xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 643d1f7f)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <asm/cacheflush.h>
29 #include <asm/sections.h>
30 #include <asm/uaccess.h>
31 #include <linux/module.h>
32 
33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
35 
36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
37 
38 int __kprobes arch_prepare_kprobe(struct kprobe *p)
39 {
40 	/* Make sure the probe isn't going on a difficult instruction */
41 	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
42 		return -EINVAL;
43 
44 	if ((unsigned long)p->addr & 0x01) {
45 		printk("Attempt to register kprobe at an unaligned address\n");
46 		return -EINVAL;
47 		}
48 
49 	/* Use the get_insn_slot() facility for correctness */
50 	if (!(p->ainsn.insn = get_insn_slot()))
51 		return -ENOMEM;
52 
53 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
54 
55 	get_instruction_type(&p->ainsn);
56 	p->opcode = *p->addr;
57 	return 0;
58 }
59 
60 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
61 {
62 	switch (*(__u8 *) instruction) {
63 	case 0x0c:	/* bassm */
64 	case 0x0b:	/* bsm	 */
65 	case 0x83:	/* diag  */
66 	case 0x44:	/* ex	 */
67 		return -EINVAL;
68 	}
69 	switch (*(__u16 *) instruction) {
70 	case 0x0101:	/* pr	 */
71 	case 0xb25a:	/* bsa	 */
72 	case 0xb240:	/* bakr  */
73 	case 0xb258:	/* bsg	 */
74 	case 0xb218:	/* pc	 */
75 	case 0xb228:	/* pt	 */
76 		return -EINVAL;
77 	}
78 	return 0;
79 }
80 
81 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
82 {
83 	/* default fixup method */
84 	ainsn->fixup = FIXUP_PSW_NORMAL;
85 
86 	/* save r1 operand */
87 	ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
88 
89 	/* save the instruction length (pop 5-5) in bytes */
90 	switch (*(__u8 *) (ainsn->insn) >> 6) {
91 	case 0:
92 		ainsn->ilen = 2;
93 		break;
94 	case 1:
95 	case 2:
96 		ainsn->ilen = 4;
97 		break;
98 	case 3:
99 		ainsn->ilen = 6;
100 		break;
101 	}
102 
103 	switch (*(__u8 *) ainsn->insn) {
104 	case 0x05:	/* balr	*/
105 	case 0x0d:	/* basr */
106 		ainsn->fixup = FIXUP_RETURN_REGISTER;
107 		/* if r2 = 0, no branch will be taken */
108 		if ((*ainsn->insn & 0x0f) == 0)
109 			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
110 		break;
111 	case 0x06:	/* bctr	*/
112 	case 0x07:	/* bcr	*/
113 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
114 		break;
115 	case 0x45:	/* bal	*/
116 	case 0x4d:	/* bas	*/
117 		ainsn->fixup = FIXUP_RETURN_REGISTER;
118 		break;
119 	case 0x47:	/* bc	*/
120 	case 0x46:	/* bct	*/
121 	case 0x86:	/* bxh	*/
122 	case 0x87:	/* bxle	*/
123 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
124 		break;
125 	case 0x82:	/* lpsw	*/
126 		ainsn->fixup = FIXUP_NOT_REQUIRED;
127 		break;
128 	case 0xb2:	/* lpswe */
129 		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
130 			ainsn->fixup = FIXUP_NOT_REQUIRED;
131 		}
132 		break;
133 	case 0xa7:	/* bras	*/
134 		if ((*ainsn->insn & 0x0f) == 0x05) {
135 			ainsn->fixup |= FIXUP_RETURN_REGISTER;
136 		}
137 		break;
138 	case 0xc0:
139 		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
140 			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
141 		ainsn->fixup |= FIXUP_RETURN_REGISTER;
142 		break;
143 	case 0xeb:
144 		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */
145 			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
146 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
147 		}
148 		break;
149 	case 0xe3:	/* bctg	*/
150 		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
151 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
152 		}
153 		break;
154 	}
155 }
156 
157 static int __kprobes swap_instruction(void *aref)
158 {
159 	struct ins_replace_args *args = aref;
160 	u32 *addr;
161 	u32 instr;
162 	int err = -EFAULT;
163 
164 	/*
165 	 * Text segment is read-only, hence we use stura to bypass dynamic
166 	 * address translation to exchange the instruction. Since stura
167 	 * always operates on four bytes, but we only want to exchange two
168 	 * bytes do some calculations to get things right. In addition we
169 	 * shall not cross any page boundaries (vmalloc area!) when writing
170 	 * the new instruction.
171 	 */
172 	addr = (u32 *)((unsigned long)args->ptr & -4UL);
173 	if ((unsigned long)args->ptr & 2)
174 		instr = ((*addr) & 0xffff0000) | args->new;
175 	else
176 		instr = ((*addr) & 0x0000ffff) | args->new << 16;
177 
178 	asm volatile(
179 		"	lra	%1,0(%1)\n"
180 		"0:	stura	%2,%1\n"
181 		"1:	la	%0,0\n"
182 		"2:\n"
183 		EX_TABLE(0b,2b)
184 		: "+d" (err)
185 		: "a" (addr), "d" (instr)
186 		: "memory", "cc");
187 
188 	return err;
189 }
190 
191 void __kprobes arch_arm_kprobe(struct kprobe *p)
192 {
193 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
194 	unsigned long status = kcb->kprobe_status;
195 	struct ins_replace_args args;
196 
197 	args.ptr = p->addr;
198 	args.old = p->opcode;
199 	args.new = BREAKPOINT_INSTRUCTION;
200 
201 	kcb->kprobe_status = KPROBE_SWAP_INST;
202 	stop_machine_run(swap_instruction, &args, NR_CPUS);
203 	kcb->kprobe_status = status;
204 }
205 
206 void __kprobes arch_disarm_kprobe(struct kprobe *p)
207 {
208 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
209 	unsigned long status = kcb->kprobe_status;
210 	struct ins_replace_args args;
211 
212 	args.ptr = p->addr;
213 	args.old = BREAKPOINT_INSTRUCTION;
214 	args.new = p->opcode;
215 
216 	kcb->kprobe_status = KPROBE_SWAP_INST;
217 	stop_machine_run(swap_instruction, &args, NR_CPUS);
218 	kcb->kprobe_status = status;
219 }
220 
221 void __kprobes arch_remove_kprobe(struct kprobe *p)
222 {
223 	mutex_lock(&kprobe_mutex);
224 	free_insn_slot(p->ainsn.insn, 0);
225 	mutex_unlock(&kprobe_mutex);
226 }
227 
228 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
229 {
230 	per_cr_bits kprobe_per_regs[1];
231 
232 	memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
233 	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
234 
235 	/* Set up the per control reg info, will pass to lctl */
236 	kprobe_per_regs[0].em_instruction_fetch = 1;
237 	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
238 	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
239 
240 	/* Set the PER control regs, turns on single step for this address */
241 	__ctl_load(kprobe_per_regs, 9, 11);
242 	regs->psw.mask |= PSW_MASK_PER;
243 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
244 }
245 
246 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
247 {
248 	kcb->prev_kprobe.kp = kprobe_running();
249 	kcb->prev_kprobe.status = kcb->kprobe_status;
250 	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
251 	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
252 					sizeof(kcb->kprobe_saved_ctl));
253 }
254 
255 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
256 {
257 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
258 	kcb->kprobe_status = kcb->prev_kprobe.status;
259 	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
260 	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
261 					sizeof(kcb->kprobe_saved_ctl));
262 }
263 
264 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
265 						struct kprobe_ctlblk *kcb)
266 {
267 	__get_cpu_var(current_kprobe) = p;
268 	/* Save the interrupt and per flags */
269 	kcb->kprobe_saved_imask = regs->psw.mask &
270 	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
271 	/* Save the control regs that govern PER */
272 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
273 }
274 
275 /* Called with kretprobe_lock held */
276 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
277 					struct pt_regs *regs)
278 {
279 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
280 
281 	/* Replace the return addr with trampoline addr */
282 	regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
283 }
284 
285 static int __kprobes kprobe_handler(struct pt_regs *regs)
286 {
287 	struct kprobe *p;
288 	int ret = 0;
289 	unsigned long *addr = (unsigned long *)
290 		((regs->psw.addr & PSW_ADDR_INSN) - 2);
291 	struct kprobe_ctlblk *kcb;
292 
293 	/*
294 	 * We don't want to be preempted for the entire
295 	 * duration of kprobe processing
296 	 */
297 	preempt_disable();
298 	kcb = get_kprobe_ctlblk();
299 
300 	/* Check we're not actually recursing */
301 	if (kprobe_running()) {
302 		p = get_kprobe(addr);
303 		if (p) {
304 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
305 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
306 				regs->psw.mask &= ~PSW_MASK_PER;
307 				regs->psw.mask |= kcb->kprobe_saved_imask;
308 				goto no_kprobe;
309 			}
310 			/* We have reentered the kprobe_handler(), since
311 			 * another probe was hit while within the handler.
312 			 * We here save the original kprobes variables and
313 			 * just single step on the instruction of the new probe
314 			 * without calling any user handlers.
315 			 */
316 			save_previous_kprobe(kcb);
317 			set_current_kprobe(p, regs, kcb);
318 			kprobes_inc_nmissed_count(p);
319 			prepare_singlestep(p, regs);
320 			kcb->kprobe_status = KPROBE_REENTER;
321 			return 1;
322 		} else {
323 			p = __get_cpu_var(current_kprobe);
324 			if (p->break_handler && p->break_handler(p, regs)) {
325 				goto ss_probe;
326 			}
327 		}
328 		goto no_kprobe;
329 	}
330 
331 	p = get_kprobe(addr);
332 	if (!p)
333 		/*
334 		 * No kprobe at this address. The fault has not been
335 		 * caused by a kprobe breakpoint. The race of breakpoint
336 		 * vs. kprobe remove does not exist because on s390 we
337 		 * use stop_machine_run to arm/disarm the breakpoints.
338 		 */
339 		goto no_kprobe;
340 
341 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
342 	set_current_kprobe(p, regs, kcb);
343 	if (p->pre_handler && p->pre_handler(p, regs))
344 		/* handler has already set things up, so skip ss setup */
345 		return 1;
346 
347 ss_probe:
348 	prepare_singlestep(p, regs);
349 	kcb->kprobe_status = KPROBE_HIT_SS;
350 	return 1;
351 
352 no_kprobe:
353 	preempt_enable_no_resched();
354 	return ret;
355 }
356 
357 /*
358  * Function return probe trampoline:
359  *	- init_kprobes() establishes a probepoint here
360  *	- When the probed function returns, this probe
361  *		causes the handlers to fire
362  */
363 void kretprobe_trampoline_holder(void)
364 {
365 	asm volatile(".global kretprobe_trampoline\n"
366 		     "kretprobe_trampoline: bcr 0,0\n");
367 }
368 
369 /*
370  * Called when the probe at kretprobe trampoline is hit
371  */
372 static int __kprobes trampoline_probe_handler(struct kprobe *p,
373 					      struct pt_regs *regs)
374 {
375 	struct kretprobe_instance *ri = NULL;
376 	struct hlist_head *head, empty_rp;
377 	struct hlist_node *node, *tmp;
378 	unsigned long flags, orig_ret_address = 0;
379 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
380 
381 	INIT_HLIST_HEAD(&empty_rp);
382 	spin_lock_irqsave(&kretprobe_lock, flags);
383 	head = kretprobe_inst_table_head(current);
384 
385 	/*
386 	 * It is possible to have multiple instances associated with a given
387 	 * task either because an multiple functions in the call path
388 	 * have a return probe installed on them, and/or more then one return
389 	 * return probe was registered for a target function.
390 	 *
391 	 * We can handle this because:
392 	 *     - instances are always inserted at the head of the list
393 	 *     - when multiple return probes are registered for the same
394 	 *	 function, the first instance's ret_addr will point to the
395 	 *	 real return address, and all the rest will point to
396 	 *	 kretprobe_trampoline
397 	 */
398 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
399 		if (ri->task != current)
400 			/* another task is sharing our hash bucket */
401 			continue;
402 
403 		if (ri->rp && ri->rp->handler)
404 			ri->rp->handler(ri, regs);
405 
406 		orig_ret_address = (unsigned long)ri->ret_addr;
407 		recycle_rp_inst(ri, &empty_rp);
408 
409 		if (orig_ret_address != trampoline_address) {
410 			/*
411 			 * This is the real return address. Any other
412 			 * instances associated with this task are for
413 			 * other calls deeper on the call stack
414 			 */
415 			break;
416 		}
417 	}
418 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
419 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
420 
421 	reset_current_kprobe();
422 	spin_unlock_irqrestore(&kretprobe_lock, flags);
423 	preempt_enable_no_resched();
424 
425 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
426 		hlist_del(&ri->hlist);
427 		kfree(ri);
428 	}
429 	/*
430 	 * By returning a non-zero value, we are telling
431 	 * kprobe_handler() that we don't want the post_handler
432 	 * to run (and have re-enabled preemption)
433 	 */
434 	return 1;
435 }
436 
437 /*
438  * Called after single-stepping.  p->addr is the address of the
439  * instruction whose first byte has been replaced by the "breakpoint"
440  * instruction.  To avoid the SMP problems that can occur when we
441  * temporarily put back the original opcode to single-step, we
442  * single-stepped a copy of the instruction.  The address of this
443  * copy is p->ainsn.insn.
444  */
445 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
446 {
447 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
448 
449 	regs->psw.addr &= PSW_ADDR_INSN;
450 
451 	if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
452 		regs->psw.addr = (unsigned long)p->addr +
453 				((unsigned long)regs->psw.addr -
454 				 (unsigned long)p->ainsn.insn);
455 
456 	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
457 		if ((unsigned long)regs->psw.addr -
458 		    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
459 			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
460 
461 	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
462 		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
463 						(regs->gprs[p->ainsn.reg] -
464 						(unsigned long)p->ainsn.insn))
465 						| PSW_ADDR_AMODE;
466 
467 	regs->psw.addr |= PSW_ADDR_AMODE;
468 	/* turn off PER mode */
469 	regs->psw.mask &= ~PSW_MASK_PER;
470 	/* Restore the original per control regs */
471 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
472 	regs->psw.mask |= kcb->kprobe_saved_imask;
473 }
474 
475 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
476 {
477 	struct kprobe *cur = kprobe_running();
478 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
479 
480 	if (!cur)
481 		return 0;
482 
483 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
484 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
485 		cur->post_handler(cur, regs, 0);
486 	}
487 
488 	resume_execution(cur, regs);
489 
490 	/*Restore back the original saved kprobes variables and continue. */
491 	if (kcb->kprobe_status == KPROBE_REENTER) {
492 		restore_previous_kprobe(kcb);
493 		goto out;
494 	}
495 	reset_current_kprobe();
496 out:
497 	preempt_enable_no_resched();
498 
499 	/*
500 	 * if somebody else is singlestepping across a probe point, psw mask
501 	 * will have PER set, in which case, continue the remaining processing
502 	 * of do_single_step, as if this is not a probe hit.
503 	 */
504 	if (regs->psw.mask & PSW_MASK_PER) {
505 		return 0;
506 	}
507 
508 	return 1;
509 }
510 
511 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
512 {
513 	struct kprobe *cur = kprobe_running();
514 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
515 	const struct exception_table_entry *entry;
516 
517 	switch(kcb->kprobe_status) {
518 	case KPROBE_SWAP_INST:
519 		/* We are here because the instruction replacement failed */
520 		return 0;
521 	case KPROBE_HIT_SS:
522 	case KPROBE_REENTER:
523 		/*
524 		 * We are here because the instruction being single
525 		 * stepped caused a page fault. We reset the current
526 		 * kprobe and the nip points back to the probe address
527 		 * and allow the page fault handler to continue as a
528 		 * normal page fault.
529 		 */
530 		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
531 		regs->psw.mask &= ~PSW_MASK_PER;
532 		regs->psw.mask |= kcb->kprobe_saved_imask;
533 		if (kcb->kprobe_status == KPROBE_REENTER)
534 			restore_previous_kprobe(kcb);
535 		else
536 			reset_current_kprobe();
537 		preempt_enable_no_resched();
538 		break;
539 	case KPROBE_HIT_ACTIVE:
540 	case KPROBE_HIT_SSDONE:
541 		/*
542 		 * We increment the nmissed count for accounting,
543 		 * we can also use npre/npostfault count for accouting
544 		 * these specific fault cases.
545 		 */
546 		kprobes_inc_nmissed_count(cur);
547 
548 		/*
549 		 * We come here because instructions in the pre/post
550 		 * handler caused the page_fault, this could happen
551 		 * if handler tries to access user space by
552 		 * copy_from_user(), get_user() etc. Let the
553 		 * user-specified handler try to fix it first.
554 		 */
555 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
556 			return 1;
557 
558 		/*
559 		 * In case the user-specified fault handler returned
560 		 * zero, try to fix up.
561 		 */
562 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
563 		if (entry) {
564 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
565 			return 1;
566 		}
567 
568 		/*
569 		 * fixup_exception() could not handle it,
570 		 * Let do_page_fault() fix it.
571 		 */
572 		break;
573 	default:
574 		break;
575 	}
576 	return 0;
577 }
578 
579 /*
580  * Wrapper routine to for handling exceptions.
581  */
582 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
583 				       unsigned long val, void *data)
584 {
585 	struct die_args *args = (struct die_args *)data;
586 	int ret = NOTIFY_DONE;
587 
588 	switch (val) {
589 	case DIE_BPT:
590 		if (kprobe_handler(args->regs))
591 			ret = NOTIFY_STOP;
592 		break;
593 	case DIE_SSTEP:
594 		if (post_kprobe_handler(args->regs))
595 			ret = NOTIFY_STOP;
596 		break;
597 	case DIE_TRAP:
598 		/* kprobe_running() needs smp_processor_id() */
599 		preempt_disable();
600 		if (kprobe_running() &&
601 		    kprobe_fault_handler(args->regs, args->trapnr))
602 			ret = NOTIFY_STOP;
603 		preempt_enable();
604 		break;
605 	default:
606 		break;
607 	}
608 	return ret;
609 }
610 
611 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
612 {
613 	struct jprobe *jp = container_of(p, struct jprobe, kp);
614 	unsigned long addr;
615 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
616 
617 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
618 
619 	/* setup return addr to the jprobe handler routine */
620 	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
621 
622 	/* r14 is the function return address */
623 	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
624 	/* r15 is the stack pointer */
625 	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
626 	addr = (unsigned long)kcb->jprobe_saved_r15;
627 
628 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
629 	       MIN_STACK_SIZE(addr));
630 	return 1;
631 }
632 
633 void __kprobes jprobe_return(void)
634 {
635 	asm volatile(".word 0x0002");
636 }
637 
638 void __kprobes jprobe_return_end(void)
639 {
640 	asm volatile("bcr 0,0");
641 }
642 
643 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
644 {
645 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
646 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
647 
648 	/* Put the regs back */
649 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
650 	/* put the stack back */
651 	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
652 	       MIN_STACK_SIZE(stack_addr));
653 	preempt_enable_no_resched();
654 	return 1;
655 }
656 
657 static struct kprobe trampoline_p = {
658 	.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
659 	.pre_handler = trampoline_probe_handler
660 };
661 
662 int __init arch_init_kprobes(void)
663 {
664 	return register_kprobe(&trampoline_p);
665 }
666 
667 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
668 {
669 	if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
670 		return 1;
671 	return 0;
672 }
673