xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 2dc30eb9)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/moduleloader.h>
11 #include <linux/kprobes.h>
12 #include <linux/ptrace.h>
13 #include <linux/preempt.h>
14 #include <linux/stop_machine.h>
15 #include <linux/kdebug.h>
16 #include <linux/uaccess.h>
17 #include <linux/extable.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/hardirq.h>
21 #include <linux/ftrace.h>
22 #include <asm/set_memory.h>
23 #include <asm/sections.h>
24 #include <asm/dis.h>
25 #include "entry.h"
26 
27 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
28 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
29 
30 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
31 
32 DEFINE_INSN_CACHE_OPS(s390_insn);
33 
34 static int insn_page_in_use;
35 
36 void *alloc_insn_page(void)
37 {
38 	void *page;
39 
40 	page = module_alloc(PAGE_SIZE);
41 	if (!page)
42 		return NULL;
43 	__set_memory((unsigned long) page, 1, SET_MEMORY_RO | SET_MEMORY_X);
44 	return page;
45 }
46 
47 static void *alloc_s390_insn_page(void)
48 {
49 	if (xchg(&insn_page_in_use, 1) == 1)
50 		return NULL;
51 	return &kprobes_insn_page;
52 }
53 
54 static void free_s390_insn_page(void *page)
55 {
56 	xchg(&insn_page_in_use, 0);
57 }
58 
59 struct kprobe_insn_cache kprobe_s390_insn_slots = {
60 	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
61 	.alloc = alloc_s390_insn_page,
62 	.free = free_s390_insn_page,
63 	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
64 	.insn_size = MAX_INSN_SIZE,
65 };
66 
67 static void copy_instruction(struct kprobe *p)
68 {
69 	kprobe_opcode_t insn[MAX_INSN_SIZE];
70 	s64 disp, new_disp;
71 	u64 addr, new_addr;
72 	unsigned int len;
73 
74 	len = insn_length(*p->addr >> 8);
75 	memcpy(&insn, p->addr, len);
76 	p->opcode = insn[0];
77 	if (probe_is_insn_relative_long(&insn[0])) {
78 		/*
79 		 * For pc-relative instructions in RIL-b or RIL-c format patch
80 		 * the RI2 displacement field. We have already made sure that
81 		 * the insn slot for the patched instruction is within the same
82 		 * 2GB area as the original instruction (either kernel image or
83 		 * module area). Therefore the new displacement will always fit.
84 		 */
85 		disp = *(s32 *)&insn[1];
86 		addr = (u64)(unsigned long)p->addr;
87 		new_addr = (u64)(unsigned long)p->ainsn.insn;
88 		new_disp = ((addr + (disp * 2)) - new_addr) / 2;
89 		*(s32 *)&insn[1] = new_disp;
90 	}
91 	s390_kernel_write(p->ainsn.insn, &insn, len);
92 }
93 NOKPROBE_SYMBOL(copy_instruction);
94 
95 static int s390_get_insn_slot(struct kprobe *p)
96 {
97 	/*
98 	 * Get an insn slot that is within the same 2GB area like the original
99 	 * instruction. That way instructions with a 32bit signed displacement
100 	 * field can be patched and executed within the insn slot.
101 	 */
102 	p->ainsn.insn = NULL;
103 	if (is_kernel((unsigned long)p->addr))
104 		p->ainsn.insn = get_s390_insn_slot();
105 	else if (is_module_addr(p->addr))
106 		p->ainsn.insn = get_insn_slot();
107 	return p->ainsn.insn ? 0 : -ENOMEM;
108 }
109 NOKPROBE_SYMBOL(s390_get_insn_slot);
110 
111 static void s390_free_insn_slot(struct kprobe *p)
112 {
113 	if (!p->ainsn.insn)
114 		return;
115 	if (is_kernel((unsigned long)p->addr))
116 		free_s390_insn_slot(p->ainsn.insn, 0);
117 	else
118 		free_insn_slot(p->ainsn.insn, 0);
119 	p->ainsn.insn = NULL;
120 }
121 NOKPROBE_SYMBOL(s390_free_insn_slot);
122 
123 int arch_prepare_kprobe(struct kprobe *p)
124 {
125 	if ((unsigned long) p->addr & 0x01)
126 		return -EINVAL;
127 	/* Make sure the probe isn't going on a difficult instruction */
128 	if (probe_is_prohibited_opcode(p->addr))
129 		return -EINVAL;
130 	if (s390_get_insn_slot(p))
131 		return -ENOMEM;
132 	copy_instruction(p);
133 	return 0;
134 }
135 NOKPROBE_SYMBOL(arch_prepare_kprobe);
136 
137 struct swap_insn_args {
138 	struct kprobe *p;
139 	unsigned int arm_kprobe : 1;
140 };
141 
142 static int swap_instruction(void *data)
143 {
144 	struct swap_insn_args *args = data;
145 	struct kprobe *p = args->p;
146 	u16 opc;
147 
148 	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
149 	s390_kernel_write(p->addr, &opc, sizeof(opc));
150 	return 0;
151 }
152 NOKPROBE_SYMBOL(swap_instruction);
153 
154 void arch_arm_kprobe(struct kprobe *p)
155 {
156 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
157 
158 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
159 }
160 NOKPROBE_SYMBOL(arch_arm_kprobe);
161 
162 void arch_disarm_kprobe(struct kprobe *p)
163 {
164 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
165 
166 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
167 }
168 NOKPROBE_SYMBOL(arch_disarm_kprobe);
169 
170 void arch_remove_kprobe(struct kprobe *p)
171 {
172 	s390_free_insn_slot(p);
173 }
174 NOKPROBE_SYMBOL(arch_remove_kprobe);
175 
176 static void enable_singlestep(struct kprobe_ctlblk *kcb,
177 			      struct pt_regs *regs,
178 			      unsigned long ip)
179 {
180 	struct per_regs per_kprobe;
181 
182 	/* Set up the PER control registers %cr9-%cr11 */
183 	per_kprobe.control = PER_EVENT_IFETCH;
184 	per_kprobe.start = ip;
185 	per_kprobe.end = ip;
186 
187 	/* Save control regs and psw mask */
188 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
189 	kcb->kprobe_saved_imask = regs->psw.mask &
190 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
191 
192 	/* Set PER control regs, turns on single step for the given address */
193 	__ctl_load(per_kprobe, 9, 11);
194 	regs->psw.mask |= PSW_MASK_PER;
195 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
196 	regs->psw.addr = ip;
197 }
198 NOKPROBE_SYMBOL(enable_singlestep);
199 
200 static void disable_singlestep(struct kprobe_ctlblk *kcb,
201 			       struct pt_regs *regs,
202 			       unsigned long ip)
203 {
204 	/* Restore control regs and psw mask, set new psw address */
205 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
206 	regs->psw.mask &= ~PSW_MASK_PER;
207 	regs->psw.mask |= kcb->kprobe_saved_imask;
208 	regs->psw.addr = ip;
209 }
210 NOKPROBE_SYMBOL(disable_singlestep);
211 
212 /*
213  * Activate a kprobe by storing its pointer to current_kprobe. The
214  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
215  * two kprobes can be active, see KPROBE_REENTER.
216  */
217 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
218 {
219 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
220 	kcb->prev_kprobe.status = kcb->kprobe_status;
221 	__this_cpu_write(current_kprobe, p);
222 }
223 NOKPROBE_SYMBOL(push_kprobe);
224 
225 /*
226  * Deactivate a kprobe by backing up to the previous state. If the
227  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
228  * for any other state prev_kprobe.kp will be NULL.
229  */
230 static void pop_kprobe(struct kprobe_ctlblk *kcb)
231 {
232 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
233 	kcb->kprobe_status = kcb->prev_kprobe.status;
234 }
235 NOKPROBE_SYMBOL(pop_kprobe);
236 
237 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
238 {
239 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
240 	ri->fp = NULL;
241 
242 	/* Replace the return addr with trampoline addr */
243 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
244 }
245 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
246 
247 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
248 {
249 	switch (kcb->kprobe_status) {
250 	case KPROBE_HIT_SSDONE:
251 	case KPROBE_HIT_ACTIVE:
252 		kprobes_inc_nmissed_count(p);
253 		break;
254 	case KPROBE_HIT_SS:
255 	case KPROBE_REENTER:
256 	default:
257 		/*
258 		 * A kprobe on the code path to single step an instruction
259 		 * is a BUG. The code path resides in the .kprobes.text
260 		 * section and is executed with interrupts disabled.
261 		 */
262 		pr_err("Invalid kprobe detected.\n");
263 		dump_kprobe(p);
264 		BUG();
265 	}
266 }
267 NOKPROBE_SYMBOL(kprobe_reenter_check);
268 
269 static int kprobe_handler(struct pt_regs *regs)
270 {
271 	struct kprobe_ctlblk *kcb;
272 	struct kprobe *p;
273 
274 	/*
275 	 * We want to disable preemption for the entire duration of kprobe
276 	 * processing. That includes the calls to the pre/post handlers
277 	 * and single stepping the kprobe instruction.
278 	 */
279 	preempt_disable();
280 	kcb = get_kprobe_ctlblk();
281 	p = get_kprobe((void *)(regs->psw.addr - 2));
282 
283 	if (p) {
284 		if (kprobe_running()) {
285 			/*
286 			 * We have hit a kprobe while another is still
287 			 * active. This can happen in the pre and post
288 			 * handler. Single step the instruction of the
289 			 * new probe but do not call any handler function
290 			 * of this secondary kprobe.
291 			 * push_kprobe and pop_kprobe saves and restores
292 			 * the currently active kprobe.
293 			 */
294 			kprobe_reenter_check(kcb, p);
295 			push_kprobe(kcb, p);
296 			kcb->kprobe_status = KPROBE_REENTER;
297 		} else {
298 			/*
299 			 * If we have no pre-handler or it returned 0, we
300 			 * continue with single stepping. If we have a
301 			 * pre-handler and it returned non-zero, it prepped
302 			 * for changing execution path, so get out doing
303 			 * nothing more here.
304 			 */
305 			push_kprobe(kcb, p);
306 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
307 			if (p->pre_handler && p->pre_handler(p, regs)) {
308 				pop_kprobe(kcb);
309 				preempt_enable_no_resched();
310 				return 1;
311 			}
312 			kcb->kprobe_status = KPROBE_HIT_SS;
313 		}
314 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
315 		return 1;
316 	} /* else:
317 	   * No kprobe at this address and no active kprobe. The trap has
318 	   * not been caused by a kprobe breakpoint. The race of breakpoint
319 	   * vs. kprobe remove does not exist because on s390 as we use
320 	   * stop_machine to arm/disarm the breakpoints.
321 	   */
322 	preempt_enable_no_resched();
323 	return 0;
324 }
325 NOKPROBE_SYMBOL(kprobe_handler);
326 
327 /*
328  * Function return probe trampoline:
329  *	- init_kprobes() establishes a probepoint here
330  *	- When the probed function returns, this probe
331  *		causes the handlers to fire
332  */
333 static void __used kretprobe_trampoline_holder(void)
334 {
335 	asm volatile(".global kretprobe_trampoline\n"
336 		     "kretprobe_trampoline: bcr 0,0\n");
337 }
338 
339 /*
340  * Called when the probe at kretprobe trampoline is hit
341  */
342 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
343 {
344 	regs->psw.addr = __kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
345 	/*
346 	 * By returning a non-zero value, we are telling
347 	 * kprobe_handler() that we don't want the post_handler
348 	 * to run (and have re-enabled preemption)
349 	 */
350 	return 1;
351 }
352 NOKPROBE_SYMBOL(trampoline_probe_handler);
353 
354 /*
355  * Called after single-stepping.  p->addr is the address of the
356  * instruction whose first byte has been replaced by the "breakpoint"
357  * instruction.  To avoid the SMP problems that can occur when we
358  * temporarily put back the original opcode to single-step, we
359  * single-stepped a copy of the instruction.  The address of this
360  * copy is p->ainsn.insn.
361  */
362 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
363 {
364 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
365 	unsigned long ip = regs->psw.addr;
366 	int fixup = probe_get_fixup_type(p->ainsn.insn);
367 
368 	if (fixup & FIXUP_PSW_NORMAL)
369 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
370 
371 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
372 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
373 		if (ip - (unsigned long) p->ainsn.insn == ilen)
374 			ip = (unsigned long) p->addr + ilen;
375 	}
376 
377 	if (fixup & FIXUP_RETURN_REGISTER) {
378 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
379 		regs->gprs[reg] += (unsigned long) p->addr -
380 				   (unsigned long) p->ainsn.insn;
381 	}
382 
383 	disable_singlestep(kcb, regs, ip);
384 }
385 NOKPROBE_SYMBOL(resume_execution);
386 
387 static int post_kprobe_handler(struct pt_regs *regs)
388 {
389 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
390 	struct kprobe *p = kprobe_running();
391 
392 	if (!p)
393 		return 0;
394 
395 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
396 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
397 		p->post_handler(p, regs, 0);
398 	}
399 
400 	resume_execution(p, regs);
401 	pop_kprobe(kcb);
402 	preempt_enable_no_resched();
403 
404 	/*
405 	 * if somebody else is singlestepping across a probe point, psw mask
406 	 * will have PER set, in which case, continue the remaining processing
407 	 * of do_single_step, as if this is not a probe hit.
408 	 */
409 	if (regs->psw.mask & PSW_MASK_PER)
410 		return 0;
411 
412 	return 1;
413 }
414 NOKPROBE_SYMBOL(post_kprobe_handler);
415 
416 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
417 {
418 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
419 	struct kprobe *p = kprobe_running();
420 	const struct exception_table_entry *entry;
421 
422 	switch(kcb->kprobe_status) {
423 	case KPROBE_HIT_SS:
424 	case KPROBE_REENTER:
425 		/*
426 		 * We are here because the instruction being single
427 		 * stepped caused a page fault. We reset the current
428 		 * kprobe and the nip points back to the probe address
429 		 * and allow the page fault handler to continue as a
430 		 * normal page fault.
431 		 */
432 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
433 		pop_kprobe(kcb);
434 		preempt_enable_no_resched();
435 		break;
436 	case KPROBE_HIT_ACTIVE:
437 	case KPROBE_HIT_SSDONE:
438 		/*
439 		 * In case the user-specified fault handler returned
440 		 * zero, try to fix up.
441 		 */
442 		entry = s390_search_extables(regs->psw.addr);
443 		if (entry && ex_handle(entry, regs))
444 			return 1;
445 
446 		/*
447 		 * fixup_exception() could not handle it,
448 		 * Let do_page_fault() fix it.
449 		 */
450 		break;
451 	default:
452 		break;
453 	}
454 	return 0;
455 }
456 NOKPROBE_SYMBOL(kprobe_trap_handler);
457 
458 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
459 {
460 	int ret;
461 
462 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
463 		local_irq_disable();
464 	ret = kprobe_trap_handler(regs, trapnr);
465 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
466 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
467 	return ret;
468 }
469 NOKPROBE_SYMBOL(kprobe_fault_handler);
470 
471 /*
472  * Wrapper routine to for handling exceptions.
473  */
474 int kprobe_exceptions_notify(struct notifier_block *self,
475 			     unsigned long val, void *data)
476 {
477 	struct die_args *args = (struct die_args *) data;
478 	struct pt_regs *regs = args->regs;
479 	int ret = NOTIFY_DONE;
480 
481 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
482 		local_irq_disable();
483 
484 	switch (val) {
485 	case DIE_BPT:
486 		if (kprobe_handler(regs))
487 			ret = NOTIFY_STOP;
488 		break;
489 	case DIE_SSTEP:
490 		if (post_kprobe_handler(regs))
491 			ret = NOTIFY_STOP;
492 		break;
493 	case DIE_TRAP:
494 		if (!preemptible() && kprobe_running() &&
495 		    kprobe_trap_handler(regs, args->trapnr))
496 			ret = NOTIFY_STOP;
497 		break;
498 	default:
499 		break;
500 	}
501 
502 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
503 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
504 
505 	return ret;
506 }
507 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
508 
509 static struct kprobe trampoline = {
510 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
511 	.pre_handler = trampoline_probe_handler
512 };
513 
514 int __init arch_init_kprobes(void)
515 {
516 	return register_kprobe(&trampoline);
517 }
518 
519 int arch_trampoline_kprobe(struct kprobe *p)
520 {
521 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
522 }
523 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
524