1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright IBM Corp. 2002, 2006 19 * 20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com> 21 */ 22 23 #include <linux/kprobes.h> 24 #include <linux/ptrace.h> 25 #include <linux/preempt.h> 26 #include <linux/stop_machine.h> 27 #include <linux/kdebug.h> 28 #include <linux/uaccess.h> 29 #include <asm/cacheflush.h> 30 #include <asm/sections.h> 31 #include <linux/module.h> 32 #include <linux/slab.h> 33 #include <linux/hardirq.h> 34 35 DEFINE_PER_CPU(struct kprobe *, current_kprobe); 36 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 37 38 struct kretprobe_blackpoint kretprobe_blacklist[] = { }; 39 40 DEFINE_INSN_CACHE_OPS(dmainsn); 41 42 static void *alloc_dmainsn_page(void) 43 { 44 return (void *)__get_free_page(GFP_KERNEL | GFP_DMA); 45 } 46 47 static void free_dmainsn_page(void *page) 48 { 49 free_page((unsigned long)page); 50 } 51 52 struct kprobe_insn_cache kprobe_dmainsn_slots = { 53 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex), 54 .alloc = alloc_dmainsn_page, 55 .free = free_dmainsn_page, 56 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages), 57 .insn_size = MAX_INSN_SIZE, 58 }; 59 60 static int __kprobes is_prohibited_opcode(kprobe_opcode_t *insn) 61 { 62 switch (insn[0] >> 8) { 63 case 0x0c: /* bassm */ 64 case 0x0b: /* bsm */ 65 case 0x83: /* diag */ 66 case 0x44: /* ex */ 67 case 0xac: /* stnsm */ 68 case 0xad: /* stosm */ 69 return -EINVAL; 70 } 71 switch (insn[0]) { 72 case 0x0101: /* pr */ 73 case 0xb25a: /* bsa */ 74 case 0xb240: /* bakr */ 75 case 0xb258: /* bsg */ 76 case 0xb218: /* pc */ 77 case 0xb228: /* pt */ 78 case 0xb98d: /* epsw */ 79 return -EINVAL; 80 } 81 return 0; 82 } 83 84 static int __kprobes get_fixup_type(kprobe_opcode_t *insn) 85 { 86 /* default fixup method */ 87 int fixup = FIXUP_PSW_NORMAL; 88 89 switch (insn[0] >> 8) { 90 case 0x05: /* balr */ 91 case 0x0d: /* basr */ 92 fixup = FIXUP_RETURN_REGISTER; 93 /* if r2 = 0, no branch will be taken */ 94 if ((insn[0] & 0x0f) == 0) 95 fixup |= FIXUP_BRANCH_NOT_TAKEN; 96 break; 97 case 0x06: /* bctr */ 98 case 0x07: /* bcr */ 99 fixup = FIXUP_BRANCH_NOT_TAKEN; 100 break; 101 case 0x45: /* bal */ 102 case 0x4d: /* bas */ 103 fixup = FIXUP_RETURN_REGISTER; 104 break; 105 case 0x47: /* bc */ 106 case 0x46: /* bct */ 107 case 0x86: /* bxh */ 108 case 0x87: /* bxle */ 109 fixup = FIXUP_BRANCH_NOT_TAKEN; 110 break; 111 case 0x82: /* lpsw */ 112 fixup = FIXUP_NOT_REQUIRED; 113 break; 114 case 0xb2: /* lpswe */ 115 if ((insn[0] & 0xff) == 0xb2) 116 fixup = FIXUP_NOT_REQUIRED; 117 break; 118 case 0xa7: /* bras */ 119 if ((insn[0] & 0x0f) == 0x05) 120 fixup |= FIXUP_RETURN_REGISTER; 121 break; 122 case 0xc0: 123 if ((insn[0] & 0x0f) == 0x05) /* brasl */ 124 fixup |= FIXUP_RETURN_REGISTER; 125 break; 126 case 0xeb: 127 switch (insn[2] & 0xff) { 128 case 0x44: /* bxhg */ 129 case 0x45: /* bxleg */ 130 fixup = FIXUP_BRANCH_NOT_TAKEN; 131 break; 132 } 133 break; 134 case 0xe3: /* bctg */ 135 if ((insn[2] & 0xff) == 0x46) 136 fixup = FIXUP_BRANCH_NOT_TAKEN; 137 break; 138 case 0xec: 139 switch (insn[2] & 0xff) { 140 case 0xe5: /* clgrb */ 141 case 0xe6: /* cgrb */ 142 case 0xf6: /* crb */ 143 case 0xf7: /* clrb */ 144 case 0xfc: /* cgib */ 145 case 0xfd: /* cglib */ 146 case 0xfe: /* cib */ 147 case 0xff: /* clib */ 148 fixup = FIXUP_BRANCH_NOT_TAKEN; 149 break; 150 } 151 break; 152 } 153 return fixup; 154 } 155 156 static int __kprobes is_insn_relative_long(kprobe_opcode_t *insn) 157 { 158 /* Check if we have a RIL-b or RIL-c format instruction which 159 * we need to modify in order to avoid instruction emulation. */ 160 switch (insn[0] >> 8) { 161 case 0xc0: 162 if ((insn[0] & 0x0f) == 0x00) /* larl */ 163 return true; 164 break; 165 case 0xc4: 166 switch (insn[0] & 0x0f) { 167 case 0x02: /* llhrl */ 168 case 0x04: /* lghrl */ 169 case 0x05: /* lhrl */ 170 case 0x06: /* llghrl */ 171 case 0x07: /* sthrl */ 172 case 0x08: /* lgrl */ 173 case 0x0b: /* stgrl */ 174 case 0x0c: /* lgfrl */ 175 case 0x0d: /* lrl */ 176 case 0x0e: /* llgfrl */ 177 case 0x0f: /* strl */ 178 return true; 179 } 180 break; 181 case 0xc6: 182 switch (insn[0] & 0x0f) { 183 case 0x00: /* exrl */ 184 case 0x02: /* pfdrl */ 185 case 0x04: /* cghrl */ 186 case 0x05: /* chrl */ 187 case 0x06: /* clghrl */ 188 case 0x07: /* clhrl */ 189 case 0x08: /* cgrl */ 190 case 0x0a: /* clgrl */ 191 case 0x0c: /* cgfrl */ 192 case 0x0d: /* crl */ 193 case 0x0e: /* clgfrl */ 194 case 0x0f: /* clrl */ 195 return true; 196 } 197 break; 198 } 199 return false; 200 } 201 202 static void __kprobes copy_instruction(struct kprobe *p) 203 { 204 s64 disp, new_disp; 205 u64 addr, new_addr; 206 207 memcpy(p->ainsn.insn, p->addr, ((p->opcode >> 14) + 3) & -2); 208 if (!is_insn_relative_long(p->ainsn.insn)) 209 return; 210 /* 211 * For pc-relative instructions in RIL-b or RIL-c format patch the 212 * RI2 displacement field. We have already made sure that the insn 213 * slot for the patched instruction is within the same 2GB area 214 * as the original instruction (either kernel image or module area). 215 * Therefore the new displacement will always fit. 216 */ 217 disp = *(s32 *)&p->ainsn.insn[1]; 218 addr = (u64)(unsigned long)p->addr; 219 new_addr = (u64)(unsigned long)p->ainsn.insn; 220 new_disp = ((addr + (disp * 2)) - new_addr) / 2; 221 *(s32 *)&p->ainsn.insn[1] = new_disp; 222 } 223 224 static inline int is_kernel_addr(void *addr) 225 { 226 return addr < (void *)_end; 227 } 228 229 static inline int is_module_addr(void *addr) 230 { 231 #ifdef CONFIG_64BIT 232 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 233 if (addr < (void *)MODULES_VADDR) 234 return 0; 235 if (addr > (void *)MODULES_END) 236 return 0; 237 #endif 238 return 1; 239 } 240 241 static int __kprobes s390_get_insn_slot(struct kprobe *p) 242 { 243 /* 244 * Get an insn slot that is within the same 2GB area like the original 245 * instruction. That way instructions with a 32bit signed displacement 246 * field can be patched and executed within the insn slot. 247 */ 248 p->ainsn.insn = NULL; 249 if (is_kernel_addr(p->addr)) 250 p->ainsn.insn = get_dmainsn_slot(); 251 if (is_module_addr(p->addr)) 252 p->ainsn.insn = get_insn_slot(); 253 return p->ainsn.insn ? 0 : -ENOMEM; 254 } 255 256 static void __kprobes s390_free_insn_slot(struct kprobe *p) 257 { 258 if (!p->ainsn.insn) 259 return; 260 if (is_kernel_addr(p->addr)) 261 free_dmainsn_slot(p->ainsn.insn, 0); 262 else 263 free_insn_slot(p->ainsn.insn, 0); 264 p->ainsn.insn = NULL; 265 } 266 267 int __kprobes arch_prepare_kprobe(struct kprobe *p) 268 { 269 if ((unsigned long) p->addr & 0x01) 270 return -EINVAL; 271 /* Make sure the probe isn't going on a difficult instruction */ 272 if (is_prohibited_opcode(p->addr)) 273 return -EINVAL; 274 if (s390_get_insn_slot(p)) 275 return -ENOMEM; 276 p->opcode = *p->addr; 277 copy_instruction(p); 278 return 0; 279 } 280 281 struct ins_replace_args { 282 kprobe_opcode_t *ptr; 283 kprobe_opcode_t opcode; 284 }; 285 286 static int __kprobes swap_instruction(void *aref) 287 { 288 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 289 unsigned long status = kcb->kprobe_status; 290 struct ins_replace_args *args = aref; 291 292 kcb->kprobe_status = KPROBE_SWAP_INST; 293 probe_kernel_write(args->ptr, &args->opcode, sizeof(args->opcode)); 294 kcb->kprobe_status = status; 295 return 0; 296 } 297 298 void __kprobes arch_arm_kprobe(struct kprobe *p) 299 { 300 struct ins_replace_args args; 301 302 args.ptr = p->addr; 303 args.opcode = BREAKPOINT_INSTRUCTION; 304 stop_machine(swap_instruction, &args, NULL); 305 } 306 307 void __kprobes arch_disarm_kprobe(struct kprobe *p) 308 { 309 struct ins_replace_args args; 310 311 args.ptr = p->addr; 312 args.opcode = p->opcode; 313 stop_machine(swap_instruction, &args, NULL); 314 } 315 316 void __kprobes arch_remove_kprobe(struct kprobe *p) 317 { 318 s390_free_insn_slot(p); 319 } 320 321 static void __kprobes enable_singlestep(struct kprobe_ctlblk *kcb, 322 struct pt_regs *regs, 323 unsigned long ip) 324 { 325 struct per_regs per_kprobe; 326 327 /* Set up the PER control registers %cr9-%cr11 */ 328 per_kprobe.control = PER_EVENT_IFETCH; 329 per_kprobe.start = ip; 330 per_kprobe.end = ip; 331 332 /* Save control regs and psw mask */ 333 __ctl_store(kcb->kprobe_saved_ctl, 9, 11); 334 kcb->kprobe_saved_imask = regs->psw.mask & 335 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT); 336 337 /* Set PER control regs, turns on single step for the given address */ 338 __ctl_load(per_kprobe, 9, 11); 339 regs->psw.mask |= PSW_MASK_PER; 340 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 341 regs->psw.addr = ip | PSW_ADDR_AMODE; 342 } 343 344 static void __kprobes disable_singlestep(struct kprobe_ctlblk *kcb, 345 struct pt_regs *regs, 346 unsigned long ip) 347 { 348 /* Restore control regs and psw mask, set new psw address */ 349 __ctl_load(kcb->kprobe_saved_ctl, 9, 11); 350 regs->psw.mask &= ~PSW_MASK_PER; 351 regs->psw.mask |= kcb->kprobe_saved_imask; 352 regs->psw.addr = ip | PSW_ADDR_AMODE; 353 } 354 355 /* 356 * Activate a kprobe by storing its pointer to current_kprobe. The 357 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to 358 * two kprobes can be active, see KPROBE_REENTER. 359 */ 360 static void __kprobes push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p) 361 { 362 kcb->prev_kprobe.kp = __get_cpu_var(current_kprobe); 363 kcb->prev_kprobe.status = kcb->kprobe_status; 364 __get_cpu_var(current_kprobe) = p; 365 } 366 367 /* 368 * Deactivate a kprobe by backing up to the previous state. If the 369 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL, 370 * for any other state prev_kprobe.kp will be NULL. 371 */ 372 static void __kprobes pop_kprobe(struct kprobe_ctlblk *kcb) 373 { 374 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 375 kcb->kprobe_status = kcb->prev_kprobe.status; 376 } 377 378 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 379 struct pt_regs *regs) 380 { 381 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14]; 382 383 /* Replace the return addr with trampoline addr */ 384 regs->gprs[14] = (unsigned long) &kretprobe_trampoline; 385 } 386 387 static void __kprobes kprobe_reenter_check(struct kprobe_ctlblk *kcb, 388 struct kprobe *p) 389 { 390 switch (kcb->kprobe_status) { 391 case KPROBE_HIT_SSDONE: 392 case KPROBE_HIT_ACTIVE: 393 kprobes_inc_nmissed_count(p); 394 break; 395 case KPROBE_HIT_SS: 396 case KPROBE_REENTER: 397 default: 398 /* 399 * A kprobe on the code path to single step an instruction 400 * is a BUG. The code path resides in the .kprobes.text 401 * section and is executed with interrupts disabled. 402 */ 403 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr); 404 dump_kprobe(p); 405 BUG(); 406 } 407 } 408 409 static int __kprobes kprobe_handler(struct pt_regs *regs) 410 { 411 struct kprobe_ctlblk *kcb; 412 struct kprobe *p; 413 414 /* 415 * We want to disable preemption for the entire duration of kprobe 416 * processing. That includes the calls to the pre/post handlers 417 * and single stepping the kprobe instruction. 418 */ 419 preempt_disable(); 420 kcb = get_kprobe_ctlblk(); 421 p = get_kprobe((void *)((regs->psw.addr & PSW_ADDR_INSN) - 2)); 422 423 if (p) { 424 if (kprobe_running()) { 425 /* 426 * We have hit a kprobe while another is still 427 * active. This can happen in the pre and post 428 * handler. Single step the instruction of the 429 * new probe but do not call any handler function 430 * of this secondary kprobe. 431 * push_kprobe and pop_kprobe saves and restores 432 * the currently active kprobe. 433 */ 434 kprobe_reenter_check(kcb, p); 435 push_kprobe(kcb, p); 436 kcb->kprobe_status = KPROBE_REENTER; 437 } else { 438 /* 439 * If we have no pre-handler or it returned 0, we 440 * continue with single stepping. If we have a 441 * pre-handler and it returned non-zero, it prepped 442 * for calling the break_handler below on re-entry 443 * for jprobe processing, so get out doing nothing 444 * more here. 445 */ 446 push_kprobe(kcb, p); 447 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 448 if (p->pre_handler && p->pre_handler(p, regs)) 449 return 1; 450 kcb->kprobe_status = KPROBE_HIT_SS; 451 } 452 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn); 453 return 1; 454 } else if (kprobe_running()) { 455 p = __get_cpu_var(current_kprobe); 456 if (p->break_handler && p->break_handler(p, regs)) { 457 /* 458 * Continuation after the jprobe completed and 459 * caused the jprobe_return trap. The jprobe 460 * break_handler "returns" to the original 461 * function that still has the kprobe breakpoint 462 * installed. We continue with single stepping. 463 */ 464 kcb->kprobe_status = KPROBE_HIT_SS; 465 enable_singlestep(kcb, regs, 466 (unsigned long) p->ainsn.insn); 467 return 1; 468 } /* else: 469 * No kprobe at this address and the current kprobe 470 * has no break handler (no jprobe!). The kernel just 471 * exploded, let the standard trap handler pick up the 472 * pieces. 473 */ 474 } /* else: 475 * No kprobe at this address and no active kprobe. The trap has 476 * not been caused by a kprobe breakpoint. The race of breakpoint 477 * vs. kprobe remove does not exist because on s390 as we use 478 * stop_machine to arm/disarm the breakpoints. 479 */ 480 preempt_enable_no_resched(); 481 return 0; 482 } 483 484 /* 485 * Function return probe trampoline: 486 * - init_kprobes() establishes a probepoint here 487 * - When the probed function returns, this probe 488 * causes the handlers to fire 489 */ 490 static void __used kretprobe_trampoline_holder(void) 491 { 492 asm volatile(".global kretprobe_trampoline\n" 493 "kretprobe_trampoline: bcr 0,0\n"); 494 } 495 496 /* 497 * Called when the probe at kretprobe trampoline is hit 498 */ 499 static int __kprobes trampoline_probe_handler(struct kprobe *p, 500 struct pt_regs *regs) 501 { 502 struct kretprobe_instance *ri; 503 struct hlist_head *head, empty_rp; 504 struct hlist_node *tmp; 505 unsigned long flags, orig_ret_address; 506 unsigned long trampoline_address; 507 kprobe_opcode_t *correct_ret_addr; 508 509 INIT_HLIST_HEAD(&empty_rp); 510 kretprobe_hash_lock(current, &head, &flags); 511 512 /* 513 * It is possible to have multiple instances associated with a given 514 * task either because an multiple functions in the call path 515 * have a return probe installed on them, and/or more than one return 516 * return probe was registered for a target function. 517 * 518 * We can handle this because: 519 * - instances are always inserted at the head of the list 520 * - when multiple return probes are registered for the same 521 * function, the first instance's ret_addr will point to the 522 * real return address, and all the rest will point to 523 * kretprobe_trampoline 524 */ 525 ri = NULL; 526 orig_ret_address = 0; 527 correct_ret_addr = NULL; 528 trampoline_address = (unsigned long) &kretprobe_trampoline; 529 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 530 if (ri->task != current) 531 /* another task is sharing our hash bucket */ 532 continue; 533 534 orig_ret_address = (unsigned long) ri->ret_addr; 535 536 if (orig_ret_address != trampoline_address) 537 /* 538 * This is the real return address. Any other 539 * instances associated with this task are for 540 * other calls deeper on the call stack 541 */ 542 break; 543 } 544 545 kretprobe_assert(ri, orig_ret_address, trampoline_address); 546 547 correct_ret_addr = ri->ret_addr; 548 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 549 if (ri->task != current) 550 /* another task is sharing our hash bucket */ 551 continue; 552 553 orig_ret_address = (unsigned long) ri->ret_addr; 554 555 if (ri->rp && ri->rp->handler) { 556 ri->ret_addr = correct_ret_addr; 557 ri->rp->handler(ri, regs); 558 } 559 560 recycle_rp_inst(ri, &empty_rp); 561 562 if (orig_ret_address != trampoline_address) 563 /* 564 * This is the real return address. Any other 565 * instances associated with this task are for 566 * other calls deeper on the call stack 567 */ 568 break; 569 } 570 571 regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE; 572 573 pop_kprobe(get_kprobe_ctlblk()); 574 kretprobe_hash_unlock(current, &flags); 575 preempt_enable_no_resched(); 576 577 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 578 hlist_del(&ri->hlist); 579 kfree(ri); 580 } 581 /* 582 * By returning a non-zero value, we are telling 583 * kprobe_handler() that we don't want the post_handler 584 * to run (and have re-enabled preemption) 585 */ 586 return 1; 587 } 588 589 /* 590 * Called after single-stepping. p->addr is the address of the 591 * instruction whose first byte has been replaced by the "breakpoint" 592 * instruction. To avoid the SMP problems that can occur when we 593 * temporarily put back the original opcode to single-step, we 594 * single-stepped a copy of the instruction. The address of this 595 * copy is p->ainsn.insn. 596 */ 597 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 598 { 599 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 600 unsigned long ip = regs->psw.addr & PSW_ADDR_INSN; 601 int fixup = get_fixup_type(p->ainsn.insn); 602 603 if (fixup & FIXUP_PSW_NORMAL) 604 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; 605 606 if (fixup & FIXUP_BRANCH_NOT_TAKEN) { 607 int ilen = ((p->ainsn.insn[0] >> 14) + 3) & -2; 608 if (ip - (unsigned long) p->ainsn.insn == ilen) 609 ip = (unsigned long) p->addr + ilen; 610 } 611 612 if (fixup & FIXUP_RETURN_REGISTER) { 613 int reg = (p->ainsn.insn[0] & 0xf0) >> 4; 614 regs->gprs[reg] += (unsigned long) p->addr - 615 (unsigned long) p->ainsn.insn; 616 } 617 618 disable_singlestep(kcb, regs, ip); 619 } 620 621 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 622 { 623 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 624 struct kprobe *p = kprobe_running(); 625 626 if (!p) 627 return 0; 628 629 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) { 630 kcb->kprobe_status = KPROBE_HIT_SSDONE; 631 p->post_handler(p, regs, 0); 632 } 633 634 resume_execution(p, regs); 635 pop_kprobe(kcb); 636 preempt_enable_no_resched(); 637 638 /* 639 * if somebody else is singlestepping across a probe point, psw mask 640 * will have PER set, in which case, continue the remaining processing 641 * of do_single_step, as if this is not a probe hit. 642 */ 643 if (regs->psw.mask & PSW_MASK_PER) 644 return 0; 645 646 return 1; 647 } 648 649 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, int trapnr) 650 { 651 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 652 struct kprobe *p = kprobe_running(); 653 const struct exception_table_entry *entry; 654 655 switch(kcb->kprobe_status) { 656 case KPROBE_SWAP_INST: 657 /* We are here because the instruction replacement failed */ 658 return 0; 659 case KPROBE_HIT_SS: 660 case KPROBE_REENTER: 661 /* 662 * We are here because the instruction being single 663 * stepped caused a page fault. We reset the current 664 * kprobe and the nip points back to the probe address 665 * and allow the page fault handler to continue as a 666 * normal page fault. 667 */ 668 disable_singlestep(kcb, regs, (unsigned long) p->addr); 669 pop_kprobe(kcb); 670 preempt_enable_no_resched(); 671 break; 672 case KPROBE_HIT_ACTIVE: 673 case KPROBE_HIT_SSDONE: 674 /* 675 * We increment the nmissed count for accounting, 676 * we can also use npre/npostfault count for accouting 677 * these specific fault cases. 678 */ 679 kprobes_inc_nmissed_count(p); 680 681 /* 682 * We come here because instructions in the pre/post 683 * handler caused the page_fault, this could happen 684 * if handler tries to access user space by 685 * copy_from_user(), get_user() etc. Let the 686 * user-specified handler try to fix it first. 687 */ 688 if (p->fault_handler && p->fault_handler(p, regs, trapnr)) 689 return 1; 690 691 /* 692 * In case the user-specified fault handler returned 693 * zero, try to fix up. 694 */ 695 entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN); 696 if (entry) { 697 regs->psw.addr = extable_fixup(entry) | PSW_ADDR_AMODE; 698 return 1; 699 } 700 701 /* 702 * fixup_exception() could not handle it, 703 * Let do_page_fault() fix it. 704 */ 705 break; 706 default: 707 break; 708 } 709 return 0; 710 } 711 712 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 713 { 714 int ret; 715 716 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 717 local_irq_disable(); 718 ret = kprobe_trap_handler(regs, trapnr); 719 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 720 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 721 return ret; 722 } 723 724 /* 725 * Wrapper routine to for handling exceptions. 726 */ 727 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 728 unsigned long val, void *data) 729 { 730 struct die_args *args = (struct die_args *) data; 731 struct pt_regs *regs = args->regs; 732 int ret = NOTIFY_DONE; 733 734 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 735 local_irq_disable(); 736 737 switch (val) { 738 case DIE_BPT: 739 if (kprobe_handler(regs)) 740 ret = NOTIFY_STOP; 741 break; 742 case DIE_SSTEP: 743 if (post_kprobe_handler(regs)) 744 ret = NOTIFY_STOP; 745 break; 746 case DIE_TRAP: 747 if (!preemptible() && kprobe_running() && 748 kprobe_trap_handler(regs, args->trapnr)) 749 ret = NOTIFY_STOP; 750 break; 751 default: 752 break; 753 } 754 755 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT)) 756 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER); 757 758 return ret; 759 } 760 761 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 762 { 763 struct jprobe *jp = container_of(p, struct jprobe, kp); 764 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 765 unsigned long stack; 766 767 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 768 769 /* setup return addr to the jprobe handler routine */ 770 regs->psw.addr = (unsigned long) jp->entry | PSW_ADDR_AMODE; 771 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT); 772 773 /* r15 is the stack pointer */ 774 stack = (unsigned long) regs->gprs[15]; 775 776 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack)); 777 return 1; 778 } 779 780 void __kprobes jprobe_return(void) 781 { 782 asm volatile(".word 0x0002"); 783 } 784 785 static void __used __kprobes jprobe_return_end(void) 786 { 787 asm volatile("bcr 0,0"); 788 } 789 790 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 791 { 792 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 793 unsigned long stack; 794 795 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15]; 796 797 /* Put the regs back */ 798 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 799 /* put the stack back */ 800 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack)); 801 preempt_enable_no_resched(); 802 return 1; 803 } 804 805 static struct kprobe trampoline = { 806 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 807 .pre_handler = trampoline_probe_handler 808 }; 809 810 int __init arch_init_kprobes(void) 811 { 812 return register_kprobe(&trampoline); 813 } 814 815 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 816 { 817 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline; 818 } 819