xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 23c2b932)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <linux/ftrace.h>
33 #include <asm/cacheflush.h>
34 #include <asm/sections.h>
35 #include <asm/dis.h>
36 
37 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
38 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
39 
40 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
41 
42 DEFINE_INSN_CACHE_OPS(dmainsn);
43 
44 static void *alloc_dmainsn_page(void)
45 {
46 	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
47 }
48 
49 static void free_dmainsn_page(void *page)
50 {
51 	free_page((unsigned long)page);
52 }
53 
54 struct kprobe_insn_cache kprobe_dmainsn_slots = {
55 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
56 	.alloc = alloc_dmainsn_page,
57 	.free = free_dmainsn_page,
58 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
59 	.insn_size = MAX_INSN_SIZE,
60 };
61 
62 static void copy_instruction(struct kprobe *p)
63 {
64 	unsigned long ip = (unsigned long) p->addr;
65 	s64 disp, new_disp;
66 	u64 addr, new_addr;
67 
68 	if (ftrace_location(ip) == ip) {
69 		/*
70 		 * If kprobes patches the instruction that is morphed by
71 		 * ftrace make sure that kprobes always sees the branch
72 		 * "jg .+24" that skips the mcount block or the "brcl 0,0"
73 		 * in case of hotpatch.
74 		 */
75 		ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
76 		p->ainsn.is_ftrace_insn = 1;
77 	} else
78 		memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
79 	p->opcode = p->ainsn.insn[0];
80 	if (!probe_is_insn_relative_long(p->ainsn.insn))
81 		return;
82 	/*
83 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
84 	 * RI2 displacement field. We have already made sure that the insn
85 	 * slot for the patched instruction is within the same 2GB area
86 	 * as the original instruction (either kernel image or module area).
87 	 * Therefore the new displacement will always fit.
88 	 */
89 	disp = *(s32 *)&p->ainsn.insn[1];
90 	addr = (u64)(unsigned long)p->addr;
91 	new_addr = (u64)(unsigned long)p->ainsn.insn;
92 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
93 	*(s32 *)&p->ainsn.insn[1] = new_disp;
94 }
95 NOKPROBE_SYMBOL(copy_instruction);
96 
97 static inline int is_kernel_addr(void *addr)
98 {
99 	return addr < (void *)_end;
100 }
101 
102 static int s390_get_insn_slot(struct kprobe *p)
103 {
104 	/*
105 	 * Get an insn slot that is within the same 2GB area like the original
106 	 * instruction. That way instructions with a 32bit signed displacement
107 	 * field can be patched and executed within the insn slot.
108 	 */
109 	p->ainsn.insn = NULL;
110 	if (is_kernel_addr(p->addr))
111 		p->ainsn.insn = get_dmainsn_slot();
112 	else if (is_module_addr(p->addr))
113 		p->ainsn.insn = get_insn_slot();
114 	return p->ainsn.insn ? 0 : -ENOMEM;
115 }
116 NOKPROBE_SYMBOL(s390_get_insn_slot);
117 
118 static void s390_free_insn_slot(struct kprobe *p)
119 {
120 	if (!p->ainsn.insn)
121 		return;
122 	if (is_kernel_addr(p->addr))
123 		free_dmainsn_slot(p->ainsn.insn, 0);
124 	else
125 		free_insn_slot(p->ainsn.insn, 0);
126 	p->ainsn.insn = NULL;
127 }
128 NOKPROBE_SYMBOL(s390_free_insn_slot);
129 
130 int arch_prepare_kprobe(struct kprobe *p)
131 {
132 	if ((unsigned long) p->addr & 0x01)
133 		return -EINVAL;
134 	/* Make sure the probe isn't going on a difficult instruction */
135 	if (probe_is_prohibited_opcode(p->addr))
136 		return -EINVAL;
137 	if (s390_get_insn_slot(p))
138 		return -ENOMEM;
139 	copy_instruction(p);
140 	return 0;
141 }
142 NOKPROBE_SYMBOL(arch_prepare_kprobe);
143 
144 int arch_check_ftrace_location(struct kprobe *p)
145 {
146 	return 0;
147 }
148 
149 struct swap_insn_args {
150 	struct kprobe *p;
151 	unsigned int arm_kprobe : 1;
152 };
153 
154 static int swap_instruction(void *data)
155 {
156 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
157 	unsigned long status = kcb->kprobe_status;
158 	struct swap_insn_args *args = data;
159 	struct ftrace_insn new_insn, *insn;
160 	struct kprobe *p = args->p;
161 	size_t len;
162 
163 	new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
164 	len = sizeof(new_insn.opc);
165 	if (!p->ainsn.is_ftrace_insn)
166 		goto skip_ftrace;
167 	len = sizeof(new_insn);
168 	insn = (struct ftrace_insn *) p->addr;
169 	if (args->arm_kprobe) {
170 		if (is_ftrace_nop(insn))
171 			new_insn.disp = KPROBE_ON_FTRACE_NOP;
172 		else
173 			new_insn.disp = KPROBE_ON_FTRACE_CALL;
174 	} else {
175 		ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
176 		if (insn->disp == KPROBE_ON_FTRACE_NOP)
177 			ftrace_generate_nop_insn(&new_insn);
178 	}
179 skip_ftrace:
180 	kcb->kprobe_status = KPROBE_SWAP_INST;
181 	s390_kernel_write(p->addr, &new_insn, len);
182 	kcb->kprobe_status = status;
183 	return 0;
184 }
185 NOKPROBE_SYMBOL(swap_instruction);
186 
187 void arch_arm_kprobe(struct kprobe *p)
188 {
189 	struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
190 
191 	stop_machine(swap_instruction, &args, NULL);
192 }
193 NOKPROBE_SYMBOL(arch_arm_kprobe);
194 
195 void arch_disarm_kprobe(struct kprobe *p)
196 {
197 	struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
198 
199 	stop_machine(swap_instruction, &args, NULL);
200 }
201 NOKPROBE_SYMBOL(arch_disarm_kprobe);
202 
203 void arch_remove_kprobe(struct kprobe *p)
204 {
205 	s390_free_insn_slot(p);
206 }
207 NOKPROBE_SYMBOL(arch_remove_kprobe);
208 
209 static void enable_singlestep(struct kprobe_ctlblk *kcb,
210 			      struct pt_regs *regs,
211 			      unsigned long ip)
212 {
213 	struct per_regs per_kprobe;
214 
215 	/* Set up the PER control registers %cr9-%cr11 */
216 	per_kprobe.control = PER_EVENT_IFETCH;
217 	per_kprobe.start = ip;
218 	per_kprobe.end = ip;
219 
220 	/* Save control regs and psw mask */
221 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
222 	kcb->kprobe_saved_imask = regs->psw.mask &
223 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
224 
225 	/* Set PER control regs, turns on single step for the given address */
226 	__ctl_load(per_kprobe, 9, 11);
227 	regs->psw.mask |= PSW_MASK_PER;
228 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
229 	regs->psw.addr = ip;
230 }
231 NOKPROBE_SYMBOL(enable_singlestep);
232 
233 static void disable_singlestep(struct kprobe_ctlblk *kcb,
234 			       struct pt_regs *regs,
235 			       unsigned long ip)
236 {
237 	/* Restore control regs and psw mask, set new psw address */
238 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
239 	regs->psw.mask &= ~PSW_MASK_PER;
240 	regs->psw.mask |= kcb->kprobe_saved_imask;
241 	regs->psw.addr = ip;
242 }
243 NOKPROBE_SYMBOL(disable_singlestep);
244 
245 /*
246  * Activate a kprobe by storing its pointer to current_kprobe. The
247  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
248  * two kprobes can be active, see KPROBE_REENTER.
249  */
250 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
251 {
252 	kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
253 	kcb->prev_kprobe.status = kcb->kprobe_status;
254 	__this_cpu_write(current_kprobe, p);
255 }
256 NOKPROBE_SYMBOL(push_kprobe);
257 
258 /*
259  * Deactivate a kprobe by backing up to the previous state. If the
260  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
261  * for any other state prev_kprobe.kp will be NULL.
262  */
263 static void pop_kprobe(struct kprobe_ctlblk *kcb)
264 {
265 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
266 	kcb->kprobe_status = kcb->prev_kprobe.status;
267 }
268 NOKPROBE_SYMBOL(pop_kprobe);
269 
270 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
271 {
272 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
273 
274 	/* Replace the return addr with trampoline addr */
275 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
276 }
277 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
278 
279 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
280 {
281 	switch (kcb->kprobe_status) {
282 	case KPROBE_HIT_SSDONE:
283 	case KPROBE_HIT_ACTIVE:
284 		kprobes_inc_nmissed_count(p);
285 		break;
286 	case KPROBE_HIT_SS:
287 	case KPROBE_REENTER:
288 	default:
289 		/*
290 		 * A kprobe on the code path to single step an instruction
291 		 * is a BUG. The code path resides in the .kprobes.text
292 		 * section and is executed with interrupts disabled.
293 		 */
294 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
295 		dump_kprobe(p);
296 		BUG();
297 	}
298 }
299 NOKPROBE_SYMBOL(kprobe_reenter_check);
300 
301 static int kprobe_handler(struct pt_regs *regs)
302 {
303 	struct kprobe_ctlblk *kcb;
304 	struct kprobe *p;
305 
306 	/*
307 	 * We want to disable preemption for the entire duration of kprobe
308 	 * processing. That includes the calls to the pre/post handlers
309 	 * and single stepping the kprobe instruction.
310 	 */
311 	preempt_disable();
312 	kcb = get_kprobe_ctlblk();
313 	p = get_kprobe((void *)(regs->psw.addr - 2));
314 
315 	if (p) {
316 		if (kprobe_running()) {
317 			/*
318 			 * We have hit a kprobe while another is still
319 			 * active. This can happen in the pre and post
320 			 * handler. Single step the instruction of the
321 			 * new probe but do not call any handler function
322 			 * of this secondary kprobe.
323 			 * push_kprobe and pop_kprobe saves and restores
324 			 * the currently active kprobe.
325 			 */
326 			kprobe_reenter_check(kcb, p);
327 			push_kprobe(kcb, p);
328 			kcb->kprobe_status = KPROBE_REENTER;
329 		} else {
330 			/*
331 			 * If we have no pre-handler or it returned 0, we
332 			 * continue with single stepping. If we have a
333 			 * pre-handler and it returned non-zero, it prepped
334 			 * for calling the break_handler below on re-entry
335 			 * for jprobe processing, so get out doing nothing
336 			 * more here.
337 			 */
338 			push_kprobe(kcb, p);
339 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
340 			if (p->pre_handler && p->pre_handler(p, regs))
341 				return 1;
342 			kcb->kprobe_status = KPROBE_HIT_SS;
343 		}
344 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
345 		return 1;
346 	} else if (kprobe_running()) {
347 		p = __this_cpu_read(current_kprobe);
348 		if (p->break_handler && p->break_handler(p, regs)) {
349 			/*
350 			 * Continuation after the jprobe completed and
351 			 * caused the jprobe_return trap. The jprobe
352 			 * break_handler "returns" to the original
353 			 * function that still has the kprobe breakpoint
354 			 * installed. We continue with single stepping.
355 			 */
356 			kcb->kprobe_status = KPROBE_HIT_SS;
357 			enable_singlestep(kcb, regs,
358 					  (unsigned long) p->ainsn.insn);
359 			return 1;
360 		} /* else:
361 		   * No kprobe at this address and the current kprobe
362 		   * has no break handler (no jprobe!). The kernel just
363 		   * exploded, let the standard trap handler pick up the
364 		   * pieces.
365 		   */
366 	} /* else:
367 	   * No kprobe at this address and no active kprobe. The trap has
368 	   * not been caused by a kprobe breakpoint. The race of breakpoint
369 	   * vs. kprobe remove does not exist because on s390 as we use
370 	   * stop_machine to arm/disarm the breakpoints.
371 	   */
372 	preempt_enable_no_resched();
373 	return 0;
374 }
375 NOKPROBE_SYMBOL(kprobe_handler);
376 
377 /*
378  * Function return probe trampoline:
379  *	- init_kprobes() establishes a probepoint here
380  *	- When the probed function returns, this probe
381  *		causes the handlers to fire
382  */
383 static void __used kretprobe_trampoline_holder(void)
384 {
385 	asm volatile(".global kretprobe_trampoline\n"
386 		     "kretprobe_trampoline: bcr 0,0\n");
387 }
388 
389 /*
390  * Called when the probe at kretprobe trampoline is hit
391  */
392 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
393 {
394 	struct kretprobe_instance *ri;
395 	struct hlist_head *head, empty_rp;
396 	struct hlist_node *tmp;
397 	unsigned long flags, orig_ret_address;
398 	unsigned long trampoline_address;
399 	kprobe_opcode_t *correct_ret_addr;
400 
401 	INIT_HLIST_HEAD(&empty_rp);
402 	kretprobe_hash_lock(current, &head, &flags);
403 
404 	/*
405 	 * It is possible to have multiple instances associated with a given
406 	 * task either because an multiple functions in the call path
407 	 * have a return probe installed on them, and/or more than one return
408 	 * return probe was registered for a target function.
409 	 *
410 	 * We can handle this because:
411 	 *     - instances are always inserted at the head of the list
412 	 *     - when multiple return probes are registered for the same
413 	 *	 function, the first instance's ret_addr will point to the
414 	 *	 real return address, and all the rest will point to
415 	 *	 kretprobe_trampoline
416 	 */
417 	ri = NULL;
418 	orig_ret_address = 0;
419 	correct_ret_addr = NULL;
420 	trampoline_address = (unsigned long) &kretprobe_trampoline;
421 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422 		if (ri->task != current)
423 			/* another task is sharing our hash bucket */
424 			continue;
425 
426 		orig_ret_address = (unsigned long) ri->ret_addr;
427 
428 		if (orig_ret_address != trampoline_address)
429 			/*
430 			 * This is the real return address. Any other
431 			 * instances associated with this task are for
432 			 * other calls deeper on the call stack
433 			 */
434 			break;
435 	}
436 
437 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
438 
439 	correct_ret_addr = ri->ret_addr;
440 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
441 		if (ri->task != current)
442 			/* another task is sharing our hash bucket */
443 			continue;
444 
445 		orig_ret_address = (unsigned long) ri->ret_addr;
446 
447 		if (ri->rp && ri->rp->handler) {
448 			ri->ret_addr = correct_ret_addr;
449 			ri->rp->handler(ri, regs);
450 		}
451 
452 		recycle_rp_inst(ri, &empty_rp);
453 
454 		if (orig_ret_address != trampoline_address)
455 			/*
456 			 * This is the real return address. Any other
457 			 * instances associated with this task are for
458 			 * other calls deeper on the call stack
459 			 */
460 			break;
461 	}
462 
463 	regs->psw.addr = orig_ret_address;
464 
465 	pop_kprobe(get_kprobe_ctlblk());
466 	kretprobe_hash_unlock(current, &flags);
467 	preempt_enable_no_resched();
468 
469 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
470 		hlist_del(&ri->hlist);
471 		kfree(ri);
472 	}
473 	/*
474 	 * By returning a non-zero value, we are telling
475 	 * kprobe_handler() that we don't want the post_handler
476 	 * to run (and have re-enabled preemption)
477 	 */
478 	return 1;
479 }
480 NOKPROBE_SYMBOL(trampoline_probe_handler);
481 
482 /*
483  * Called after single-stepping.  p->addr is the address of the
484  * instruction whose first byte has been replaced by the "breakpoint"
485  * instruction.  To avoid the SMP problems that can occur when we
486  * temporarily put back the original opcode to single-step, we
487  * single-stepped a copy of the instruction.  The address of this
488  * copy is p->ainsn.insn.
489  */
490 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
491 {
492 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
493 	unsigned long ip = regs->psw.addr;
494 	int fixup = probe_get_fixup_type(p->ainsn.insn);
495 
496 	/* Check if the kprobes location is an enabled ftrace caller */
497 	if (p->ainsn.is_ftrace_insn) {
498 		struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
499 		struct ftrace_insn call_insn;
500 
501 		ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
502 		/*
503 		 * A kprobe on an enabled ftrace call site actually single
504 		 * stepped an unconditional branch (ftrace nop equivalent).
505 		 * Now we need to fixup things and pretend that a brasl r0,...
506 		 * was executed instead.
507 		 */
508 		if (insn->disp == KPROBE_ON_FTRACE_CALL) {
509 			ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
510 			regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
511 		}
512 	}
513 
514 	if (fixup & FIXUP_PSW_NORMAL)
515 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
516 
517 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
518 		int ilen = insn_length(p->ainsn.insn[0] >> 8);
519 		if (ip - (unsigned long) p->ainsn.insn == ilen)
520 			ip = (unsigned long) p->addr + ilen;
521 	}
522 
523 	if (fixup & FIXUP_RETURN_REGISTER) {
524 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
525 		regs->gprs[reg] += (unsigned long) p->addr -
526 				   (unsigned long) p->ainsn.insn;
527 	}
528 
529 	disable_singlestep(kcb, regs, ip);
530 }
531 NOKPROBE_SYMBOL(resume_execution);
532 
533 static int post_kprobe_handler(struct pt_regs *regs)
534 {
535 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
536 	struct kprobe *p = kprobe_running();
537 
538 	if (!p)
539 		return 0;
540 
541 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
542 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
543 		p->post_handler(p, regs, 0);
544 	}
545 
546 	resume_execution(p, regs);
547 	pop_kprobe(kcb);
548 	preempt_enable_no_resched();
549 
550 	/*
551 	 * if somebody else is singlestepping across a probe point, psw mask
552 	 * will have PER set, in which case, continue the remaining processing
553 	 * of do_single_step, as if this is not a probe hit.
554 	 */
555 	if (regs->psw.mask & PSW_MASK_PER)
556 		return 0;
557 
558 	return 1;
559 }
560 NOKPROBE_SYMBOL(post_kprobe_handler);
561 
562 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
563 {
564 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
565 	struct kprobe *p = kprobe_running();
566 	const struct exception_table_entry *entry;
567 
568 	switch(kcb->kprobe_status) {
569 	case KPROBE_SWAP_INST:
570 		/* We are here because the instruction replacement failed */
571 		return 0;
572 	case KPROBE_HIT_SS:
573 	case KPROBE_REENTER:
574 		/*
575 		 * We are here because the instruction being single
576 		 * stepped caused a page fault. We reset the current
577 		 * kprobe and the nip points back to the probe address
578 		 * and allow the page fault handler to continue as a
579 		 * normal page fault.
580 		 */
581 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
582 		pop_kprobe(kcb);
583 		preempt_enable_no_resched();
584 		break;
585 	case KPROBE_HIT_ACTIVE:
586 	case KPROBE_HIT_SSDONE:
587 		/*
588 		 * We increment the nmissed count for accounting,
589 		 * we can also use npre/npostfault count for accounting
590 		 * these specific fault cases.
591 		 */
592 		kprobes_inc_nmissed_count(p);
593 
594 		/*
595 		 * We come here because instructions in the pre/post
596 		 * handler caused the page_fault, this could happen
597 		 * if handler tries to access user space by
598 		 * copy_from_user(), get_user() etc. Let the
599 		 * user-specified handler try to fix it first.
600 		 */
601 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
602 			return 1;
603 
604 		/*
605 		 * In case the user-specified fault handler returned
606 		 * zero, try to fix up.
607 		 */
608 		entry = search_exception_tables(regs->psw.addr);
609 		if (entry) {
610 			regs->psw.addr = extable_fixup(entry);
611 			return 1;
612 		}
613 
614 		/*
615 		 * fixup_exception() could not handle it,
616 		 * Let do_page_fault() fix it.
617 		 */
618 		break;
619 	default:
620 		break;
621 	}
622 	return 0;
623 }
624 NOKPROBE_SYMBOL(kprobe_trap_handler);
625 
626 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
627 {
628 	int ret;
629 
630 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
631 		local_irq_disable();
632 	ret = kprobe_trap_handler(regs, trapnr);
633 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
634 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
635 	return ret;
636 }
637 NOKPROBE_SYMBOL(kprobe_fault_handler);
638 
639 /*
640  * Wrapper routine to for handling exceptions.
641  */
642 int kprobe_exceptions_notify(struct notifier_block *self,
643 			     unsigned long val, void *data)
644 {
645 	struct die_args *args = (struct die_args *) data;
646 	struct pt_regs *regs = args->regs;
647 	int ret = NOTIFY_DONE;
648 
649 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
650 		local_irq_disable();
651 
652 	switch (val) {
653 	case DIE_BPT:
654 		if (kprobe_handler(regs))
655 			ret = NOTIFY_STOP;
656 		break;
657 	case DIE_SSTEP:
658 		if (post_kprobe_handler(regs))
659 			ret = NOTIFY_STOP;
660 		break;
661 	case DIE_TRAP:
662 		if (!preemptible() && kprobe_running() &&
663 		    kprobe_trap_handler(regs, args->trapnr))
664 			ret = NOTIFY_STOP;
665 		break;
666 	default:
667 		break;
668 	}
669 
670 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
671 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
672 
673 	return ret;
674 }
675 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
676 
677 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
678 {
679 	struct jprobe *jp = container_of(p, struct jprobe, kp);
680 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
681 	unsigned long stack;
682 
683 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
684 
685 	/* setup return addr to the jprobe handler routine */
686 	regs->psw.addr = (unsigned long) jp->entry;
687 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
688 
689 	/* r15 is the stack pointer */
690 	stack = (unsigned long) regs->gprs[15];
691 
692 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
693 	return 1;
694 }
695 NOKPROBE_SYMBOL(setjmp_pre_handler);
696 
697 void jprobe_return(void)
698 {
699 	asm volatile(".word 0x0002");
700 }
701 NOKPROBE_SYMBOL(jprobe_return);
702 
703 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
704 {
705 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
706 	unsigned long stack;
707 
708 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
709 
710 	/* Put the regs back */
711 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
712 	/* put the stack back */
713 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
714 	preempt_enable_no_resched();
715 	return 1;
716 }
717 NOKPROBE_SYMBOL(longjmp_break_handler);
718 
719 static struct kprobe trampoline = {
720 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
721 	.pre_handler = trampoline_probe_handler
722 };
723 
724 int __init arch_init_kprobes(void)
725 {
726 	return register_kprobe(&trampoline);
727 }
728 
729 int arch_trampoline_kprobe(struct kprobe *p)
730 {
731 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
732 }
733 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
734