1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <asm/cacheflush.h> 29 #include <asm/sections.h> 30 #include <asm/uaccess.h> 31 #include <linux/module.h> 32 33 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 34 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 35 36 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 37 38 int __kprobes arch_prepare_kprobe(struct kprobe *p) 39 { 40 /* Make sure the probe isn't going on a difficult instruction */ 41 if (is_prohibited_opcode((kprobe_opcode_t *) p->addr)) 42 return -EINVAL; 43 44 if ((unsigned long)p->addr & 0x01) { 45 printk("Attempt to register kprobe at an unaligned address\n"); 46 return -EINVAL; 47 } 48 49 /* Use the get_insn_slot() facility for correctness */ 50 if (!(p->ainsn.insn = get_insn_slot())) 51 return -ENOMEM; 52 53 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 54 55 get_instruction_type(&p->ainsn); 56 p->opcode = *p->addr; 57 return 0; 58 } 59 60 int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction) 61 { 62 switch (*(__u8 *) instruction) { 63 case 0x0c: /* bassm */ 64 case 0x0b: /* bsm */ 65 case 0x83: /* diag */ 66 case 0x44: /* ex */ 67 return -EINVAL; 68 } 69 switch (*(__u16 *) instruction) { 70 case 0x0101: /* pr */ 71 case 0xb25a: /* bsa */ 72 case 0xb240: /* bakr */ 73 case 0xb258: /* bsg */ 74 case 0xb218: /* pc */ 75 case 0xb228: /* pt */ 76 return -EINVAL; 77 } 78 return 0; 79 } 80 81 void __kprobes get_instruction_type(struct arch_specific_insn *ainsn) 82 { 83 /* default fixup method */ 84 ainsn->fixup = FIXUP_PSW_NORMAL; 85 86 /* save r1 operand */ 87 ainsn->reg = (*ainsn->insn & 0xf0) >> 4; 88 89 /* save the instruction length (pop 5-5) in bytes */ 90 switch (*(__u8 *) (ainsn->insn) >> 6) { 91 case 0: 92 ainsn->ilen = 2; 93 break; 94 case 1: 95 case 2: 96 ainsn->ilen = 4; 97 break; 98 case 3: 99 ainsn->ilen = 6; 100 break; 101 } 102 103 switch (*(__u8 *) ainsn->insn) { 104 case 0x05: /* balr */ 105 case 0x0d: /* basr */ 106 ainsn->fixup = FIXUP_RETURN_REGISTER; 107 /* if r2 = 0, no branch will be taken */ 108 if ((*ainsn->insn & 0x0f) == 0) 109 ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN; 110 break; 111 case 0x06: /* bctr */ 112 case 0x07: /* bcr */ 113 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 114 break; 115 case 0x45: /* bal */ 116 case 0x4d: /* bas */ 117 ainsn->fixup = FIXUP_RETURN_REGISTER; 118 break; 119 case 0x47: /* bc */ 120 case 0x46: /* bct */ 121 case 0x86: /* bxh */ 122 case 0x87: /* bxle */ 123 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 124 break; 125 case 0x82: /* lpsw */ 126 ainsn->fixup = FIXUP_NOT_REQUIRED; 127 break; 128 case 0xb2: /* lpswe */ 129 if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) { 130 ainsn->fixup = FIXUP_NOT_REQUIRED; 131 } 132 break; 133 case 0xa7: /* bras */ 134 if ((*ainsn->insn & 0x0f) == 0x05) { 135 ainsn->fixup |= FIXUP_RETURN_REGISTER; 136 } 137 break; 138 case 0xc0: 139 if ((*ainsn->insn & 0x0f) == 0x00 /* larl */ 140 || (*ainsn->insn & 0x0f) == 0x05) /* brasl */ 141 ainsn->fixup |= FIXUP_RETURN_REGISTER; 142 break; 143 case 0xeb: 144 if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */ 145 *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */ 146 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 147 } 148 break; 149 case 0xe3: /* bctg */ 150 if (*(((__u8 *) ainsn->insn) + 5) == 0x46) { 151 ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN; 152 } 153 break; 154 } 155 } 156 157 static int __kprobes swap_instruction(void *aref) 158 { 159 struct ins_replace_args *args = aref; 160 u32 *addr; 161 u32 instr; 162 int err = -EFAULT; 163 164 /* 165 * Text segment is read-only, hence we use stura to bypass dynamic 166 * address translation to exchange the instruction. Since stura 167 * always operates on four bytes, but we only want to exchange two 168 * bytes do some calculations to get things right. In addition we 169 * shall not cross any page boundaries (vmalloc area!) when writing 170 * the new instruction. 171 */ 172 addr = (u32 *)((unsigned long)args->ptr & -4UL); 173 if ((unsigned long)args->ptr & 2) 174 instr = ((*addr) & 0xffff0000) | args->new; 175 else 176 instr = ((*addr) & 0x0000ffff) | args->new << 16; 177 178 asm volatile( 179 " lra %1,0(%1)\n" 180 "0: stura %2,%1\n" 181 "1: la %0,0\n" 182 "2:\n" 183 EX_TABLE(0b,2b) 184 : "+d" (err) 185 : "a" (addr), "d" (instr) 186 : "memory", "cc"); 187 188 return err; 189 } 190 191 void __kprobes arch_arm_kprobe(struct kprobe *p) 192 { 193 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 194 unsigned long status = kcb->kprobe_status; 195 struct ins_replace_args args; 196 197 args.ptr = p->addr; 198 args.old = p->opcode; 199 args.new = BREAKPOINT_INSTRUCTION; 200 201 kcb->kprobe_status = KPROBE_SWAP_INST; 202 stop_machine_run(swap_instruction, &args, NR_CPUS); 203 kcb->kprobe_status = status; 204 } 205 206 void __kprobes arch_disarm_kprobe(struct kprobe *p) 207 { 208 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 209 unsigned long status = kcb->kprobe_status; 210 struct ins_replace_args args; 211 212 args.ptr = p->addr; 213 args.old = BREAKPOINT_INSTRUCTION; 214 args.new = p->opcode; 215 216 kcb->kprobe_status = KPROBE_SWAP_INST; 217 stop_machine_run(swap_instruction, &args, NR_CPUS); 218 kcb->kprobe_status = status; 219 } 220 221 void __kprobes arch_remove_kprobe(struct kprobe *p) 222 { 223 mutex_lock(&kprobe_mutex); 224 free_insn_slot(p->ainsn.insn, 0); 225 mutex_unlock(&kprobe_mutex); 226 } 227 228 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 229 { 230 per_cr_bits kprobe_per_regs[1]; 231 232 memset(kprobe_per_regs, 0, sizeof(per_cr_bits)); 233 regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE; 234 235 /* Set up the per control reg info, will pass to lctl */ 236 kprobe_per_regs[0].em_instruction_fetch = 1; 237 kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn; 238 kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1; 239 240 /* Set the PER control regs, turns on single step for this address */ 241 __ctl_load(kprobe_per_regs, 9, 11); 242 regs->psw.mask |= PSW_MASK_PER; 243 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); 244 } 245 246 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 247 { 248 kcb->prev_kprobe.kp = kprobe_running(); 249 kcb->prev_kprobe.status = kcb->kprobe_status; 250 kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask; 251 memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl, 252 sizeof(kcb->kprobe_saved_ctl)); 253 } 254 255 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 256 { 257 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 258 kcb->kprobe_status = kcb->prev_kprobe.status; 259 kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask; 260 memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl, 261 sizeof(kcb->kprobe_saved_ctl)); 262 } 263 264 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 265 struct kprobe_ctlblk *kcb) 266 { 267 __get_cpu_var(current_kprobe) = p; 268 /* Save the interrupt and per flags */ 269 kcb->kprobe_saved_imask = regs->psw.mask & 270 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK); 271 /* Save the control regs that govern PER */ 272 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 273 } 274 275 /* Called with kretprobe_lock held */ 276 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 277 struct pt_regs *regs) 278 { 279 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 280 281 /* Replace the return addr with trampoline addr */ 282 regs->gprs[14] = (unsigned long)&kretprobe_trampoline; 283 } 284 285 static int __kprobes kprobe_handler(struct pt_regs *regs) 286 { 287 struct kprobe *p; 288 int ret = 0; 289 unsigned long *addr = (unsigned long *) 290 ((regs->psw.addr & PSW_ADDR_INSN) - 2); 291 struct kprobe_ctlblk *kcb; 292 293 /* 294 * We don't want to be preempted for the entire 295 * duration of kprobe processing 296 */ 297 preempt_disable(); 298 kcb = get_kprobe_ctlblk(); 299 300 /* Check we're not actually recursing */ 301 if (kprobe_running()) { 302 p = get_kprobe(addr); 303 if (p) { 304 if (kcb->kprobe_status == KPROBE_HIT_SS && 305 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) { 306 regs->psw.mask &= ~PSW_MASK_PER; 307 regs->psw.mask |= kcb->kprobe_saved_imask; 308 goto no_kprobe; 309 } 310 /* We have reentered the kprobe_handler(), since 311 * another probe was hit while within the handler. 312 * We here save the original kprobes variables and 313 * just single step on the instruction of the new probe 314 * without calling any user handlers. 315 */ 316 save_previous_kprobe(kcb); 317 set_current_kprobe(p, regs, kcb); 318 kprobes_inc_nmissed_count(p); 319 prepare_singlestep(p, regs); 320 kcb->kprobe_status = KPROBE_REENTER; 321 return 1; 322 } else { 323 p = __get_cpu_var(current_kprobe); 324 if (p->break_handler && p->break_handler(p, regs)) { 325 goto ss_probe; 326 } 327 } 328 goto no_kprobe; 329 } 330 331 p = get_kprobe(addr); 332 if (!p) 333 /* 334 * No kprobe at this address. The fault has not been 335 * caused by a kprobe breakpoint. The race of breakpoint 336 * vs. kprobe remove does not exist because on s390 we 337 * use stop_machine_run to arm/disarm the breakpoints. 338 */ 339 goto no_kprobe; 340 341 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 342 set_current_kprobe(p, regs, kcb); 343 if (p->pre_handler && p->pre_handler(p, regs)) 344 /* handler has already set things up, so skip ss setup */ 345 return 1; 346 347 ss_probe: 348 prepare_singlestep(p, regs); 349 kcb->kprobe_status = KPROBE_HIT_SS; 350 return 1; 351 352 no_kprobe: 353 preempt_enable_no_resched(); 354 return ret; 355 } 356 357 /* 358 * Function return probe trampoline: 359 * - init_kprobes() establishes a probepoint here 360 * - When the probed function returns, this probe 361 * causes the handlers to fire 362 */ 363 void kretprobe_trampoline_holder(void) 364 { 365 asm volatile(".global kretprobe_trampoline\n" 366 "kretprobe_trampoline: bcr 0,0\n"); 367 } 368 369 /* 370 * Called when the probe at kretprobe trampoline is hit 371 */ 372 static int __kprobes trampoline_probe_handler(struct kprobe *p, 373 struct pt_regs *regs) 374 { 375 struct kretprobe_instance *ri = NULL; 376 struct hlist_head *head, empty_rp; 377 struct hlist_node *node, *tmp; 378 unsigned long flags, orig_ret_address = 0; 379 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 380 381 INIT_HLIST_HEAD(&empty_rp); 382 spin_lock_irqsave(&kretprobe_lock, flags); 383 head = kretprobe_inst_table_head(current); 384 385 /* 386 * It is possible to have multiple instances associated with a given 387 * task either because an multiple functions in the call path 388 * have a return probe installed on them, and/or more then one return 389 * return probe was registered for a target function. 390 * 391 * We can handle this because: 392 * - instances are always inserted at the head of the list 393 * - when multiple return probes are registered for the same 394 * function, the first instance's ret_addr will point to the 395 * real return address, and all the rest will point to 396 * kretprobe_trampoline 397 */ 398 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 399 if (ri->task != current) 400 /* another task is sharing our hash bucket */ 401 continue; 402 403 if (ri->rp && ri->rp->handler) 404 ri->rp->handler(ri, regs); 405 406 orig_ret_address = (unsigned long)ri->ret_addr; 407 recycle_rp_inst(ri, &empty_rp); 408 409 if (orig_ret_address != trampoline_address) { 410 /* 411 * This is the real return address. Any other 412 * instances associated with this task are for 413 * other calls deeper on the call stack 414 */ 415 break; 416 } 417 } 418 kretprobe_assert(ri, orig_ret_address, trampoline_address); 419 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; 420 421 reset_current_kprobe(); 422 spin_unlock_irqrestore(&kretprobe_lock, flags); 423 preempt_enable_no_resched(); 424 425 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 426 hlist_del(&ri->hlist); 427 kfree(ri); 428 } 429 /* 430 * By returning a non-zero value, we are telling 431 * kprobe_handler() that we don't want the post_handler 432 * to run (and have re-enabled preemption) 433 */ 434 return 1; 435 } 436 437 /* 438 * Called after single-stepping. p->addr is the address of the 439 * instruction whose first byte has been replaced by the "breakpoint" 440 * instruction. To avoid the SMP problems that can occur when we 441 * temporarily put back the original opcode to single-step, we 442 * single-stepped a copy of the instruction. The address of this 443 * copy is p->ainsn.insn. 444 */ 445 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 446 { 447 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 448 449 regs->psw.addr &= PSW_ADDR_INSN; 450 451 if (p->ainsn.fixup & FIXUP_PSW_NORMAL) 452 regs->psw.addr = (unsigned long)p->addr + 453 ((unsigned long)regs->psw.addr - 454 (unsigned long)p->ainsn.insn); 455 456 if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN) 457 if ((unsigned long)regs->psw.addr - 458 (unsigned long)p->ainsn.insn == p->ainsn.ilen) 459 regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen; 460 461 if (p->ainsn.fixup & FIXUP_RETURN_REGISTER) 462 regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr + 463 (regs->gprs[p->ainsn.reg] - 464 (unsigned long)p->ainsn.insn)) 465 | PSW_ADDR_AMODE; 466 467 regs->psw.addr |= PSW_ADDR_AMODE; 468 /* turn off PER mode */ 469 regs->psw.mask &= ~PSW_MASK_PER; 470 /* Restore the original per control regs */ 471 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 472 regs->psw.mask |= kcb->kprobe_saved_imask; 473 } 474 475 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 476 { 477 struct kprobe *cur = kprobe_running(); 478 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 479 480 if (!cur) 481 return 0; 482 483 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 484 kcb->kprobe_status = KPROBE_HIT_SSDONE; 485 cur->post_handler(cur, regs, 0); 486 } 487 488 resume_execution(cur, regs); 489 490 /*Restore back the original saved kprobes variables and continue. */ 491 if (kcb->kprobe_status == KPROBE_REENTER) { 492 restore_previous_kprobe(kcb); 493 goto out; 494 } 495 reset_current_kprobe(); 496 out: 497 preempt_enable_no_resched(); 498 499 /* 500 * if somebody else is singlestepping across a probe point, psw mask 501 * will have PER set, in which case, continue the remaining processing 502 * of do_single_step, as if this is not a probe hit. 503 */ 504 if (regs->psw.mask & PSW_MASK_PER) { 505 return 0; 506 } 507 508 return 1; 509 } 510 511 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 512 { 513 struct kprobe *cur = kprobe_running(); 514 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 515 const struct exception_table_entry *entry; 516 517 switch(kcb->kprobe_status) { 518 case KPROBE_SWAP_INST: 519 /* We are here because the instruction replacement failed */ 520 return 0; 521 case KPROBE_HIT_SS: 522 case KPROBE_REENTER: 523 /* 524 * We are here because the instruction being single 525 * stepped caused a page fault. We reset the current 526 * kprobe and the nip points back to the probe address 527 * and allow the page fault handler to continue as a 528 * normal page fault. 529 */ 530 regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE; 531 regs->psw.mask &= ~PSW_MASK_PER; 532 regs->psw.mask |= kcb->kprobe_saved_imask; 533 if (kcb->kprobe_status == KPROBE_REENTER) 534 restore_previous_kprobe(kcb); 535 else 536 reset_current_kprobe(); 537 preempt_enable_no_resched(); 538 break; 539 case KPROBE_HIT_ACTIVE: 540 case KPROBE_HIT_SSDONE: 541 /* 542 * We increment the nmissed count for accounting, 543 * we can also use npre/npostfault count for accouting 544 * these specific fault cases. 545 */ 546 kprobes_inc_nmissed_count(cur); 547 548 /* 549 * We come here because instructions in the pre/post 550 * handler caused the page_fault, this could happen 551 * if handler tries to access user space by 552 * copy_from_user(), get_user() etc. Let the 553 * user-specified handler try to fix it first. 554 */ 555 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 556 return 1; 557 558 /* 559 * In case the user-specified fault handler returned 560 * zero, try to fix up. 561 */ 562 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 563 if (entry) { 564 regs->psw.addr = entry->fixup | PSW_ADDR_AMODE; 565 return 1; 566 } 567 568 /* 569 * fixup_exception() could not handle it, 570 * Let do_page_fault() fix it. 571 */ 572 break; 573 default: 574 break; 575 } 576 return 0; 577 } 578 579 /* 580 * Wrapper routine to for handling exceptions. 581 */ 582 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 583 unsigned long val, void *data) 584 { 585 struct die_args *args = (struct die_args *)data; 586 int ret = NOTIFY_DONE; 587 588 switch (val) { 589 case DIE_BPT: 590 if (kprobe_handler(args->regs)) 591 ret = NOTIFY_STOP; 592 break; 593 case DIE_SSTEP: 594 if (post_kprobe_handler(args->regs)) 595 ret = NOTIFY_STOP; 596 break; 597 case DIE_TRAP: 598 /* kprobe_running() needs smp_processor_id() */ 599 preempt_disable(); 600 if (kprobe_running() && 601 kprobe_fault_handler(args->regs, args->trapnr)) 602 ret = NOTIFY_STOP; 603 preempt_enable(); 604 break; 605 default: 606 break; 607 } 608 return ret; 609 } 610 611 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 612 { 613 struct jprobe *jp = container_of(p, struct jprobe, kp); 614 unsigned long addr; 615 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 616 617 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 618 619 /* setup return addr to the jprobe handler routine */ 620 regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE; 621 622 /* r14 is the function return address */ 623 kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14]; 624 /* r15 is the stack pointer */ 625 kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15]; 626 addr = (unsigned long)kcb->jprobe_saved_r15; 627 628 memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr, 629 MIN_STACK_SIZE(addr)); 630 return 1; 631 } 632 633 void __kprobes jprobe_return(void) 634 { 635 asm volatile(".word 0x0002"); 636 } 637 638 void __kprobes jprobe_return_end(void) 639 { 640 asm volatile("bcr 0,0"); 641 } 642 643 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 644 { 645 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 646 unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15); 647 648 /* Put the regs back */ 649 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 650 /* put the stack back */ 651 memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, 652 MIN_STACK_SIZE(stack_addr)); 653 preempt_enable_no_resched(); 654 return 1; 655 } 656 657 static struct kprobe trampoline_p = { 658 .addr = (kprobe_opcode_t *) & kretprobe_trampoline, 659 .pre_handler = trampoline_probe_handler 660 }; 661 662 int __init arch_init_kprobes(void) 663 { 664 return register_kprobe(&trampoline_p); 665 } 666 667 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 668 { 669 if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline) 670 return 1; 671 return 0; 672 } 673