xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 29c37341)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright IBM Corp. 2002, 2006
6  *
7  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8  */
9 
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24 
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27 
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29 
30 DEFINE_INSN_CACHE_OPS(s390_insn);
31 
32 static int insn_page_in_use;
33 static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34 
35 static void *alloc_s390_insn_page(void)
36 {
37 	if (xchg(&insn_page_in_use, 1) == 1)
38 		return NULL;
39 	set_memory_x((unsigned long) &insn_page, 1);
40 	return &insn_page;
41 }
42 
43 static void free_s390_insn_page(void *page)
44 {
45 	set_memory_nx((unsigned long) page, 1);
46 	xchg(&insn_page_in_use, 0);
47 }
48 
49 struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 	.mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 	.alloc = alloc_s390_insn_page,
52 	.free = free_s390_insn_page,
53 	.pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 	.insn_size = MAX_INSN_SIZE,
55 };
56 
57 static void copy_instruction(struct kprobe *p)
58 {
59 	s64 disp, new_disp;
60 	u64 addr, new_addr;
61 
62 	memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
63 	p->opcode = p->ainsn.insn[0];
64 	if (!probe_is_insn_relative_long(p->ainsn.insn))
65 		return;
66 	/*
67 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
68 	 * RI2 displacement field. We have already made sure that the insn
69 	 * slot for the patched instruction is within the same 2GB area
70 	 * as the original instruction (either kernel image or module area).
71 	 * Therefore the new displacement will always fit.
72 	 */
73 	disp = *(s32 *)&p->ainsn.insn[1];
74 	addr = (u64)(unsigned long)p->addr;
75 	new_addr = (u64)(unsigned long)p->ainsn.insn;
76 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
77 	*(s32 *)&p->ainsn.insn[1] = new_disp;
78 }
79 NOKPROBE_SYMBOL(copy_instruction);
80 
81 static inline int is_kernel_addr(void *addr)
82 {
83 	return addr < (void *)_end;
84 }
85 
86 static int s390_get_insn_slot(struct kprobe *p)
87 {
88 	/*
89 	 * Get an insn slot that is within the same 2GB area like the original
90 	 * instruction. That way instructions with a 32bit signed displacement
91 	 * field can be patched and executed within the insn slot.
92 	 */
93 	p->ainsn.insn = NULL;
94 	if (is_kernel_addr(p->addr))
95 		p->ainsn.insn = get_s390_insn_slot();
96 	else if (is_module_addr(p->addr))
97 		p->ainsn.insn = get_insn_slot();
98 	return p->ainsn.insn ? 0 : -ENOMEM;
99 }
100 NOKPROBE_SYMBOL(s390_get_insn_slot);
101 
102 static void s390_free_insn_slot(struct kprobe *p)
103 {
104 	if (!p->ainsn.insn)
105 		return;
106 	if (is_kernel_addr(p->addr))
107 		free_s390_insn_slot(p->ainsn.insn, 0);
108 	else
109 		free_insn_slot(p->ainsn.insn, 0);
110 	p->ainsn.insn = NULL;
111 }
112 NOKPROBE_SYMBOL(s390_free_insn_slot);
113 
114 int arch_prepare_kprobe(struct kprobe *p)
115 {
116 	if ((unsigned long) p->addr & 0x01)
117 		return -EINVAL;
118 	/* Make sure the probe isn't going on a difficult instruction */
119 	if (probe_is_prohibited_opcode(p->addr))
120 		return -EINVAL;
121 	if (s390_get_insn_slot(p))
122 		return -ENOMEM;
123 	copy_instruction(p);
124 	return 0;
125 }
126 NOKPROBE_SYMBOL(arch_prepare_kprobe);
127 
128 struct swap_insn_args {
129 	struct kprobe *p;
130 	unsigned int arm_kprobe : 1;
131 };
132 
133 static int swap_instruction(void *data)
134 {
135 	struct swap_insn_args *args = data;
136 	struct kprobe *p = args->p;
137 	u16 opc;
138 
139 	opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
140 	s390_kernel_write(p->addr, &opc, sizeof(opc));
141 	return 0;
142 }
143 NOKPROBE_SYMBOL(swap_instruction);
144 
145 void arch_arm_kprobe(struct kprobe *p)
146 {
147 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
148 
149 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
150 }
151 NOKPROBE_SYMBOL(arch_arm_kprobe);
152 
153 void arch_disarm_kprobe(struct kprobe *p)
154 {
155 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
156 
157 	stop_machine_cpuslocked(swap_instruction, &args, NULL);
158 }
159 NOKPROBE_SYMBOL(arch_disarm_kprobe);
160 
161 void arch_remove_kprobe(struct kprobe *p)
162 {
163 	s390_free_insn_slot(p);
164 }
165 NOKPROBE_SYMBOL(arch_remove_kprobe);
166 
167 static void enable_singlestep(struct kprobe_ctlblk *kcb,
168 			      struct pt_regs *regs,
169 			      unsigned long ip)
170 {
171 	struct per_regs per_kprobe;
172 
173 	/* Set up the PER control registers %cr9-%cr11 */
174 	per_kprobe.control = PER_EVENT_IFETCH;
175 	per_kprobe.start = ip;
176 	per_kprobe.end = ip;
177 
178 	/* Save control regs and psw mask */
179 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
180 	kcb->kprobe_saved_imask = regs->psw.mask &
181 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
182 
183 	/* Set PER control regs, turns on single step for the given address */
184 	__ctl_load(per_kprobe, 9, 11);
185 	regs->psw.mask |= PSW_MASK_PER;
186 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
187 	regs->psw.addr = ip;
188 }
189 NOKPROBE_SYMBOL(enable_singlestep);
190 
191 static void disable_singlestep(struct kprobe_ctlblk *kcb,
192 			       struct pt_regs *regs,
193 			       unsigned long ip)
194 {
195 	/* Restore control regs and psw mask, set new psw address */
196 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
197 	regs->psw.mask &= ~PSW_MASK_PER;
198 	regs->psw.mask |= kcb->kprobe_saved_imask;
199 	regs->psw.addr = ip;
200 }
201 NOKPROBE_SYMBOL(disable_singlestep);
202 
203 /*
204  * Activate a kprobe by storing its pointer to current_kprobe. The
205  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
206  * two kprobes can be active, see KPROBE_REENTER.
207  */
208 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
209 {
210 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
211 	kcb->prev_kprobe.status = kcb->kprobe_status;
212 	__this_cpu_write(current_kprobe, p);
213 }
214 NOKPROBE_SYMBOL(push_kprobe);
215 
216 /*
217  * Deactivate a kprobe by backing up to the previous state. If the
218  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
219  * for any other state prev_kprobe.kp will be NULL.
220  */
221 static void pop_kprobe(struct kprobe_ctlblk *kcb)
222 {
223 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
224 	kcb->kprobe_status = kcb->prev_kprobe.status;
225 }
226 NOKPROBE_SYMBOL(pop_kprobe);
227 
228 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
229 {
230 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
231 
232 	/* Replace the return addr with trampoline addr */
233 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
234 }
235 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
236 
237 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
238 {
239 	switch (kcb->kprobe_status) {
240 	case KPROBE_HIT_SSDONE:
241 	case KPROBE_HIT_ACTIVE:
242 		kprobes_inc_nmissed_count(p);
243 		break;
244 	case KPROBE_HIT_SS:
245 	case KPROBE_REENTER:
246 	default:
247 		/*
248 		 * A kprobe on the code path to single step an instruction
249 		 * is a BUG. The code path resides in the .kprobes.text
250 		 * section and is executed with interrupts disabled.
251 		 */
252 		pr_err("Invalid kprobe detected.\n");
253 		dump_kprobe(p);
254 		BUG();
255 	}
256 }
257 NOKPROBE_SYMBOL(kprobe_reenter_check);
258 
259 static int kprobe_handler(struct pt_regs *regs)
260 {
261 	struct kprobe_ctlblk *kcb;
262 	struct kprobe *p;
263 
264 	/*
265 	 * We want to disable preemption for the entire duration of kprobe
266 	 * processing. That includes the calls to the pre/post handlers
267 	 * and single stepping the kprobe instruction.
268 	 */
269 	preempt_disable();
270 	kcb = get_kprobe_ctlblk();
271 	p = get_kprobe((void *)(regs->psw.addr - 2));
272 
273 	if (p) {
274 		if (kprobe_running()) {
275 			/*
276 			 * We have hit a kprobe while another is still
277 			 * active. This can happen in the pre and post
278 			 * handler. Single step the instruction of the
279 			 * new probe but do not call any handler function
280 			 * of this secondary kprobe.
281 			 * push_kprobe and pop_kprobe saves and restores
282 			 * the currently active kprobe.
283 			 */
284 			kprobe_reenter_check(kcb, p);
285 			push_kprobe(kcb, p);
286 			kcb->kprobe_status = KPROBE_REENTER;
287 		} else {
288 			/*
289 			 * If we have no pre-handler or it returned 0, we
290 			 * continue with single stepping. If we have a
291 			 * pre-handler and it returned non-zero, it prepped
292 			 * for changing execution path, so get out doing
293 			 * nothing more here.
294 			 */
295 			push_kprobe(kcb, p);
296 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
297 			if (p->pre_handler && p->pre_handler(p, regs)) {
298 				pop_kprobe(kcb);
299 				preempt_enable_no_resched();
300 				return 1;
301 			}
302 			kcb->kprobe_status = KPROBE_HIT_SS;
303 		}
304 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
305 		return 1;
306 	} /* else:
307 	   * No kprobe at this address and no active kprobe. The trap has
308 	   * not been caused by a kprobe breakpoint. The race of breakpoint
309 	   * vs. kprobe remove does not exist because on s390 as we use
310 	   * stop_machine to arm/disarm the breakpoints.
311 	   */
312 	preempt_enable_no_resched();
313 	return 0;
314 }
315 NOKPROBE_SYMBOL(kprobe_handler);
316 
317 /*
318  * Function return probe trampoline:
319  *	- init_kprobes() establishes a probepoint here
320  *	- When the probed function returns, this probe
321  *		causes the handlers to fire
322  */
323 static void __used kretprobe_trampoline_holder(void)
324 {
325 	asm volatile(".global kretprobe_trampoline\n"
326 		     "kretprobe_trampoline: bcr 0,0\n");
327 }
328 
329 /*
330  * Called when the probe at kretprobe trampoline is hit
331  */
332 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
333 {
334 	struct kretprobe_instance *ri;
335 	struct hlist_head *head, empty_rp;
336 	struct hlist_node *tmp;
337 	unsigned long flags, orig_ret_address;
338 	unsigned long trampoline_address;
339 	kprobe_opcode_t *correct_ret_addr;
340 
341 	INIT_HLIST_HEAD(&empty_rp);
342 	kretprobe_hash_lock(current, &head, &flags);
343 
344 	/*
345 	 * It is possible to have multiple instances associated with a given
346 	 * task either because an multiple functions in the call path
347 	 * have a return probe installed on them, and/or more than one return
348 	 * return probe was registered for a target function.
349 	 *
350 	 * We can handle this because:
351 	 *     - instances are always inserted at the head of the list
352 	 *     - when multiple return probes are registered for the same
353 	 *	 function, the first instance's ret_addr will point to the
354 	 *	 real return address, and all the rest will point to
355 	 *	 kretprobe_trampoline
356 	 */
357 	ri = NULL;
358 	orig_ret_address = 0;
359 	correct_ret_addr = NULL;
360 	trampoline_address = (unsigned long) &kretprobe_trampoline;
361 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
362 		if (ri->task != current)
363 			/* another task is sharing our hash bucket */
364 			continue;
365 
366 		orig_ret_address = (unsigned long) ri->ret_addr;
367 
368 		if (orig_ret_address != trampoline_address)
369 			/*
370 			 * This is the real return address. Any other
371 			 * instances associated with this task are for
372 			 * other calls deeper on the call stack
373 			 */
374 			break;
375 	}
376 
377 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
378 
379 	correct_ret_addr = ri->ret_addr;
380 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
381 		if (ri->task != current)
382 			/* another task is sharing our hash bucket */
383 			continue;
384 
385 		orig_ret_address = (unsigned long) ri->ret_addr;
386 
387 		if (ri->rp && ri->rp->handler) {
388 			ri->ret_addr = correct_ret_addr;
389 			ri->rp->handler(ri, regs);
390 		}
391 
392 		recycle_rp_inst(ri, &empty_rp);
393 
394 		if (orig_ret_address != trampoline_address)
395 			/*
396 			 * This is the real return address. Any other
397 			 * instances associated with this task are for
398 			 * other calls deeper on the call stack
399 			 */
400 			break;
401 	}
402 
403 	regs->psw.addr = orig_ret_address;
404 
405 	kretprobe_hash_unlock(current, &flags);
406 
407 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
408 		hlist_del(&ri->hlist);
409 		kfree(ri);
410 	}
411 	/*
412 	 * By returning a non-zero value, we are telling
413 	 * kprobe_handler() that we don't want the post_handler
414 	 * to run (and have re-enabled preemption)
415 	 */
416 	return 1;
417 }
418 NOKPROBE_SYMBOL(trampoline_probe_handler);
419 
420 /*
421  * Called after single-stepping.  p->addr is the address of the
422  * instruction whose first byte has been replaced by the "breakpoint"
423  * instruction.  To avoid the SMP problems that can occur when we
424  * temporarily put back the original opcode to single-step, we
425  * single-stepped a copy of the instruction.  The address of this
426  * copy is p->ainsn.insn.
427  */
428 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
429 {
430 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431 	unsigned long ip = regs->psw.addr;
432 	int fixup = probe_get_fixup_type(p->ainsn.insn);
433 
434 	if (fixup & FIXUP_PSW_NORMAL)
435 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
436 
437 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
438 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
439 		if (ip - (unsigned long) p->ainsn.insn == ilen)
440 			ip = (unsigned long) p->addr + ilen;
441 	}
442 
443 	if (fixup & FIXUP_RETURN_REGISTER) {
444 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
445 		regs->gprs[reg] += (unsigned long) p->addr -
446 				   (unsigned long) p->ainsn.insn;
447 	}
448 
449 	disable_singlestep(kcb, regs, ip);
450 }
451 NOKPROBE_SYMBOL(resume_execution);
452 
453 static int post_kprobe_handler(struct pt_regs *regs)
454 {
455 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456 	struct kprobe *p = kprobe_running();
457 
458 	if (!p)
459 		return 0;
460 
461 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
462 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
463 		p->post_handler(p, regs, 0);
464 	}
465 
466 	resume_execution(p, regs);
467 	pop_kprobe(kcb);
468 	preempt_enable_no_resched();
469 
470 	/*
471 	 * if somebody else is singlestepping across a probe point, psw mask
472 	 * will have PER set, in which case, continue the remaining processing
473 	 * of do_single_step, as if this is not a probe hit.
474 	 */
475 	if (regs->psw.mask & PSW_MASK_PER)
476 		return 0;
477 
478 	return 1;
479 }
480 NOKPROBE_SYMBOL(post_kprobe_handler);
481 
482 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
483 {
484 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485 	struct kprobe *p = kprobe_running();
486 	const struct exception_table_entry *entry;
487 
488 	switch(kcb->kprobe_status) {
489 	case KPROBE_HIT_SS:
490 	case KPROBE_REENTER:
491 		/*
492 		 * We are here because the instruction being single
493 		 * stepped caused a page fault. We reset the current
494 		 * kprobe and the nip points back to the probe address
495 		 * and allow the page fault handler to continue as a
496 		 * normal page fault.
497 		 */
498 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
499 		pop_kprobe(kcb);
500 		preempt_enable_no_resched();
501 		break;
502 	case KPROBE_HIT_ACTIVE:
503 	case KPROBE_HIT_SSDONE:
504 		/*
505 		 * We increment the nmissed count for accounting,
506 		 * we can also use npre/npostfault count for accounting
507 		 * these specific fault cases.
508 		 */
509 		kprobes_inc_nmissed_count(p);
510 
511 		/*
512 		 * We come here because instructions in the pre/post
513 		 * handler caused the page_fault, this could happen
514 		 * if handler tries to access user space by
515 		 * copy_from_user(), get_user() etc. Let the
516 		 * user-specified handler try to fix it first.
517 		 */
518 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
519 			return 1;
520 
521 		/*
522 		 * In case the user-specified fault handler returned
523 		 * zero, try to fix up.
524 		 */
525 		entry = s390_search_extables(regs->psw.addr);
526 		if (entry && ex_handle(entry, regs))
527 			return 1;
528 
529 		/*
530 		 * fixup_exception() could not handle it,
531 		 * Let do_page_fault() fix it.
532 		 */
533 		break;
534 	default:
535 		break;
536 	}
537 	return 0;
538 }
539 NOKPROBE_SYMBOL(kprobe_trap_handler);
540 
541 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
542 {
543 	int ret;
544 
545 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
546 		local_irq_disable();
547 	ret = kprobe_trap_handler(regs, trapnr);
548 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
549 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
550 	return ret;
551 }
552 NOKPROBE_SYMBOL(kprobe_fault_handler);
553 
554 /*
555  * Wrapper routine to for handling exceptions.
556  */
557 int kprobe_exceptions_notify(struct notifier_block *self,
558 			     unsigned long val, void *data)
559 {
560 	struct die_args *args = (struct die_args *) data;
561 	struct pt_regs *regs = args->regs;
562 	int ret = NOTIFY_DONE;
563 
564 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
565 		local_irq_disable();
566 
567 	switch (val) {
568 	case DIE_BPT:
569 		if (kprobe_handler(regs))
570 			ret = NOTIFY_STOP;
571 		break;
572 	case DIE_SSTEP:
573 		if (post_kprobe_handler(regs))
574 			ret = NOTIFY_STOP;
575 		break;
576 	case DIE_TRAP:
577 		if (!preemptible() && kprobe_running() &&
578 		    kprobe_trap_handler(regs, args->trapnr))
579 			ret = NOTIFY_STOP;
580 		break;
581 	default:
582 		break;
583 	}
584 
585 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
586 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
587 
588 	return ret;
589 }
590 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
591 
592 static struct kprobe trampoline = {
593 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
594 	.pre_handler = trampoline_probe_handler
595 };
596 
597 int __init arch_init_kprobes(void)
598 {
599 	return register_kprobe(&trampoline);
600 }
601 
602 int arch_trampoline_kprobe(struct kprobe *p)
603 {
604 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
605 }
606 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
607