1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corp. 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <linux/uaccess.h> 29 #include <linux/extable.h> 30 #include <linux/module.h> 31 #include <linux/slab.h> 32 #include <linux/hardirq.h> 33 #include <linux/ftrace.h> 34 #include <asm/set_memory.h> 35 #include <asm/sections.h> 36 #include <linux/uaccess.h> 37 #include <asm/dis.h> 38 39 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 41 42 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 43 44 DEFINE_INSN_CACHE_OPS(dmainsn); 45 46 static void *alloc_dmainsn_page(void) 47 { 48 void *page; 49 50 page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA); 51 if (page) 52 set_memory_x((unsigned long) page, 1); 53 return page; 54 } 55 56 static void free_dmainsn_page(void *page) 57 { 58 set_memory_nx((unsigned long) page, 1); 59 free_page((unsigned long)page); 60 } 61 62 struct kprobe_insn_cache kprobe_dmainsn_slots = { 63 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), 64 .alloc = alloc_dmainsn_page, 65 .free = free_dmainsn_page, 66 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), 67 .insn_size = MAX_INSN_SIZE, 68 }; 69 70 static void copy_instruction(struct kprobe *p) 71 { 72 unsigned long ip = (unsigned long) p->addr; 73 s64 disp, new_disp; 74 u64 addr, new_addr; 75 76 if (ftrace_location(ip) == ip) { 77 /* 78 * If kprobes patches the instruction that is morphed by 79 * ftrace make sure that kprobes always sees the branch 80 * "jg .+24" that skips the mcount block or the "brcl 0,0" 81 * in case of hotpatch. 82 */ 83 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn); 84 p->ainsn.is_ftrace_insn = 1; 85 } else 86 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8)); 87 p->opcode = p->ainsn.insn[0]; 88 if (!probe_is_insn_relative_long(p->ainsn.insn)) 89 return; 90 /* 91 * For pc-relative instructions in RIL-b or RIL-c format patch the 92 * RI2 displacement field. We have already made sure that the insn 93 * slot for the patched instruction is within the same 2GB area 94 * as the original instruction (either kernel image or module area). 95 * Therefore the new displacement will always fit. 96 */ 97 disp = *(s32 *)&p->ainsn.insn[1]; 98 addr = (u64)(unsigned long)p->addr; 99 new_addr = (u64)(unsigned long)p->ainsn.insn; 100 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 101 *(s32 *)&p->ainsn.insn[1] = new_disp; 102 } 103 NOKPROBE_SYMBOL(copy_instruction); 104 105 static inline int is_kernel_addr(void *addr) 106 { 107 return addr < (void *)_end; 108 } 109 110 static int s390_get_insn_slot(struct kprobe *p) 111 { 112 /* 113 * Get an insn slot that is within the same 2GB area like the original 114 * instruction. That way instructions with a 32bit signed displacement 115 * field can be patched and executed within the insn slot. 116 */ 117 p->ainsn.insn = NULL; 118 if (is_kernel_addr(p->addr)) 119 p->ainsn.insn = get_dmainsn_slot(); 120 else if (is_module_addr(p->addr)) 121 p->ainsn.insn = get_insn_slot(); 122 return p->ainsn.insn ? 0 : -ENOMEM; 123 } 124 NOKPROBE_SYMBOL(s390_get_insn_slot); 125 126 static void s390_free_insn_slot(struct kprobe *p) 127 { 128 if (!p->ainsn.insn) 129 return; 130 if (is_kernel_addr(p->addr)) 131 free_dmainsn_slot(p->ainsn.insn, 0); 132 else 133 free_insn_slot(p->ainsn.insn, 0); 134 p->ainsn.insn = NULL; 135 } 136 NOKPROBE_SYMBOL(s390_free_insn_slot); 137 138 int arch_prepare_kprobe(struct kprobe *p) 139 { 140 if ((unsigned long) p->addr & 0x01) 141 return -EINVAL; 142 /* Make sure the probe isn't going on a difficult instruction */ 143 if (probe_is_prohibited_opcode(p->addr)) 144 return -EINVAL; 145 if (s390_get_insn_slot(p)) 146 return -ENOMEM; 147 copy_instruction(p); 148 return 0; 149 } 150 NOKPROBE_SYMBOL(arch_prepare_kprobe); 151 152 int arch_check_ftrace_location(struct kprobe *p) 153 { 154 return 0; 155 } 156 157 struct swap_insn_args { 158 struct kprobe *p; 159 unsigned int arm_kprobe : 1; 160 }; 161 162 static int swap_instruction(void *data) 163 { 164 struct swap_insn_args *args = data; 165 struct ftrace_insn new_insn, *insn; 166 struct kprobe *p = args->p; 167 size_t len; 168 169 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; 170 len = sizeof(new_insn.opc); 171 if (!p->ainsn.is_ftrace_insn) 172 goto skip_ftrace; 173 len = sizeof(new_insn); 174 insn = (struct ftrace_insn *) p->addr; 175 if (args->arm_kprobe) { 176 if (is_ftrace_nop(insn)) 177 new_insn.disp = KPROBE_ON_FTRACE_NOP; 178 else 179 new_insn.disp = KPROBE_ON_FTRACE_CALL; 180 } else { 181 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr); 182 if (insn->disp == KPROBE_ON_FTRACE_NOP) 183 ftrace_generate_nop_insn(&new_insn); 184 } 185 skip_ftrace: 186 s390_kernel_write(p->addr, &new_insn, len); 187 return 0; 188 } 189 NOKPROBE_SYMBOL(swap_instruction); 190 191 void arch_arm_kprobe(struct kprobe *p) 192 { 193 struct swap_insn_args args = {.p = p, .arm_kprobe = 1}; 194 195 stop_machine_cpuslocked(swap_instruction, &args, NULL); 196 } 197 NOKPROBE_SYMBOL(arch_arm_kprobe); 198 199 void arch_disarm_kprobe(struct kprobe *p) 200 { 201 struct swap_insn_args args = {.p = p, .arm_kprobe = 0}; 202 203 stop_machine_cpuslocked(swap_instruction, &args, NULL); 204 } 205 NOKPROBE_SYMBOL(arch_disarm_kprobe); 206 207 void arch_remove_kprobe(struct kprobe *p) 208 { 209 s390_free_insn_slot(p); 210 } 211 NOKPROBE_SYMBOL(arch_remove_kprobe); 212 213 static void enable_singlestep(struct kprobe_ctlblk *kcb, 214 struct pt_regs *regs, 215 unsigned long ip) 216 { 217 struct per_regs per_kprobe; 218 219 /* Set up the PER control registers %cr9-%cr11 */ 220 per_kprobe.control = PER_EVENT_IFETCH; 221 per_kprobe.start = ip; 222 per_kprobe.end = ip; 223 224 /* Save control regs and psw mask */ 225 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 226 kcb->kprobe_saved_imask = regs->psw.mask & 227 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 228 229 /* Set PER control regs, turns on single step for the given address */ 230 __ctl_load(per_kprobe, 9, 11); 231 regs->psw.mask |= PSW_MASK_PER; 232 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 233 regs->psw.addr = ip; 234 } 235 NOKPROBE_SYMBOL(enable_singlestep); 236 237 static void disable_singlestep(struct kprobe_ctlblk *kcb, 238 struct pt_regs *regs, 239 unsigned long ip) 240 { 241 /* Restore control regs and psw mask, set new psw address */ 242 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 243 regs->psw.mask &= ~PSW_MASK_PER; 244 regs->psw.mask |= kcb->kprobe_saved_imask; 245 regs->psw.addr = ip; 246 } 247 NOKPROBE_SYMBOL(disable_singlestep); 248 249 /* 250 * Activate a kprobe by storing its pointer to current_kprobe. The 251 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 252 * two kprobes can be active, see KPROBE_REENTER. 253 */ 254 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 255 { 256 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe); 257 kcb->prev_kprobe.status = kcb->kprobe_status; 258 __this_cpu_write(current_kprobe, p); 259 } 260 NOKPROBE_SYMBOL(push_kprobe); 261 262 /* 263 * Deactivate a kprobe by backing up to the previous state. If the 264 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 265 * for any other state prev_kprobe.kp will be NULL. 266 */ 267 static void pop_kprobe(struct kprobe_ctlblk *kcb) 268 { 269 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 270 kcb->kprobe_status = kcb->prev_kprobe.status; 271 } 272 NOKPROBE_SYMBOL(pop_kprobe); 273 274 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) 275 { 276 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 277 278 /* Replace the return addr with trampoline addr */ 279 regs->gprs[14] = (unsigned long) &kretprobe_trampoline; 280 } 281 NOKPROBE_SYMBOL(arch_prepare_kretprobe); 282 283 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p) 284 { 285 switch (kcb->kprobe_status) { 286 case KPROBE_HIT_SSDONE: 287 case KPROBE_HIT_ACTIVE: 288 kprobes_inc_nmissed_count(p); 289 break; 290 case KPROBE_HIT_SS: 291 case KPROBE_REENTER: 292 default: 293 /* 294 * A kprobe on the code path to single step an instruction 295 * is a BUG. The code path resides in the .kprobes.text 296 * section and is executed with interrupts disabled. 297 */ 298 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr); 299 dump_kprobe(p); 300 BUG(); 301 } 302 } 303 NOKPROBE_SYMBOL(kprobe_reenter_check); 304 305 static int kprobe_handler(struct pt_regs *regs) 306 { 307 struct kprobe_ctlblk *kcb; 308 struct kprobe *p; 309 310 /* 311 * We want to disable preemption for the entire duration of kprobe 312 * processing. That includes the calls to the pre/post handlers 313 * and single stepping the kprobe instruction. 314 */ 315 preempt_disable(); 316 kcb = get_kprobe_ctlblk(); 317 p = get_kprobe((void *)(regs->psw.addr - 2)); 318 319 if (p) { 320 if (kprobe_running()) { 321 /* 322 * We have hit a kprobe while another is still 323 * active. This can happen in the pre and post 324 * handler. Single step the instruction of the 325 * new probe but do not call any handler function 326 * of this secondary kprobe. 327 * push_kprobe and pop_kprobe saves and restores 328 * the currently active kprobe. 329 */ 330 kprobe_reenter_check(kcb, p); 331 push_kprobe(kcb, p); 332 kcb->kprobe_status = KPROBE_REENTER; 333 } else { 334 /* 335 * If we have no pre-handler or it returned 0, we 336 * continue with single stepping. If we have a 337 * pre-handler and it returned non-zero, it prepped 338 * for calling the break_handler below on re-entry 339 * for jprobe processing, so get out doing nothing 340 * more here. 341 */ 342 push_kprobe(kcb, p); 343 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 344 if (p->pre_handler && p->pre_handler(p, regs)) 345 return 1; 346 kcb->kprobe_status = KPROBE_HIT_SS; 347 } 348 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 349 return 1; 350 } else if (kprobe_running()) { 351 p = __this_cpu_read(current_kprobe); 352 if (p->break_handler && p->break_handler(p, regs)) { 353 /* 354 * Continuation after the jprobe completed and 355 * caused the jprobe_return trap. The jprobe 356 * break_handler "returns" to the original 357 * function that still has the kprobe breakpoint 358 * installed. We continue with single stepping. 359 */ 360 kcb->kprobe_status = KPROBE_HIT_SS; 361 enable_singlestep(kcb, regs, 362 (unsigned long) p->ainsn.insn); 363 return 1; 364 } /* else: 365 * No kprobe at this address and the current kprobe 366 * has no break handler (no jprobe!). The kernel just 367 * exploded, let the standard trap handler pick up the 368 * pieces. 369 */ 370 } /* else: 371 * No kprobe at this address and no active kprobe. The trap has 372 * not been caused by a kprobe breakpoint. The race of breakpoint 373 * vs. kprobe remove does not exist because on s390 as we use 374 * stop_machine to arm/disarm the breakpoints. 375 */ 376 preempt_enable_no_resched(); 377 return 0; 378 } 379 NOKPROBE_SYMBOL(kprobe_handler); 380 381 /* 382 * Function return probe trampoline: 383 * - init_kprobes() establishes a probepoint here 384 * - When the probed function returns, this probe 385 * causes the handlers to fire 386 */ 387 static void __used kretprobe_trampoline_holder(void) 388 { 389 asm volatile(".global kretprobe_trampoline\n" 390 "kretprobe_trampoline: bcr 0,0\n"); 391 } 392 393 /* 394 * Called when the probe at kretprobe trampoline is hit 395 */ 396 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 397 { 398 struct kretprobe_instance *ri; 399 struct hlist_head *head, empty_rp; 400 struct hlist_node *tmp; 401 unsigned long flags, orig_ret_address; 402 unsigned long trampoline_address; 403 kprobe_opcode_t *correct_ret_addr; 404 405 INIT_HLIST_HEAD(&empty_rp); 406 kretprobe_hash_lock(current, &head, &flags); 407 408 /* 409 * It is possible to have multiple instances associated with a given 410 * task either because an multiple functions in the call path 411 * have a return probe installed on them, and/or more than one return 412 * return probe was registered for a target function. 413 * 414 * We can handle this because: 415 * - instances are always inserted at the head of the list 416 * - when multiple return probes are registered for the same 417 * function, the first instance's ret_addr will point to the 418 * real return address, and all the rest will point to 419 * kretprobe_trampoline 420 */ 421 ri = NULL; 422 orig_ret_address = 0; 423 correct_ret_addr = NULL; 424 trampoline_address = (unsigned long) &kretprobe_trampoline; 425 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 426 if (ri->task != current) 427 /* another task is sharing our hash bucket */ 428 continue; 429 430 orig_ret_address = (unsigned long) ri->ret_addr; 431 432 if (orig_ret_address != trampoline_address) 433 /* 434 * This is the real return address. Any other 435 * instances associated with this task are for 436 * other calls deeper on the call stack 437 */ 438 break; 439 } 440 441 kretprobe_assert(ri, orig_ret_address, trampoline_address); 442 443 correct_ret_addr = ri->ret_addr; 444 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 445 if (ri->task != current) 446 /* another task is sharing our hash bucket */ 447 continue; 448 449 orig_ret_address = (unsigned long) ri->ret_addr; 450 451 if (ri->rp && ri->rp->handler) { 452 ri->ret_addr = correct_ret_addr; 453 ri->rp->handler(ri, regs); 454 } 455 456 recycle_rp_inst(ri, &empty_rp); 457 458 if (orig_ret_address != trampoline_address) 459 /* 460 * This is the real return address. Any other 461 * instances associated with this task are for 462 * other calls deeper on the call stack 463 */ 464 break; 465 } 466 467 regs->psw.addr = orig_ret_address; 468 469 pop_kprobe(get_kprobe_ctlblk()); 470 kretprobe_hash_unlock(current, &flags); 471 preempt_enable_no_resched(); 472 473 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 474 hlist_del(&ri->hlist); 475 kfree(ri); 476 } 477 /* 478 * By returning a non-zero value, we are telling 479 * kprobe_handler() that we don't want the post_handler 480 * to run (and have re-enabled preemption) 481 */ 482 return 1; 483 } 484 NOKPROBE_SYMBOL(trampoline_probe_handler); 485 486 /* 487 * Called after single-stepping. p->addr is the address of the 488 * instruction whose first byte has been replaced by the "breakpoint" 489 * instruction. To avoid the SMP problems that can occur when we 490 * temporarily put back the original opcode to single-step, we 491 * single-stepped a copy of the instruction. The address of this 492 * copy is p->ainsn.insn. 493 */ 494 static void resume_execution(struct kprobe *p, struct pt_regs *regs) 495 { 496 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 497 unsigned long ip = regs->psw.addr; 498 int fixup = probe_get_fixup_type(p->ainsn.insn); 499 500 /* Check if the kprobes location is an enabled ftrace caller */ 501 if (p->ainsn.is_ftrace_insn) { 502 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr; 503 struct ftrace_insn call_insn; 504 505 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr); 506 /* 507 * A kprobe on an enabled ftrace call site actually single 508 * stepped an unconditional branch (ftrace nop equivalent). 509 * Now we need to fixup things and pretend that a brasl r0,... 510 * was executed instead. 511 */ 512 if (insn->disp == KPROBE_ON_FTRACE_CALL) { 513 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE; 514 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn); 515 } 516 } 517 518 if (fixup & FIXUP_PSW_NORMAL) 519 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 520 521 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 522 int ilen = insn_length(p->ainsn.insn[0] >> 8); 523 if (ip - (unsigned long) p->ainsn.insn == ilen) 524 ip = (unsigned long) p->addr + ilen; 525 } 526 527 if (fixup & FIXUP_RETURN_REGISTER) { 528 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 529 regs->gprs[reg] += (unsigned long) p->addr - 530 (unsigned long) p->ainsn.insn; 531 } 532 533 disable_singlestep(kcb, regs, ip); 534 } 535 NOKPROBE_SYMBOL(resume_execution); 536 537 static int post_kprobe_handler(struct pt_regs *regs) 538 { 539 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 540 struct kprobe *p = kprobe_running(); 541 542 if (!p) 543 return 0; 544 545 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 546 kcb->kprobe_status = KPROBE_HIT_SSDONE; 547 p->post_handler(p, regs, 0); 548 } 549 550 resume_execution(p, regs); 551 pop_kprobe(kcb); 552 preempt_enable_no_resched(); 553 554 /* 555 * if somebody else is singlestepping across a probe point, psw mask 556 * will have PER set, in which case, continue the remaining processing 557 * of do_single_step, as if this is not a probe hit. 558 */ 559 if (regs->psw.mask & PSW_MASK_PER) 560 return 0; 561 562 return 1; 563 } 564 NOKPROBE_SYMBOL(post_kprobe_handler); 565 566 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr) 567 { 568 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 569 struct kprobe *p = kprobe_running(); 570 const struct exception_table_entry *entry; 571 572 switch(kcb->kprobe_status) { 573 case KPROBE_HIT_SS: 574 case KPROBE_REENTER: 575 /* 576 * We are here because the instruction being single 577 * stepped caused a page fault. We reset the current 578 * kprobe and the nip points back to the probe address 579 * and allow the page fault handler to continue as a 580 * normal page fault. 581 */ 582 disable_singlestep(kcb, regs, (unsigned long) p->addr); 583 pop_kprobe(kcb); 584 preempt_enable_no_resched(); 585 break; 586 case KPROBE_HIT_ACTIVE: 587 case KPROBE_HIT_SSDONE: 588 /* 589 * We increment the nmissed count for accounting, 590 * we can also use npre/npostfault count for accounting 591 * these specific fault cases. 592 */ 593 kprobes_inc_nmissed_count(p); 594 595 /* 596 * We come here because instructions in the pre/post 597 * handler caused the page_fault, this could happen 598 * if handler tries to access user space by 599 * copy_from_user(), get_user() etc. Let the 600 * user-specified handler try to fix it first. 601 */ 602 if (p->fault_handler && p->fault_handler(p, regs, trapnr)) 603 return 1; 604 605 /* 606 * In case the user-specified fault handler returned 607 * zero, try to fix up. 608 */ 609 entry = search_exception_tables(regs->psw.addr); 610 if (entry) { 611 regs->psw.addr = extable_fixup(entry); 612 return 1; 613 } 614 615 /* 616 * fixup_exception() could not handle it, 617 * Let do_page_fault() fix it. 618 */ 619 break; 620 default: 621 break; 622 } 623 return 0; 624 } 625 NOKPROBE_SYMBOL(kprobe_trap_handler); 626 627 int kprobe_fault_handler(struct pt_regs *regs, int trapnr) 628 { 629 int ret; 630 631 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 632 local_irq_disable(); 633 ret = kprobe_trap_handler(regs, trapnr); 634 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 635 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 636 return ret; 637 } 638 NOKPROBE_SYMBOL(kprobe_fault_handler); 639 640 /* 641 * Wrapper routine to for handling exceptions. 642 */ 643 int kprobe_exceptions_notify(struct notifier_block *self, 644 unsigned long val, void *data) 645 { 646 struct die_args *args = (struct die_args *) data; 647 struct pt_regs *regs = args->regs; 648 int ret = NOTIFY_DONE; 649 650 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 651 local_irq_disable(); 652 653 switch (val) { 654 case DIE_BPT: 655 if (kprobe_handler(regs)) 656 ret = NOTIFY_STOP; 657 break; 658 case DIE_SSTEP: 659 if (post_kprobe_handler(regs)) 660 ret = NOTIFY_STOP; 661 break; 662 case DIE_TRAP: 663 if (!preemptible() && kprobe_running() && 664 kprobe_trap_handler(regs, args->trapnr)) 665 ret = NOTIFY_STOP; 666 break; 667 default: 668 break; 669 } 670 671 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 672 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 673 674 return ret; 675 } 676 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 677 678 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 679 { 680 struct jprobe *jp = container_of(p, struct jprobe, kp); 681 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 682 unsigned long stack; 683 684 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 685 686 /* setup return addr to the jprobe handler routine */ 687 regs->psw.addr = (unsigned long) jp->entry; 688 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 689 690 /* r15 is the stack pointer */ 691 stack = (unsigned long) regs->gprs[15]; 692 693 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack)); 694 695 /* 696 * jprobes use jprobe_return() which skips the normal return 697 * path of the function, and this messes up the accounting of the 698 * function graph tracer to get messed up. 699 * 700 * Pause function graph tracing while performing the jprobe function. 701 */ 702 pause_graph_tracing(); 703 return 1; 704 } 705 NOKPROBE_SYMBOL(setjmp_pre_handler); 706 707 void jprobe_return(void) 708 { 709 asm volatile(".word 0x0002"); 710 } 711 NOKPROBE_SYMBOL(jprobe_return); 712 713 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 714 { 715 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 716 unsigned long stack; 717 718 /* It's OK to start function graph tracing again */ 719 unpause_graph_tracing(); 720 721 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15]; 722 723 /* Put the regs back */ 724 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 725 /* put the stack back */ 726 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack)); 727 preempt_enable_no_resched(); 728 return 1; 729 } 730 NOKPROBE_SYMBOL(longjmp_break_handler); 731 732 static struct kprobe trampoline = { 733 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 734 .pre_handler = trampoline_probe_handler 735 }; 736 737 int __init arch_init_kprobes(void) 738 { 739 return register_kprobe(&trampoline); 740 } 741 742 int arch_trampoline_kprobe(struct kprobe *p) 743 { 744 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; 745 } 746 NOKPROBE_SYMBOL(arch_trampoline_kprobe); 747