1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright IBM Corp. 2002, 2006 6 * 7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 8 */ 9 10 #include <linux/kprobes.h> 11 #include <linux/ptrace.h> 12 #include <linux/preempt.h> 13 #include <linux/stop_machine.h> 14 #include <linux/kdebug.h> 15 #include <linux/uaccess.h> 16 #include <linux/extable.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/hardirq.h> 20 #include <linux/ftrace.h> 21 #include <asm/set_memory.h> 22 #include <asm/sections.h> 23 #include <linux/uaccess.h> 24 #include <asm/dis.h> 25 26 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 27 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 28 29 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 30 31 DEFINE_INSN_CACHE_OPS(dmainsn); 32 33 static void *alloc_dmainsn_page(void) 34 { 35 void *page; 36 37 page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA); 38 if (page) 39 set_memory_x((unsigned long) page, 1); 40 return page; 41 } 42 43 static void free_dmainsn_page(void *page) 44 { 45 set_memory_nx((unsigned long) page, 1); 46 free_page((unsigned long)page); 47 } 48 49 struct kprobe_insn_cache kprobe_dmainsn_slots = { 50 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), 51 .alloc = alloc_dmainsn_page, 52 .free = free_dmainsn_page, 53 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), 54 .insn_size = MAX_INSN_SIZE, 55 }; 56 57 static void copy_instruction(struct kprobe *p) 58 { 59 unsigned long ip = (unsigned long) p->addr; 60 s64 disp, new_disp; 61 u64 addr, new_addr; 62 63 if (ftrace_location(ip) == ip) { 64 /* 65 * If kprobes patches the instruction that is morphed by 66 * ftrace make sure that kprobes always sees the branch 67 * "jg .+24" that skips the mcount block or the "brcl 0,0" 68 * in case of hotpatch. 69 */ 70 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn); 71 p->ainsn.is_ftrace_insn = 1; 72 } else 73 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8)); 74 p->opcode = p->ainsn.insn[0]; 75 if (!probe_is_insn_relative_long(p->ainsn.insn)) 76 return; 77 /* 78 * For pc-relative instructions in RIL-b or RIL-c format patch the 79 * RI2 displacement field. We have already made sure that the insn 80 * slot for the patched instruction is within the same 2GB area 81 * as the original instruction (either kernel image or module area). 82 * Therefore the new displacement will always fit. 83 */ 84 disp = *(s32 *)&p->ainsn.insn[1]; 85 addr = (u64)(unsigned long)p->addr; 86 new_addr = (u64)(unsigned long)p->ainsn.insn; 87 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 88 *(s32 *)&p->ainsn.insn[1] = new_disp; 89 } 90 NOKPROBE_SYMBOL(copy_instruction); 91 92 static inline int is_kernel_addr(void *addr) 93 { 94 return addr < (void *)_end; 95 } 96 97 static int s390_get_insn_slot(struct kprobe *p) 98 { 99 /* 100 * Get an insn slot that is within the same 2GB area like the original 101 * instruction. That way instructions with a 32bit signed displacement 102 * field can be patched and executed within the insn slot. 103 */ 104 p->ainsn.insn = NULL; 105 if (is_kernel_addr(p->addr)) 106 p->ainsn.insn = get_dmainsn_slot(); 107 else if (is_module_addr(p->addr)) 108 p->ainsn.insn = get_insn_slot(); 109 return p->ainsn.insn ? 0 : -ENOMEM; 110 } 111 NOKPROBE_SYMBOL(s390_get_insn_slot); 112 113 static void s390_free_insn_slot(struct kprobe *p) 114 { 115 if (!p->ainsn.insn) 116 return; 117 if (is_kernel_addr(p->addr)) 118 free_dmainsn_slot(p->ainsn.insn, 0); 119 else 120 free_insn_slot(p->ainsn.insn, 0); 121 p->ainsn.insn = NULL; 122 } 123 NOKPROBE_SYMBOL(s390_free_insn_slot); 124 125 int arch_prepare_kprobe(struct kprobe *p) 126 { 127 if ((unsigned long) p->addr & 0x01) 128 return -EINVAL; 129 /* Make sure the probe isn't going on a difficult instruction */ 130 if (probe_is_prohibited_opcode(p->addr)) 131 return -EINVAL; 132 if (s390_get_insn_slot(p)) 133 return -ENOMEM; 134 copy_instruction(p); 135 return 0; 136 } 137 NOKPROBE_SYMBOL(arch_prepare_kprobe); 138 139 int arch_check_ftrace_location(struct kprobe *p) 140 { 141 return 0; 142 } 143 144 struct swap_insn_args { 145 struct kprobe *p; 146 unsigned int arm_kprobe : 1; 147 }; 148 149 static int swap_instruction(void *data) 150 { 151 struct swap_insn_args *args = data; 152 struct ftrace_insn new_insn, *insn; 153 struct kprobe *p = args->p; 154 size_t len; 155 156 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; 157 len = sizeof(new_insn.opc); 158 if (!p->ainsn.is_ftrace_insn) 159 goto skip_ftrace; 160 len = sizeof(new_insn); 161 insn = (struct ftrace_insn *) p->addr; 162 if (args->arm_kprobe) { 163 if (is_ftrace_nop(insn)) 164 new_insn.disp = KPROBE_ON_FTRACE_NOP; 165 else 166 new_insn.disp = KPROBE_ON_FTRACE_CALL; 167 } else { 168 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr); 169 if (insn->disp == KPROBE_ON_FTRACE_NOP) 170 ftrace_generate_nop_insn(&new_insn); 171 } 172 skip_ftrace: 173 s390_kernel_write(p->addr, &new_insn, len); 174 return 0; 175 } 176 NOKPROBE_SYMBOL(swap_instruction); 177 178 void arch_arm_kprobe(struct kprobe *p) 179 { 180 struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; 181 182 stop_machine_cpuslocked(swap_instruction, &args, NULL); 183 } 184 NOKPROBE_SYMBOL(arch_arm_kprobe); 185 186 void arch_disarm_kprobe(struct kprobe *p) 187 { 188 struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; 189 190 stop_machine_cpuslocked(swap_instruction, &args, NULL); 191 } 192 NOKPROBE_SYMBOL(arch_disarm_kprobe); 193 194 void arch_remove_kprobe(struct kprobe *p) 195 { 196 s390_free_insn_slot(p); 197 } 198 NOKPROBE_SYMBOL(arch_remove_kprobe); 199 200 static void enable_singlestep(struct kprobe_ctlblk *kcb, 201 struct pt_regs *regs, 202 unsigned long ip) 203 { 204 struct per_regs per_kprobe; 205 206 /* Set up the PER control registers %cr9-%cr11 */ 207 per_kprobe.control = PER_EVENT_IFETCH; 208 per_kprobe.start = ip; 209 per_kprobe.end = ip; 210 211 /* Save control regs and psw mask */ 212 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 213 kcb->kprobe_saved_imask = regs->psw.mask & 214 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 215 216 /* Set PER control regs, turns on single step for the given address */ 217 __ctl_load(per_kprobe, 9, 11); 218 regs->psw.mask |= PSW_MASK_PER; 219 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 220 regs->psw.addr = ip; 221 } 222 NOKPROBE_SYMBOL(enable_singlestep); 223 224 static void disable_singlestep(struct kprobe_ctlblk *kcb, 225 struct pt_regs *regs, 226 unsigned long ip) 227 { 228 /* Restore control regs and psw mask, set new psw address */ 229 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 230 regs->psw.mask &= ~PSW_MASK_PER; 231 regs->psw.mask |= kcb->kprobe_saved_imask; 232 regs->psw.addr = ip; 233 } 234 NOKPROBE_SYMBOL(disable_singlestep); 235 236 /* 237 * Activate a kprobe by storing its pointer to current_kprobe. The 238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 239 * two kprobes can be active, see KPROBE_REENTER. 240 */ 241 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 242 { 243 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); 244 kcb->prev_kprobe.status = kcb->kprobe_status; 245 __this_cpu_write(current_kprobe, p); 246 } 247 NOKPROBE_SYMBOL(push_kprobe); 248 249 /* 250 * Deactivate a kprobe by backing up to the previous state. If the 251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 252 * for any other state prev_kprobe.kp will be NULL. 253 */ 254 static void pop_kprobe(struct kprobe_ctlblk *kcb) 255 { 256 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 257 kcb->kprobe_status = kcb->prev_kprobe.status; 258 } 259 NOKPROBE_SYMBOL(pop_kprobe); 260 261 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 262 { 263 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 264 265 /* Replace the return addr with trampoline addr */ 266 regs->gprs[14] = (unsigned long) &kretprobe_trampoline; 267 } 268 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 269 270 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) 271 { 272 switch (kcb->kprobe_status) { 273 case KPROBE_HIT_SSDONE: 274 case KPROBE_HIT_ACTIVE: 275 kprobes_inc_nmissed_count(p); 276 break; 277 case KPROBE_HIT_SS: 278 case KPROBE_REENTER: 279 default: 280 /* 281 * A kprobe on the code path to single step an instruction 282 * is a BUG. The code path resides in the .kprobes.text 283 * section and is executed with interrupts disabled. 284 */ 285 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr); 286 dump_kprobe(p); 287 BUG(); 288 } 289 } 290 NOKPROBE_SYMBOL(kprobe_reenter_check); 291 292 static int kprobe_handler(struct pt_regs *regs) 293 { 294 struct kprobe_ctlblk *kcb; 295 struct kprobe *p; 296 297 /* 298 * We want to disable preemption for the entire duration of kprobe 299 * processing. That includes the calls to the pre/post handlers 300 * and single stepping the kprobe instruction. 301 */ 302 preempt_disable(); 303 kcb = get_kprobe_ctlblk(); 304 p = get_kprobe((void *)(regs->psw.addr - 2)); 305 306 if (p) { 307 if (kprobe_running()) { 308 /* 309 * We have hit a kprobe while another is still 310 * active. This can happen in the pre and post 311 * handler. Single step the instruction of the 312 * new probe but do not call any handler function 313 * of this secondary kprobe. 314 * push_kprobe and pop_kprobe saves and restores 315 * the currently active kprobe. 316 */ 317 kprobe_reenter_check(kcb, p); 318 push_kprobe(kcb, p); 319 kcb->kprobe_status = KPROBE_REENTER; 320 } else { 321 /* 322 * If we have no pre-handler or it returned 0, we 323 * continue with single stepping. If we have a 324 * pre-handler and it returned non-zero, it prepped 325 * for calling the break_handler below on re-entry 326 * for jprobe processing, so get out doing nothing 327 * more here. 328 */ 329 push_kprobe(kcb, p); 330 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 331 if (p->pre_handler && p->pre_handler(p, regs)) 332 return 1; 333 kcb->kprobe_status = KPROBE_HIT_SS; 334 } 335 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 336 return 1; 337 } else if (kprobe_running()) { 338 p = __this_cpu_read(current_kprobe); 339 if (p->break_handler && p->break_handler(p, regs)) { 340 /* 341 * Continuation after the jprobe completed and 342 * caused the jprobe_return trap. The jprobe 343 * break_handler "returns" to the original 344 * function that still has the kprobe breakpoint 345 * installed. We continue with single stepping. 346 */ 347 kcb->kprobe_status = KPROBE_HIT_SS; 348 enable_singlestep(kcb, regs, 349 (unsigned long) p->ainsn.insn); 350 return 1; 351 } /* else: 352 * No kprobe at this address and the current kprobe 353 * has no break handler (no jprobe!). The kernel just 354 * exploded, let the standard trap handler pick up the 355 * pieces. 356 */ 357 } /* else: 358 * No kprobe at this address and no active kprobe. The trap has 359 * not been caused by a kprobe breakpoint. The race of breakpoint 360 * vs. kprobe remove does not exist because on s390 as we use 361 * stop_machine to arm/disarm the breakpoints. 362 */ 363 preempt_enable_no_resched(); 364 return 0; 365 } 366 NOKPROBE_SYMBOL(kprobe_handler); 367 368 /* 369 * Function return probe trampoline: 370 * - init_kprobes() establishes a probepoint here 371 * - When the probed function returns, this probe 372 * causes the handlers to fire 373 */ 374 static void __used kretprobe_trampoline_holder(void) 375 { 376 asm volatile(".global kretprobe_trampoline\n" 377 "kretprobe_trampoline: bcr 0,0\n"); 378 } 379 380 /* 381 * Called when the probe at kretprobe trampoline is hit 382 */ 383 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 384 { 385 struct kretprobe_instance *ri; 386 struct hlist_head *head, empty_rp; 387 struct hlist_node *tmp; 388 unsigned long flags, orig_ret_address; 389 unsigned long trampoline_address; 390 kprobe_opcode_t *correct_ret_addr; 391 392 INIT_HLIST_HEAD(&empty_rp); 393 kretprobe_hash_lock(current, &head, &flags); 394 395 /* 396 * It is possible to have multiple instances associated with a given 397 * task either because an multiple functions in the call path 398 * have a return probe installed on them, and/or more than one return 399 * return probe was registered for a target function. 400 * 401 * We can handle this because: 402 * - instances are always inserted at the head of the list 403 * - when multiple return probes are registered for the same 404 * function, the first instance's ret_addr will point to the 405 * real return address, and all the rest will point to 406 * kretprobe_trampoline 407 */ 408 ri = NULL; 409 orig_ret_address = 0; 410 correct_ret_addr = NULL; 411 trampoline_address = (unsigned long) &kretprobe_trampoline; 412 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 413 if (ri->task != current) 414 /* another task is sharing our hash bucket */ 415 continue; 416 417 orig_ret_address = (unsigned long) ri->ret_addr; 418 419 if (orig_ret_address != trampoline_address) 420 /* 421 * This is the real return address. Any other 422 * instances associated with this task are for 423 * other calls deeper on the call stack 424 */ 425 break; 426 } 427 428 kretprobe_assert(ri, orig_ret_address, trampoline_address); 429 430 correct_ret_addr = ri->ret_addr; 431 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 432 if (ri->task != current) 433 /* another task is sharing our hash bucket */ 434 continue; 435 436 orig_ret_address = (unsigned long) ri->ret_addr; 437 438 if (ri->rp && ri->rp->handler) { 439 ri->ret_addr = correct_ret_addr; 440 ri->rp->handler(ri, regs); 441 } 442 443 recycle_rp_inst(ri, &empty_rp); 444 445 if (orig_ret_address != trampoline_address) 446 /* 447 * This is the real return address. Any other 448 * instances associated with this task are for 449 * other calls deeper on the call stack 450 */ 451 break; 452 } 453 454 regs->psw.addr = orig_ret_address; 455 456 pop_kprobe(get_kprobe_ctlblk()); 457 kretprobe_hash_unlock(current, &flags); 458 preempt_enable_no_resched(); 459 460 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 461 hlist_del(&ri->hlist); 462 kfree(ri); 463 } 464 /* 465 * By returning a non-zero value, we are telling 466 * kprobe_handler() that we don't want the post_handler 467 * to run (and have re-enabled preemption) 468 */ 469 return 1; 470 } 471 NOKPROBE_SYMBOL(trampoline_probe_handler); 472 473 /* 474 * Called after single-stepping. p->addr is the address of the 475 * instruction whose first byte has been replaced by the "breakpoint" 476 * instruction. To avoid the SMP problems that can occur when we 477 * temporarily put back the original opcode to single-step, we 478 * single-stepped a copy of the instruction. The address of this 479 * copy is p->ainsn.insn. 480 */ 481 static void resume_execution(struct kprobe *p, struct pt_regs *regs) 482 { 483 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 484 unsigned long ip = regs->psw.addr; 485 int fixup = probe_get_fixup_type(p->ainsn.insn); 486 487 /* Check if the kprobes location is an enabled ftrace caller */ 488 if (p->ainsn.is_ftrace_insn) { 489 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr; 490 struct ftrace_insn call_insn; 491 492 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr); 493 /* 494 * A kprobe on an enabled ftrace call site actually single 495 * stepped an unconditional branch (ftrace nop equivalent). 496 * Now we need to fixup things and pretend that a brasl r0,... 497 * was executed instead. 498 */ 499 if (insn->disp == KPROBE_ON_FTRACE_CALL) { 500 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE; 501 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn); 502 } 503 } 504 505 if (fixup & FIXUP_PSW_NORMAL) 506 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 507 508 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 509 int ilen = insn_length(p->ainsn.insn[0] >> 8); 510 if (ip - (unsigned long) p->ainsn.insn == ilen) 511 ip = (unsigned long) p->addr + ilen; 512 } 513 514 if (fixup & FIXUP_RETURN_REGISTER) { 515 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 516 regs->gprs[reg] += (unsigned long) p->addr - 517 (unsigned long) p->ainsn.insn; 518 } 519 520 disable_singlestep(kcb, regs, ip); 521 } 522 NOKPROBE_SYMBOL(resume_execution); 523 524 static int post_kprobe_handler(struct pt_regs *regs) 525 { 526 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 527 struct kprobe *p = kprobe_running(); 528 529 if (!p) 530 return 0; 531 532 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 533 kcb->kprobe_status = KPROBE_HIT_SSDONE; 534 p->post_handler(p, regs, 0); 535 } 536 537 resume_execution(p, regs); 538 pop_kprobe(kcb); 539 preempt_enable_no_resched(); 540 541 /* 542 * if somebody else is singlestepping across a probe point, psw mask 543 * will have PER set, in which case, continue the remaining processing 544 * of do_single_step, as if this is not a probe hit. 545 */ 546 if (regs->psw.mask & PSW_MASK_PER) 547 return 0; 548 549 return 1; 550 } 551 NOKPROBE_SYMBOL(post_kprobe_handler); 552 553 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) 554 { 555 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 556 struct kprobe *p = kprobe_running(); 557 const struct exception_table_entry *entry; 558 559 switch(kcb->kprobe_status) { 560 case KPROBE_HIT_SS: 561 case KPROBE_REENTER: 562 /* 563 * We are here because the instruction being single 564 * stepped caused a page fault. We reset the current 565 * kprobe and the nip points back to the probe address 566 * and allow the page fault handler to continue as a 567 * normal page fault. 568 */ 569 disable_singlestep(kcb, regs, (unsigned long) p->addr); 570 pop_kprobe(kcb); 571 preempt_enable_no_resched(); 572 break; 573 case KPROBE_HIT_ACTIVE: 574 case KPROBE_HIT_SSDONE: 575 /* 576 * We increment the nmissed count for accounting, 577 * we can also use npre/npostfault count for accounting 578 * these specific fault cases. 579 */ 580 kprobes_inc_nmissed_count(p); 581 582 /* 583 * We come here because instructions in the pre/post 584 * handler caused the page_fault, this could happen 585 * if handler tries to access user space by 586 * copy_from_user(), get_user() etc. Let the 587 * user-specified handler try to fix it first. 588 */ 589 if (p->fault_handler && p->fault_handler(p, regs, trapnr)) 590 return 1; 591 592 /* 593 * In case the user-specified fault handler returned 594 * zero, try to fix up. 595 */ 596 entry = search_exception_tables(regs->psw.addr); 597 if (entry) { 598 regs->psw.addr = extable_fixup(entry); 599 return 1; 600 } 601 602 /* 603 * fixup_exception() could not handle it, 604 * Let do_page_fault() fix it. 605 */ 606 break; 607 default: 608 break; 609 } 610 return 0; 611 } 612 NOKPROBE_SYMBOL(kprobe_trap_handler); 613 614 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 615 { 616 int ret; 617 618 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 619 local_irq_disable(); 620 ret = kprobe_trap_handler(regs, trapnr); 621 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 622 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 623 return ret; 624 } 625 NOKPROBE_SYMBOL(kprobe_fault_handler); 626 627 /* 628 * Wrapper routine to for handling exceptions. 629 */ 630 int kprobe_exceptions_notify(struct notifier_block *self, 631 unsigned long val, void *data) 632 { 633 struct die_args *args = (struct die_args *) data; 634 struct pt_regs *regs = args->regs; 635 int ret = NOTIFY_DONE; 636 637 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 638 local_irq_disable(); 639 640 switch (val) { 641 case DIE_BPT: 642 if (kprobe_handler(regs)) 643 ret = NOTIFY_STOP; 644 break; 645 case DIE_SSTEP: 646 if (post_kprobe_handler(regs)) 647 ret = NOTIFY_STOP; 648 break; 649 case DIE_TRAP: 650 if (!preemptible() && kprobe_running() && 651 kprobe_trap_handler(regs, args->trapnr)) 652 ret = NOTIFY_STOP; 653 break; 654 default: 655 break; 656 } 657 658 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 659 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 660 661 return ret; 662 } 663 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 664 665 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 666 { 667 struct jprobe *jp = container_of(p, struct jprobe, kp); 668 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 669 unsigned long stack; 670 671 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 672 673 /* setup return addr to the jprobe handler routine */ 674 regs->psw.addr = (unsigned long) jp->entry; 675 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 676 677 /* r15 is the stack pointer */ 678 stack = (unsigned long) regs->gprs[15]; 679 680 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack)); 681 682 /* 683 * jprobes use jprobe_return() which skips the normal return 684 * path of the function, and this messes up the accounting of the 685 * function graph tracer to get messed up. 686 * 687 * Pause function graph tracing while performing the jprobe function. 688 */ 689 pause_graph_tracing(); 690 return 1; 691 } 692 NOKPROBE_SYMBOL(setjmp_pre_handler); 693 694 void jprobe_return(void) 695 { 696 asm volatile(".word 0x0002"); 697 } 698 NOKPROBE_SYMBOL(jprobe_return); 699 700 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 701 { 702 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 703 unsigned long stack; 704 705 /* It's OK to start function graph tracing again */ 706 unpause_graph_tracing(); 707 708 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15]; 709 710 /* Put the regs back */ 711 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 712 /* put the stack back */ 713 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack)); 714 preempt_enable_no_resched(); 715 return 1; 716 } 717 NOKPROBE_SYMBOL(longjmp_break_handler); 718 719 static struct kprobe trampoline = { 720 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 721 .pre_handler = trampoline_probe_handler 722 }; 723 724 int __init arch_init_kprobes(void) 725 { 726 return register_kprobe(&trampoline); 727 } 728 729 int arch_trampoline_kprobe(struct kprobe *p) 730 { 731 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; 732 } 733 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 734