210 
211 void arch_remove_kprobe(struct kprobe *p)
212 {
213 	s390_free_insn_slot(p);
214 }
215 NOKPROBE_SYMBOL(arch_remove_kprobe);
216 
217 static void enable_singlestep(struct kprobe_ctlblk *kcb,
218 			      struct pt_regs *regs,
219 			      unsigned long ip)
220 {
221 	struct per_regs per_kprobe;
222 
223 	/* Set up the PER control registers %cr9-%cr11 */
224 	per_kprobe.control = PER_EVENT_IFETCH;
225 	per_kprobe.start = ip;
226 	per_kprobe.end = ip;
227 
228 	/* Save control regs and psw mask */
229 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
230 	kcb->kprobe_saved_imask = regs->psw.mask &
231 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
232 
233 	/* Set PER control regs, turns on single step for the given address */
234 	__ctl_load(per_kprobe, 9, 11);
235 	regs->psw.mask |= PSW_MASK_PER;
236 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
237 	regs->psw.addr = ip;
238 }
239 NOKPROBE_SYMBOL(enable_singlestep);
240 
241 static void disable_singlestep(struct kprobe_ctlblk *kcb,
242 			       struct pt_regs *regs,
243 			       unsigned long ip)
244 {
245 	/* Restore control regs and psw mask, set new psw address */
246 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
247 	regs->psw.mask &= ~PSW_MASK_PER;
248 	regs->psw.mask |= kcb->kprobe_saved_imask;
249 	regs->psw.addr = ip;
250 }
251 NOKPROBE_SYMBOL(disable_singlestep);
252 
253 /*
254  * Activate a kprobe by storing its pointer to current_kprobe. The
255  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
256  * two kprobes can be active, see KPROBE_REENTER.
257  */
258 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
259 {
260 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
261 	kcb->prev_kprobe.status = kcb->kprobe_status;
262 	__this_cpu_write(current_kprobe, p);
263 }
264 NOKPROBE_SYMBOL(push_kprobe);
265 
266 /*
267  * Deactivate a kprobe by backing up to the previous state. If the
268  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
269  * for any other state prev_kprobe.kp will be NULL.
270  */
271 static void pop_kprobe(struct kprobe_ctlblk *kcb)
272 {
273 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
274 	kcb->kprobe_status = kcb->prev_kprobe.status;
275 }
276 NOKPROBE_SYMBOL(pop_kprobe);
277 
278 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
279 {
280 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
281 
282 	/* Replace the return addr with trampoline addr */
283 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
284 }
285 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
286 
287 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
288 {
289 	switch (kcb->kprobe_status) {
290 	case KPROBE_HIT_SSDONE:
291 	case KPROBE_HIT_ACTIVE:
292 		kprobes_inc_nmissed_count(p);
293 		break;
294 	case KPROBE_HIT_SS:
295 	case KPROBE_REENTER:
296 	default:
297 		/*
298 		 * A kprobe on the code path to single step an instruction
299 		 * is a BUG. The code path resides in the .kprobes.text
300 		 * section and is executed with interrupts disabled.
301 		 */
302 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
303 		dump_kprobe(p);
304 		BUG();
305 	}
306 }
307 NOKPROBE_SYMBOL(kprobe_reenter_check);
308 
309 static int kprobe_handler(struct pt_regs *regs)
310 {
311 	struct kprobe_ctlblk *kcb;
312 	struct kprobe *p;
313 
314 	/*
315 	 * We want to disable preemption for the entire duration of kprobe
316 	 * processing. That includes the calls to the pre/post handlers
317 	 * and single stepping the kprobe instruction.
318 	 */
319 	preempt_disable();
320 	kcb = get_kprobe_ctlblk();
321 	p = get_kprobe((void *)(regs->psw.addr - 2));
322 
323 	if (p) {
324 		if (kprobe_running()) {
325 			/*
326 			 * We have hit a kprobe while another is still
327 			 * active. This can happen in the pre and post
328 			 * handler. Single step the instruction of the
329 			 * new probe but do not call any handler function
330 			 * of this secondary kprobe.
331 			 * push_kprobe and pop_kprobe saves and restores
332 			 * the currently active kprobe.
333 			 */
334 			kprobe_reenter_check(kcb, p);
335 			push_kprobe(kcb, p);
336 			kcb->kprobe_status = KPROBE_REENTER;
337 		} else {
338 			/*
339 			 * If we have no pre-handler or it returned 0, we
340 			 * continue with single stepping. If we have a
341 			 * pre-handler and it returned non-zero, it prepped
342 			 * for calling the break_handler below on re-entry
343 			 * for jprobe processing, so get out doing nothing
344 			 * more here.
345 			 */
346 			push_kprobe(kcb, p);
347 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
348 			if (p->pre_handler && p->pre_handler(p, regs))
349 				return 1;
350 			kcb->kprobe_status = KPROBE_HIT_SS;
351 		}
352 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
353 		return 1;
354 	} else if (kprobe_running()) {
355 		p = __this_cpu_read(current_kprobe);
356 		if (p->break_handler && p->break_handler(p, regs)) {
357 			/*
358 			 * Continuation after the jprobe completed and
359 			 * caused the jprobe_return trap. The jprobe
360 			 * break_handler "returns" to the original
361 			 * function that still has the kprobe breakpoint
362 			 * installed. We continue with single stepping.
363 			 */
364 			kcb->kprobe_status = KPROBE_HIT_SS;
365 			enable_singlestep(kcb, regs,
366 					  (unsigned long) p->ainsn.insn);
367 			return 1;
368 		} /* else:
369 		   * No kprobe at this address and the current kprobe
370 		   * has no break handler (no jprobe!). The kernel just
371 		   * exploded, let the standard trap handler pick up the
372 		   * pieces.
373 		   */
374 	} /* else:
375 	   * No kprobe at this address and no active kprobe. The trap has
376 	   * not been caused by a kprobe breakpoint. The race of breakpoint
377 	   * vs. kprobe remove does not exist because on s390 as we use
378 	   * stop_machine to arm/disarm the breakpoints.
379 	   */
380 	preempt_enable_no_resched();
381 	return 0;
382 }
383 NOKPROBE_SYMBOL(kprobe_handler);
384 
385 /*
386  * Function return probe trampoline:
387  *	- init_kprobes() establishes a probepoint here
388  *	- When the probed function returns, this probe
389  *		causes the handlers to fire
390  */
391 static void __used kretprobe_trampoline_holder(void)
392 {
393 	asm volatile(".global kretprobe_trampoline\n"
394 		     "kretprobe_trampoline: bcr 0,0\n");
395 }
396 
397 /*
398  * Called when the probe at kretprobe trampoline is hit
399  */
400 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
401 {
402 	struct kretprobe_instance *ri;
403 	struct hlist_head *head, empty_rp;
404 	struct hlist_node *tmp;
405 	unsigned long flags, orig_ret_address;
406 	unsigned long trampoline_address;
407 	kprobe_opcode_t *correct_ret_addr;
408 
409 	INIT_HLIST_HEAD(&empty_rp);
410 	kretprobe_hash_lock(current, &head, &flags);
411 
412 	/*
413 	 * It is possible to have multiple instances associated with a given
414 	 * task either because an multiple functions in the call path
415 	 * have a return probe installed on them, and/or more than one return
416 	 * return probe was registered for a target function.
417 	 *
418 	 * We can handle this because:
419 	 *     - instances are always inserted at the head of the list
420 	 *     - when multiple return probes are registered for the same
421 	 *	 function, the first instance's ret_addr will point to the
422 	 *	 real return address, and all the rest will point to
423 	 *	 kretprobe_trampoline
424 	 */
425 	ri = NULL;
426 	orig_ret_address = 0;
427 	correct_ret_addr = NULL;
428 	trampoline_address = (unsigned long) &kretprobe_trampoline;
429 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
430 		if (ri->task != current)
431 			/* another task is sharing our hash bucket */
432 			continue;
433 
434 		orig_ret_address = (unsigned long) ri->ret_addr;
435 
436 		if (orig_ret_address != trampoline_address)
437 			/*
438 			 * This is the real return address. Any other
439 			 * instances associated with this task are for
440 			 * other calls deeper on the call stack
441 			 */
442 			break;
443 	}
444 
445 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
446 
447 	correct_ret_addr = ri->ret_addr;
448 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
449 		if (ri->task != current)
450 			/* another task is sharing our hash bucket */
451 			continue;
452 
453 		orig_ret_address = (unsigned long) ri->ret_addr;
454 
455 		if (ri->rp && ri->rp->handler) {
456 			ri->ret_addr = correct_ret_addr;
457 			ri->rp->handler(ri, regs);
458 		}
459 
460 		recycle_rp_inst(ri, &empty_rp);
461 
462 		if (orig_ret_address != trampoline_address)
463 			/*
464 			 * This is the real return address. Any other
465 			 * instances associated with this task are for
466 			 * other calls deeper on the call stack
467 			 */
468 			break;
469 	}
470 
471 	regs->psw.addr = orig_ret_address;
472 
473 	pop_kprobe(get_kprobe_ctlblk());
474 	kretprobe_hash_unlock(current, &flags);
475 	preempt_enable_no_resched();
476 
477 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
478 		hlist_del(&ri->hlist);
479 		kfree(ri);
480 	}
481 	/*
482 	 * By returning a non-zero value, we are telling
483 	 * kprobe_handler() that we don't want the post_handler
484 	 * to run (and have re-enabled preemption)
485 	 */
486 	return 1;
487 }
488 NOKPROBE_SYMBOL(trampoline_probe_handler);
489 
490 /*
491  * Called after single-stepping.  p->addr is the address of the
492  * instruction whose first byte has been replaced by the "breakpoint"
493  * instruction.  To avoid the SMP problems that can occur when we
494  * temporarily put back the original opcode to single-step, we
495  * single-stepped a copy of the instruction.  The address of this
496  * copy is p->ainsn.insn.
497  */
498 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
499 {
500 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
501 	unsigned long ip = regs->psw.addr;
502 	int fixup = probe_get_fixup_type(p->ainsn.insn);
503 
504 	/* Check if the kprobes location is an enabled ftrace caller */
505 	if (p->ainsn.is_ftrace_insn) {
506 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
507 		struct ftrace_insn call_insn;
508 
509 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
510 		/*
511 		 * A kprobe on an enabled ftrace call site actually single
512 		 * stepped an unconditional branch (ftrace nop equivalent).
513 		 * Now we need to fixup things and pretend that a brasl r0,...
514 		 * was executed instead.
515 		 */
516 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
517 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
518 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
519 		}
520 	}
521 
522 	if (fixup & FIXUP_PSW_NORMAL)
523 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
524 
525 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
526 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
527 		if (ip - (unsigned long) p->ainsn.insn == ilen)
528 			ip = (unsigned long) p->addr + ilen;
529 	}
530 
531 	if (fixup & FIXUP_RETURN_REGISTER) {
532 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
533 		regs->gprs[reg] += (unsigned long) p->addr -
534 				   (unsigned long) p->ainsn.insn;
535 	}
536 
537 	disable_singlestep(kcb, regs, ip);
538 }
539 NOKPROBE_SYMBOL(resume_execution);
540 
541 static int post_kprobe_handler(struct pt_regs *regs)
542 {
543 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
544 	struct kprobe *p = kprobe_running();
545 
546 	if (!p)
547 		return 0;
548 
549 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
550 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
551 		p->post_handler(p, regs, 0);
552 	}
553 
554 	resume_execution(p, regs);
555 	pop_kprobe(kcb);
556 	preempt_enable_no_resched();
557 
558 	/*
559 	 * if somebody else is singlestepping across a probe point, psw mask
560 	 * will have PER set, in which case, continue the remaining processing
561 	 * of do_single_step, as if this is not a probe hit.
562 	 */
563 	if (regs->psw.mask & PSW_MASK_PER)
564 		return 0;
565 
566 	return 1;
567 }
568 NOKPROBE_SYMBOL(post_kprobe_handler);
569 
570 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
571 {
572 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
573 	struct kprobe *p = kprobe_running();
574 	const struct exception_table_entry *entry;
575 
576 	switch(kcb->kprobe_status) {
577 	case KPROBE_SWAP_INST:
578 		/* We are here because the instruction replacement failed */
579 		return 0;
580 	case KPROBE_HIT_SS:
581 	case KPROBE_REENTER:
582 		/*
583 		 * We are here because the instruction being single
584 		 * stepped caused a page fault. We reset the current
585 		 * kprobe and the nip points back to the probe address
586 		 * and allow the page fault handler to continue as a
587 		 * normal page fault.
588 		 */
589 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
590 		pop_kprobe(kcb);
591 		preempt_enable_no_resched();
592 		break;
593 	case KPROBE_HIT_ACTIVE:
594 	case KPROBE_HIT_SSDONE:
595 		/*
596 		 * We increment the nmissed count for accounting,
597 		 * we can also use npre/npostfault count for accounting
598 		 * these specific fault cases.
599 		 */
600 		kprobes_inc_nmissed_count(p);
601 
602 		/*
603 		 * We come here because instructions in the pre/post
604 		 * handler caused the page_fault, this could happen
605 		 * if handler tries to access user space by
606 		 * copy_from_user(), get_user() etc. Let the
607 		 * user-specified handler try to fix it first.
608 		 */
609 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
610 			return 1;
611 
612 		/*
613 		 * In case the user-specified fault handler returned
614 		 * zero, try to fix up.
615 		 */
616 		entry = search_exception_tables(regs->psw.addr);
617 		if (entry) {
618 			regs->psw.addr = extable_fixup(entry);
619 			return 1;
620 		}
621 
622 		/*
623 		 * fixup_exception() could not handle it,
624 		 * Let do_page_fault() fix it.
625 		 */
626 		break;
627 	default:
628 		break;
629 	}
630 	return 0;
631 }
632 NOKPROBE_SYMBOL(kprobe_trap_handler);
633 
634 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
635 {
636 	int ret;
637 
638 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
639 		local_irq_disable();
640 	ret = kprobe_trap_handler(regs, trapnr);
641 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
642 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
643 	return ret;
644 }
645 NOKPROBE_SYMBOL(kprobe_fault_handler);
646 
647 /*
648  * Wrapper routine to for handling exceptions.
649  */
650 int kprobe_exceptions_notify(struct notifier_block *self,
651 			     unsigned long val, void *data)
652 {
653 	struct die_args *args = (struct die_args *) data;
654 	struct pt_regs *regs = args->regs;
655 	int ret = NOTIFY_DONE;
656 
657 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
658 		local_irq_disable();
659 
660 	switch (val) {
661 	case DIE_BPT:
662 		if (kprobe_handler(regs))
663 			ret = NOTIFY_STOP;
664 		break;
665 	case DIE_SSTEP:
666 		if (post_kprobe_handler(regs))
667 			ret = NOTIFY_STOP;
668 		break;
669 	case DIE_TRAP:
670 		if (!preemptible() && kprobe_running() &&
671 		    kprobe_trap_handler(regs, args->trapnr))
672 			ret = NOTIFY_STOP;
673 		break;
674 	default:
675 		break;
676 	}
677 
678 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
679 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
680 
681 	return ret;
682 }
683 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
684 
685 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
686 {
687 	struct jprobe *jp = container_of(p, struct jprobe, kp);
688 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
689 	unsigned long stack;
690 
691 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
692 
693 	/* setup return addr to the jprobe handler routine */
694 	regs->psw.addr = (unsigned long) jp->entry;
695 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
696 
697 	/* r15 is the stack pointer */
698 	stack = (unsigned long) regs->gprs[15];
699 
700 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
701 
702 	/*
703 	 * jprobes use jprobe_return() which skips the normal return
704 	 * path of the function, and this messes up the accounting of the
705 	 * function graph tracer to get messed up.
706 	 *
707 	 * Pause function graph tracing while performing the jprobe function.
708 	 */
709 	pause_graph_tracing();
710 	return 1;
711 }
712 NOKPROBE_SYMBOL(setjmp_pre_handler);
713 
714 void jprobe_return(void)
715 {
716 	asm volatile(".word 0x0002");
717 }
718 NOKPROBE_SYMBOL(jprobe_return);
719 
720 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
721 {
722 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
723 	unsigned long stack;
724 
725 	/* It's OK to start function graph tracing again */
726 	unpause_graph_tracing();
727 
728 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
729 
730 	/* Put the regs back */
731 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
732 	/* put the stack back */
733 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
734 	preempt_enable_no_resched();
735 	return 1;
736 }
737 NOKPROBE_SYMBOL(longjmp_break_handler);
738 
739 static struct kprobe trampoline = {
740 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
741 	.pre_handler = trampoline_probe_handler
742 };
743 
744 int __init arch_init_kprobes(void)
745 {
746 	return register_kprobe(&trampoline);
747 }
748 
749 int arch_trampoline_kprobe(struct kprobe *p)
750 {
751 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
752 }
753 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
754