xref: /openbmc/linux/arch/s390/kernel/kprobes.c (revision 089a49b6)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright IBM Corp. 2002, 2006
19  *
20  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21  */
22 
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/hardirq.h>
34 
35 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
36 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
37 
38 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
39 
40 DEFINE_INSN_CACHE_OPS(dmainsn);
41 
42 static void *alloc_dmainsn_page(void)
43 {
44 	return (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
45 }
46 
47 static void free_dmainsn_page(void *page)
48 {
49 	free_page((unsigned long)page);
50 }
51 
52 struct kprobe_insn_cache kprobe_dmainsn_slots = {
53 	.mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
54 	.alloc = alloc_dmainsn_page,
55 	.free = free_dmainsn_page,
56 	.pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
57 	.insn_size = MAX_INSN_SIZE,
58 };
59 
60 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn)
61 {
62 	switch (insn[0] >> 8) {
63 	case 0x0c:	/* bassm */
64 	case 0x0b:	/* bsm	 */
65 	case 0x83:	/* diag  */
66 	case 0x44:	/* ex	 */
67 	case 0xac:	/* stnsm */
68 	case 0xad:	/* stosm */
69 		return -EINVAL;
70 	}
71 	switch (insn[0]) {
72 	case 0x0101:	/* pr	 */
73 	case 0xb25a:	/* bsa	 */
74 	case 0xb240:	/* bakr  */
75 	case 0xb258:	/* bsg	 */
76 	case 0xb218:	/* pc	 */
77 	case 0xb228:	/* pt	 */
78 	case 0xb98d:	/* epsw	 */
79 		return -EINVAL;
80 	}
81 	return 0;
82 }
83 
84 static int __kprobes get_fixup_type(kprobe_opcode_t *insn)
85 {
86 	/* default fixup method */
87 	int fixup = FIXUP_PSW_NORMAL;
88 
89 	switch (insn[0] >> 8) {
90 	case 0x05:	/* balr	*/
91 	case 0x0d:	/* basr */
92 		fixup = FIXUP_RETURN_REGISTER;
93 		/* if r2 = 0, no branch will be taken */
94 		if ((insn[0] & 0x0f) == 0)
95 			fixup |= FIXUP_BRANCH_NOT_TAKEN;
96 		break;
97 	case 0x06:	/* bctr	*/
98 	case 0x07:	/* bcr	*/
99 		fixup = FIXUP_BRANCH_NOT_TAKEN;
100 		break;
101 	case 0x45:	/* bal	*/
102 	case 0x4d:	/* bas	*/
103 		fixup = FIXUP_RETURN_REGISTER;
104 		break;
105 	case 0x47:	/* bc	*/
106 	case 0x46:	/* bct	*/
107 	case 0x86:	/* bxh	*/
108 	case 0x87:	/* bxle	*/
109 		fixup = FIXUP_BRANCH_NOT_TAKEN;
110 		break;
111 	case 0x82:	/* lpsw	*/
112 		fixup = FIXUP_NOT_REQUIRED;
113 		break;
114 	case 0xb2:	/* lpswe */
115 		if ((insn[0] & 0xff) == 0xb2)
116 			fixup = FIXUP_NOT_REQUIRED;
117 		break;
118 	case 0xa7:	/* bras	*/
119 		if ((insn[0] & 0x0f) == 0x05)
120 			fixup |= FIXUP_RETURN_REGISTER;
121 		break;
122 	case 0xc0:
123 		if ((insn[0] & 0x0f) == 0x05)	/* brasl */
124 			fixup |= FIXUP_RETURN_REGISTER;
125 		break;
126 	case 0xeb:
127 		switch (insn[2] & 0xff) {
128 		case 0x44: /* bxhg  */
129 		case 0x45: /* bxleg */
130 			fixup = FIXUP_BRANCH_NOT_TAKEN;
131 			break;
132 		}
133 		break;
134 	case 0xe3:	/* bctg	*/
135 		if ((insn[2] & 0xff) == 0x46)
136 			fixup = FIXUP_BRANCH_NOT_TAKEN;
137 		break;
138 	case 0xec:
139 		switch (insn[2] & 0xff) {
140 		case 0xe5: /* clgrb */
141 		case 0xe6: /* cgrb  */
142 		case 0xf6: /* crb   */
143 		case 0xf7: /* clrb  */
144 		case 0xfc: /* cgib  */
145 		case 0xfd: /* cglib */
146 		case 0xfe: /* cib   */
147 		case 0xff: /* clib  */
148 			fixup = FIXUP_BRANCH_NOT_TAKEN;
149 			break;
150 		}
151 		break;
152 	}
153 	return fixup;
154 }
155 
156 static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn)
157 {
158 	/* Check if we have a RIL-b or RIL-c format instruction which
159 	 * we need to modify in order to avoid instruction emulation. */
160 	switch (insn[0] >> 8) {
161 	case 0xc0:
162 		if ((insn[0] & 0x0f) == 0x00) /* larl */
163 			return true;
164 		break;
165 	case 0xc4:
166 		switch (insn[0] & 0x0f) {
167 		case 0x02: /* llhrl  */
168 		case 0x04: /* lghrl  */
169 		case 0x05: /* lhrl   */
170 		case 0x06: /* llghrl */
171 		case 0x07: /* sthrl  */
172 		case 0x08: /* lgrl   */
173 		case 0x0b: /* stgrl  */
174 		case 0x0c: /* lgfrl  */
175 		case 0x0d: /* lrl    */
176 		case 0x0e: /* llgfrl */
177 		case 0x0f: /* strl   */
178 			return true;
179 		}
180 		break;
181 	case 0xc6:
182 		switch (insn[0] & 0x0f) {
183 		case 0x00: /* exrl   */
184 		case 0x02: /* pfdrl  */
185 		case 0x04: /* cghrl  */
186 		case 0x05: /* chrl   */
187 		case 0x06: /* clghrl */
188 		case 0x07: /* clhrl  */
189 		case 0x08: /* cgrl   */
190 		case 0x0a: /* clgrl  */
191 		case 0x0c: /* cgfrl  */
192 		case 0x0d: /* crl    */
193 		case 0x0e: /* clgfrl */
194 		case 0x0f: /* clrl   */
195 			return true;
196 		}
197 		break;
198 	}
199 	return false;
200 }
201 
202 static void __kprobes copy_instruction(struct kprobe *p)
203 {
204 	s64 disp, new_disp;
205 	u64 addr, new_addr;
206 
207 	memcpy(p->ainsn.insn, p->addr, ((p->opcode >> 14) + 3) & -2);
208 	if (!is_insn_relative_long(p->ainsn.insn))
209 		return;
210 	/*
211 	 * For pc-relative instructions in RIL-b or RIL-c format patch the
212 	 * RI2 displacement field. We have already made sure that the insn
213 	 * slot for the patched instruction is within the same 2GB area
214 	 * as the original instruction (either kernel image or module area).
215 	 * Therefore the new displacement will always fit.
216 	 */
217 	disp = *(s32 *)&p->ainsn.insn[1];
218 	addr = (u64)(unsigned long)p->addr;
219 	new_addr = (u64)(unsigned long)p->ainsn.insn;
220 	new_disp = ((addr + (disp * 2)) - new_addr) / 2;
221 	*(s32 *)&p->ainsn.insn[1] = new_disp;
222 }
223 
224 static inline int is_kernel_addr(void *addr)
225 {
226 	return addr < (void *)_end;
227 }
228 
229 static inline int is_module_addr(void *addr)
230 {
231 #ifdef CONFIG_64BIT
232 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
233 	if (addr < (void *)MODULES_VADDR)
234 		return 0;
235 	if (addr > (void *)MODULES_END)
236 		return 0;
237 #endif
238 	return 1;
239 }
240 
241 static int __kprobes s390_get_insn_slot(struct kprobe *p)
242 {
243 	/*
244 	 * Get an insn slot that is within the same 2GB area like the original
245 	 * instruction. That way instructions with a 32bit signed displacement
246 	 * field can be patched and executed within the insn slot.
247 	 */
248 	p->ainsn.insn = NULL;
249 	if (is_kernel_addr(p->addr))
250 		p->ainsn.insn = get_dmainsn_slot();
251 	if (is_module_addr(p->addr))
252 		p->ainsn.insn = get_insn_slot();
253 	return p->ainsn.insn ? 0 : -ENOMEM;
254 }
255 
256 static void __kprobes s390_free_insn_slot(struct kprobe *p)
257 {
258 	if (!p->ainsn.insn)
259 		return;
260 	if (is_kernel_addr(p->addr))
261 		free_dmainsn_slot(p->ainsn.insn, 0);
262 	else
263 		free_insn_slot(p->ainsn.insn, 0);
264 	p->ainsn.insn = NULL;
265 }
266 
267 int __kprobes arch_prepare_kprobe(struct kprobe *p)
268 {
269 	if ((unsigned long) p->addr & 0x01)
270 		return -EINVAL;
271 	/* Make sure the probe isn't going on a difficult instruction */
272 	if (is_prohibited_opcode(p->addr))
273 		return -EINVAL;
274 	if (s390_get_insn_slot(p))
275 		return -ENOMEM;
276 	p->opcode = *p->addr;
277 	copy_instruction(p);
278 	return 0;
279 }
280 
281 struct ins_replace_args {
282 	kprobe_opcode_t *ptr;
283 	kprobe_opcode_t opcode;
284 };
285 
286 static int __kprobes swap_instruction(void *aref)
287 {
288 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
289 	unsigned long status = kcb->kprobe_status;
290 	struct ins_replace_args *args = aref;
291 
292 	kcb->kprobe_status = KPROBE_SWAP_INST;
293 	probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode));
294 	kcb->kprobe_status = status;
295 	return 0;
296 }
297 
298 void __kprobes arch_arm_kprobe(struct kprobe *p)
299 {
300 	struct ins_replace_args args;
301 
302 	args.ptr = p->addr;
303 	args.opcode = BREAKPOINT_INSTRUCTION;
304 	stop_machine(swap_instruction, &args, NULL);
305 }
306 
307 void __kprobes arch_disarm_kprobe(struct kprobe *p)
308 {
309 	struct ins_replace_args args;
310 
311 	args.ptr = p->addr;
312 	args.opcode = p->opcode;
313 	stop_machine(swap_instruction, &args, NULL);
314 }
315 
316 void __kprobes arch_remove_kprobe(struct kprobe *p)
317 {
318 	s390_free_insn_slot(p);
319 }
320 
321 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb,
322 					struct pt_regs *regs,
323 					unsigned long ip)
324 {
325 	struct per_regs per_kprobe;
326 
327 	/* Set up the PER control registers %cr9-%cr11 */
328 	per_kprobe.control = PER_EVENT_IFETCH;
329 	per_kprobe.start = ip;
330 	per_kprobe.end = ip;
331 
332 	/* Save control regs and psw mask */
333 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
334 	kcb->kprobe_saved_imask = regs->psw.mask &
335 		(PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
336 
337 	/* Set PER control regs, turns on single step for the given address */
338 	__ctl_load(per_kprobe, 9, 11);
339 	regs->psw.mask |= PSW_MASK_PER;
340 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
341 	regs->psw.addr = ip | PSW_ADDR_AMODE;
342 }
343 
344 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb,
345 					 struct pt_regs *regs,
346 					 unsigned long ip)
347 {
348 	/* Restore control regs and psw mask, set new psw address */
349 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
350 	regs->psw.mask &= ~PSW_MASK_PER;
351 	regs->psw.mask |= kcb->kprobe_saved_imask;
352 	regs->psw.addr = ip | PSW_ADDR_AMODE;
353 }
354 
355 /*
356  * Activate a kprobe by storing its pointer to current_kprobe. The
357  * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
358  * two kprobes can be active, see KPROBE_REENTER.
359  */
360 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
361 {
362 	kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe);
363 	kcb->prev_kprobe.status = kcb->kprobe_status;
364 	__get_cpu_var(current_kprobe) = p;
365 }
366 
367 /*
368  * Deactivate a kprobe by backing up to the previous state. If the
369  * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
370  * for any other state prev_kprobe.kp will be NULL.
371  */
372 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb)
373 {
374 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
375 	kcb->kprobe_status = kcb->prev_kprobe.status;
376 }
377 
378 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
379 					struct pt_regs *regs)
380 {
381 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
382 
383 	/* Replace the return addr with trampoline addr */
384 	regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
385 }
386 
387 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb,
388 					   struct kprobe *p)
389 {
390 	switch (kcb->kprobe_status) {
391 	case KPROBE_HIT_SSDONE:
392 	case KPROBE_HIT_ACTIVE:
393 		kprobes_inc_nmissed_count(p);
394 		break;
395 	case KPROBE_HIT_SS:
396 	case KPROBE_REENTER:
397 	default:
398 		/*
399 		 * A kprobe on the code path to single step an instruction
400 		 * is a BUG. The code path resides in the .kprobes.text
401 		 * section and is executed with interrupts disabled.
402 		 */
403 		printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
404 		dump_kprobe(p);
405 		BUG();
406 	}
407 }
408 
409 static int __kprobes kprobe_handler(struct pt_regs *regs)
410 {
411 	struct kprobe_ctlblk *kcb;
412 	struct kprobe *p;
413 
414 	/*
415 	 * We want to disable preemption for the entire duration of kprobe
416 	 * processing. That includes the calls to the pre/post handlers
417 	 * and single stepping the kprobe instruction.
418 	 */
419 	preempt_disable();
420 	kcb = get_kprobe_ctlblk();
421 	p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2));
422 
423 	if (p) {
424 		if (kprobe_running()) {
425 			/*
426 			 * We have hit a kprobe while another is still
427 			 * active. This can happen in the pre and post
428 			 * handler. Single step the instruction of the
429 			 * new probe but do not call any handler function
430 			 * of this secondary kprobe.
431 			 * push_kprobe and pop_kprobe saves and restores
432 			 * the currently active kprobe.
433 			 */
434 			kprobe_reenter_check(kcb, p);
435 			push_kprobe(kcb, p);
436 			kcb->kprobe_status = KPROBE_REENTER;
437 		} else {
438 			/*
439 			 * If we have no pre-handler or it returned 0, we
440 			 * continue with single stepping. If we have a
441 			 * pre-handler and it returned non-zero, it prepped
442 			 * for calling the break_handler below on re-entry
443 			 * for jprobe processing, so get out doing nothing
444 			 * more here.
445 			 */
446 			push_kprobe(kcb, p);
447 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
448 			if (p->pre_handler && p->pre_handler(p, regs))
449 				return 1;
450 			kcb->kprobe_status = KPROBE_HIT_SS;
451 		}
452 		enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
453 		return 1;
454 	} else if (kprobe_running()) {
455 		p = __get_cpu_var(current_kprobe);
456 		if (p->break_handler && p->break_handler(p, regs)) {
457 			/*
458 			 * Continuation after the jprobe completed and
459 			 * caused the jprobe_return trap. The jprobe
460 			 * break_handler "returns" to the original
461 			 * function that still has the kprobe breakpoint
462 			 * installed. We continue with single stepping.
463 			 */
464 			kcb->kprobe_status = KPROBE_HIT_SS;
465 			enable_singlestep(kcb, regs,
466 					  (unsigned long) p->ainsn.insn);
467 			return 1;
468 		} /* else:
469 		   * No kprobe at this address and the current kprobe
470 		   * has no break handler (no jprobe!). The kernel just
471 		   * exploded, let the standard trap handler pick up the
472 		   * pieces.
473 		   */
474 	} /* else:
475 	   * No kprobe at this address and no active kprobe. The trap has
476 	   * not been caused by a kprobe breakpoint. The race of breakpoint
477 	   * vs. kprobe remove does not exist because on s390 as we use
478 	   * stop_machine to arm/disarm the breakpoints.
479 	   */
480 	preempt_enable_no_resched();
481 	return 0;
482 }
483 
484 /*
485  * Function return probe trampoline:
486  *	- init_kprobes() establishes a probepoint here
487  *	- When the probed function returns, this probe
488  *		causes the handlers to fire
489  */
490 static void __used kretprobe_trampoline_holder(void)
491 {
492 	asm volatile(".global kretprobe_trampoline\n"
493 		     "kretprobe_trampoline: bcr 0,0\n");
494 }
495 
496 /*
497  * Called when the probe at kretprobe trampoline is hit
498  */
499 static int __kprobes trampoline_probe_handler(struct kprobe *p,
500 					      struct pt_regs *regs)
501 {
502 	struct kretprobe_instance *ri;
503 	struct hlist_head *head, empty_rp;
504 	struct hlist_node *tmp;
505 	unsigned long flags, orig_ret_address;
506 	unsigned long trampoline_address;
507 	kprobe_opcode_t *correct_ret_addr;
508 
509 	INIT_HLIST_HEAD(&empty_rp);
510 	kretprobe_hash_lock(current, &head, &flags);
511 
512 	/*
513 	 * It is possible to have multiple instances associated with a given
514 	 * task either because an multiple functions in the call path
515 	 * have a return probe installed on them, and/or more than one return
516 	 * return probe was registered for a target function.
517 	 *
518 	 * We can handle this because:
519 	 *     - instances are always inserted at the head of the list
520 	 *     - when multiple return probes are registered for the same
521 	 *	 function, the first instance's ret_addr will point to the
522 	 *	 real return address, and all the rest will point to
523 	 *	 kretprobe_trampoline
524 	 */
525 	ri = NULL;
526 	orig_ret_address = 0;
527 	correct_ret_addr = NULL;
528 	trampoline_address = (unsigned long) &kretprobe_trampoline;
529 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
530 		if (ri->task != current)
531 			/* another task is sharing our hash bucket */
532 			continue;
533 
534 		orig_ret_address = (unsigned long) ri->ret_addr;
535 
536 		if (orig_ret_address != trampoline_address)
537 			/*
538 			 * This is the real return address. Any other
539 			 * instances associated with this task are for
540 			 * other calls deeper on the call stack
541 			 */
542 			break;
543 	}
544 
545 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
546 
547 	correct_ret_addr = ri->ret_addr;
548 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
549 		if (ri->task != current)
550 			/* another task is sharing our hash bucket */
551 			continue;
552 
553 		orig_ret_address = (unsigned long) ri->ret_addr;
554 
555 		if (ri->rp && ri->rp->handler) {
556 			ri->ret_addr = correct_ret_addr;
557 			ri->rp->handler(ri, regs);
558 		}
559 
560 		recycle_rp_inst(ri, &empty_rp);
561 
562 		if (orig_ret_address != trampoline_address)
563 			/*
564 			 * This is the real return address. Any other
565 			 * instances associated with this task are for
566 			 * other calls deeper on the call stack
567 			 */
568 			break;
569 	}
570 
571 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
572 
573 	pop_kprobe(get_kprobe_ctlblk());
574 	kretprobe_hash_unlock(current, &flags);
575 	preempt_enable_no_resched();
576 
577 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
578 		hlist_del(&ri->hlist);
579 		kfree(ri);
580 	}
581 	/*
582 	 * By returning a non-zero value, we are telling
583 	 * kprobe_handler() that we don't want the post_handler
584 	 * to run (and have re-enabled preemption)
585 	 */
586 	return 1;
587 }
588 
589 /*
590  * Called after single-stepping.  p->addr is the address of the
591  * instruction whose first byte has been replaced by the "breakpoint"
592  * instruction.  To avoid the SMP problems that can occur when we
593  * temporarily put back the original opcode to single-step, we
594  * single-stepped a copy of the instruction.  The address of this
595  * copy is p->ainsn.insn.
596  */
597 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
598 {
599 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
600 	unsigned long ip = regs->psw.addr & PSW_ADDR_INSN;
601 	int fixup = get_fixup_type(p->ainsn.insn);
602 
603 	if (fixup & FIXUP_PSW_NORMAL)
604 		ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
605 
606 	if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
607 		int ilen = ((p->ainsn.insn[0] >> 14) + 3) & -2;
608 		if (ip - (unsigned long) p->ainsn.insn == ilen)
609 			ip = (unsigned long) p->addr + ilen;
610 	}
611 
612 	if (fixup & FIXUP_RETURN_REGISTER) {
613 		int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
614 		regs->gprs[reg] += (unsigned long) p->addr -
615 				   (unsigned long) p->ainsn.insn;
616 	}
617 
618 	disable_singlestep(kcb, regs, ip);
619 }
620 
621 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
622 {
623 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
624 	struct kprobe *p = kprobe_running();
625 
626 	if (!p)
627 		return 0;
628 
629 	if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
630 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
631 		p->post_handler(p, regs, 0);
632 	}
633 
634 	resume_execution(p, regs);
635 	pop_kprobe(kcb);
636 	preempt_enable_no_resched();
637 
638 	/*
639 	 * if somebody else is singlestepping across a probe point, psw mask
640 	 * will have PER set, in which case, continue the remaining processing
641 	 * of do_single_step, as if this is not a probe hit.
642 	 */
643 	if (regs->psw.mask & PSW_MASK_PER)
644 		return 0;
645 
646 	return 1;
647 }
648 
649 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr)
650 {
651 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
652 	struct kprobe *p = kprobe_running();
653 	const struct exception_table_entry *entry;
654 
655 	switch(kcb->kprobe_status) {
656 	case KPROBE_SWAP_INST:
657 		/* We are here because the instruction replacement failed */
658 		return 0;
659 	case KPROBE_HIT_SS:
660 	case KPROBE_REENTER:
661 		/*
662 		 * We are here because the instruction being single
663 		 * stepped caused a page fault. We reset the current
664 		 * kprobe and the nip points back to the probe address
665 		 * and allow the page fault handler to continue as a
666 		 * normal page fault.
667 		 */
668 		disable_singlestep(kcb, regs, (unsigned long) p->addr);
669 		pop_kprobe(kcb);
670 		preempt_enable_no_resched();
671 		break;
672 	case KPROBE_HIT_ACTIVE:
673 	case KPROBE_HIT_SSDONE:
674 		/*
675 		 * We increment the nmissed count for accounting,
676 		 * we can also use npre/npostfault count for accouting
677 		 * these specific fault cases.
678 		 */
679 		kprobes_inc_nmissed_count(p);
680 
681 		/*
682 		 * We come here because instructions in the pre/post
683 		 * handler caused the page_fault, this could happen
684 		 * if handler tries to access user space by
685 		 * copy_from_user(), get_user() etc. Let the
686 		 * user-specified handler try to fix it first.
687 		 */
688 		if (p->fault_handler && p->fault_handler(p, regs, trapnr))
689 			return 1;
690 
691 		/*
692 		 * In case the user-specified fault handler returned
693 		 * zero, try to fix up.
694 		 */
695 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
696 		if (entry) {
697 			regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE;
698 			return 1;
699 		}
700 
701 		/*
702 		 * fixup_exception() could not handle it,
703 		 * Let do_page_fault() fix it.
704 		 */
705 		break;
706 	default:
707 		break;
708 	}
709 	return 0;
710 }
711 
712 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
713 {
714 	int ret;
715 
716 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
717 		local_irq_disable();
718 	ret = kprobe_trap_handler(regs, trapnr);
719 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
720 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
721 	return ret;
722 }
723 
724 /*
725  * Wrapper routine to for handling exceptions.
726  */
727 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
728 				       unsigned long val, void *data)
729 {
730 	struct die_args *args = (struct die_args *) data;
731 	struct pt_regs *regs = args->regs;
732 	int ret = NOTIFY_DONE;
733 
734 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
735 		local_irq_disable();
736 
737 	switch (val) {
738 	case DIE_BPT:
739 		if (kprobe_handler(regs))
740 			ret = NOTIFY_STOP;
741 		break;
742 	case DIE_SSTEP:
743 		if (post_kprobe_handler(regs))
744 			ret = NOTIFY_STOP;
745 		break;
746 	case DIE_TRAP:
747 		if (!preemptible() && kprobe_running() &&
748 		    kprobe_trap_handler(regs, args->trapnr))
749 			ret = NOTIFY_STOP;
750 		break;
751 	default:
752 		break;
753 	}
754 
755 	if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
756 		local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
757 
758 	return ret;
759 }
760 
761 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
762 {
763 	struct jprobe *jp = container_of(p, struct jprobe, kp);
764 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
765 	unsigned long stack;
766 
767 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
768 
769 	/* setup return addr to the jprobe handler routine */
770 	regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE;
771 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
772 
773 	/* r15 is the stack pointer */
774 	stack = (unsigned long) regs->gprs[15];
775 
776 	memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
777 	return 1;
778 }
779 
780 void __kprobes jprobe_return(void)
781 {
782 	asm volatile(".word 0x0002");
783 }
784 
785 static void __used __kprobes jprobe_return_end(void)
786 {
787 	asm volatile("bcr 0,0");
788 }
789 
790 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
791 {
792 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
793 	unsigned long stack;
794 
795 	stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
796 
797 	/* Put the regs back */
798 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
799 	/* put the stack back */
800 	memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
801 	preempt_enable_no_resched();
802 	return 1;
803 }
804 
805 static struct kprobe trampoline = {
806 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
807 	.pre_handler = trampoline_probe_handler
808 };
809 
810 int __init arch_init_kprobes(void)
811 {
812 	return register_kprobe(&trampoline);
813 }
814 
815 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
816 {
817 	return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
818 }
819