xref: /openbmc/linux/arch/s390/kernel/ftrace.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Dynamic function tracer architecture backend.
4  *
5  * Copyright IBM Corp. 2009,2014
6  *
7  *   Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *		Martin Schwidefsky <schwidefsky@de.ibm.com>
9  */
10 
11 #include <linux/moduleloader.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <linux/ftrace.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/kprobes.h>
18 #include <trace/syscall.h>
19 #include <asm/asm-offsets.h>
20 #include <asm/cacheflush.h>
21 #include <asm/set_memory.h>
22 #include "entry.h"
23 
24 /*
25  * The mcount code looks like this:
26  *	stg	%r14,8(%r15)		# offset 0
27  *	larl	%r1,<&counter>		# offset 6
28  *	brasl	%r14,_mcount		# offset 12
29  *	lg	%r14,8(%r15)		# offset 18
30  * Total length is 24 bytes. Only the first instruction will be patched
31  * by ftrace_make_call / ftrace_make_nop.
32  * The enabled ftrace code block looks like this:
33  * >	brasl	%r0,ftrace_caller	# offset 0
34  *	larl	%r1,<&counter>		# offset 6
35  *	brasl	%r14,_mcount		# offset 12
36  *	lg	%r14,8(%r15)		# offset 18
37  * The ftrace function gets called with a non-standard C function call ABI
38  * where r0 contains the return address. It is also expected that the called
39  * function only clobbers r0 and r1, but restores r2-r15.
40  * For module code we can't directly jump to ftrace caller, but need a
41  * trampoline (ftrace_plt), which clobbers also r1.
42  * The return point of the ftrace function has offset 24, so execution
43  * continues behind the mcount block.
44  * The disabled ftrace code block looks like this:
45  * >	jg	.+24			# offset 0
46  *	larl	%r1,<&counter>		# offset 6
47  *	brasl	%r14,_mcount		# offset 12
48  *	lg	%r14,8(%r15)		# offset 18
49  * The jg instruction branches to offset 24 to skip as many instructions
50  * as possible.
51  * In case we use gcc's hotpatch feature the original and also the disabled
52  * function prologue contains only a single six byte instruction and looks
53  * like this:
54  * >	brcl	0,0			# offset 0
55  * To enable ftrace the code gets patched like above and afterwards looks
56  * like this:
57  * >	brasl	%r0,ftrace_caller	# offset 0
58  */
59 
60 unsigned long ftrace_plt;
61 
62 static inline void ftrace_generate_orig_insn(struct ftrace_insn *insn)
63 {
64 #if defined(CC_USING_HOTPATCH) || defined(CC_USING_NOP_MCOUNT)
65 	/* brcl 0,0 */
66 	insn->opc = 0xc004;
67 	insn->disp = 0;
68 #else
69 	/* stg r14,8(r15) */
70 	insn->opc = 0xe3e0;
71 	insn->disp = 0xf0080024;
72 #endif
73 }
74 
75 static inline int is_kprobe_on_ftrace(struct ftrace_insn *insn)
76 {
77 #ifdef CONFIG_KPROBES
78 	if (insn->opc == BREAKPOINT_INSTRUCTION)
79 		return 1;
80 #endif
81 	return 0;
82 }
83 
84 static inline void ftrace_generate_kprobe_nop_insn(struct ftrace_insn *insn)
85 {
86 #ifdef CONFIG_KPROBES
87 	insn->opc = BREAKPOINT_INSTRUCTION;
88 	insn->disp = KPROBE_ON_FTRACE_NOP;
89 #endif
90 }
91 
92 static inline void ftrace_generate_kprobe_call_insn(struct ftrace_insn *insn)
93 {
94 #ifdef CONFIG_KPROBES
95 	insn->opc = BREAKPOINT_INSTRUCTION;
96 	insn->disp = KPROBE_ON_FTRACE_CALL;
97 #endif
98 }
99 
100 int ftrace_modify_call(struct dyn_ftrace *rec, unsigned long old_addr,
101 		       unsigned long addr)
102 {
103 	return 0;
104 }
105 
106 int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec,
107 		    unsigned long addr)
108 {
109 	struct ftrace_insn orig, new, old;
110 
111 	if (probe_kernel_read(&old, (void *) rec->ip, sizeof(old)))
112 		return -EFAULT;
113 	if (addr == MCOUNT_ADDR) {
114 		/* Initial code replacement */
115 		ftrace_generate_orig_insn(&orig);
116 		ftrace_generate_nop_insn(&new);
117 	} else if (is_kprobe_on_ftrace(&old)) {
118 		/*
119 		 * If we find a breakpoint instruction, a kprobe has been
120 		 * placed at the beginning of the function. We write the
121 		 * constant KPROBE_ON_FTRACE_NOP into the remaining four
122 		 * bytes of the original instruction so that the kprobes
123 		 * handler can execute a nop, if it reaches this breakpoint.
124 		 */
125 		ftrace_generate_kprobe_call_insn(&orig);
126 		ftrace_generate_kprobe_nop_insn(&new);
127 	} else {
128 		/* Replace ftrace call with a nop. */
129 		ftrace_generate_call_insn(&orig, rec->ip);
130 		ftrace_generate_nop_insn(&new);
131 	}
132 	/* Verify that the to be replaced code matches what we expect. */
133 	if (memcmp(&orig, &old, sizeof(old)))
134 		return -EINVAL;
135 	s390_kernel_write((void *) rec->ip, &new, sizeof(new));
136 	return 0;
137 }
138 
139 int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
140 {
141 	struct ftrace_insn orig, new, old;
142 
143 	if (probe_kernel_read(&old, (void *) rec->ip, sizeof(old)))
144 		return -EFAULT;
145 	if (is_kprobe_on_ftrace(&old)) {
146 		/*
147 		 * If we find a breakpoint instruction, a kprobe has been
148 		 * placed at the beginning of the function. We write the
149 		 * constant KPROBE_ON_FTRACE_CALL into the remaining four
150 		 * bytes of the original instruction so that the kprobes
151 		 * handler can execute a brasl if it reaches this breakpoint.
152 		 */
153 		ftrace_generate_kprobe_nop_insn(&orig);
154 		ftrace_generate_kprobe_call_insn(&new);
155 	} else {
156 		/* Replace nop with an ftrace call. */
157 		ftrace_generate_nop_insn(&orig);
158 		ftrace_generate_call_insn(&new, rec->ip);
159 	}
160 	/* Verify that the to be replaced code matches what we expect. */
161 	if (memcmp(&orig, &old, sizeof(old)))
162 		return -EINVAL;
163 	s390_kernel_write((void *) rec->ip, &new, sizeof(new));
164 	return 0;
165 }
166 
167 int ftrace_update_ftrace_func(ftrace_func_t func)
168 {
169 	return 0;
170 }
171 
172 int __init ftrace_dyn_arch_init(void)
173 {
174 	return 0;
175 }
176 
177 #ifdef CONFIG_MODULES
178 
179 static int __init ftrace_plt_init(void)
180 {
181 	unsigned int *ip;
182 
183 	ftrace_plt = (unsigned long) module_alloc(PAGE_SIZE);
184 	if (!ftrace_plt)
185 		panic("cannot allocate ftrace plt\n");
186 	ip = (unsigned int *) ftrace_plt;
187 	ip[0] = 0x0d10e310; /* basr 1,0; lg 1,10(1); br 1 */
188 	ip[1] = 0x100a0004;
189 	ip[2] = 0x07f10000;
190 	ip[3] = FTRACE_ADDR >> 32;
191 	ip[4] = FTRACE_ADDR & 0xffffffff;
192 	set_memory_ro(ftrace_plt, 1);
193 	return 0;
194 }
195 device_initcall(ftrace_plt_init);
196 
197 #endif /* CONFIG_MODULES */
198 
199 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
200 /*
201  * Hook the return address and push it in the stack of return addresses
202  * in current thread info.
203  */
204 unsigned long prepare_ftrace_return(unsigned long ra, unsigned long sp,
205 				    unsigned long ip)
206 {
207 	if (unlikely(ftrace_graph_is_dead()))
208 		goto out;
209 	if (unlikely(atomic_read(&current->tracing_graph_pause)))
210 		goto out;
211 	ip -= MCOUNT_INSN_SIZE;
212 	if (!function_graph_enter(ra, ip, 0, (void *) sp))
213 		ra = (unsigned long) return_to_handler;
214 out:
215 	return ra;
216 }
217 NOKPROBE_SYMBOL(prepare_ftrace_return);
218 
219 /*
220  * Patch the kernel code at ftrace_graph_caller location. The instruction
221  * there is branch relative on condition. To enable the ftrace graph code
222  * block, we simply patch the mask field of the instruction to zero and
223  * turn the instruction into a nop.
224  * To disable the ftrace graph code the mask field will be patched to
225  * all ones, which turns the instruction into an unconditional branch.
226  */
227 int ftrace_enable_ftrace_graph_caller(void)
228 {
229 	u8 op = 0x04; /* set mask field to zero */
230 
231 	s390_kernel_write(__va(ftrace_graph_caller)+1, &op, sizeof(op));
232 	return 0;
233 }
234 
235 int ftrace_disable_ftrace_graph_caller(void)
236 {
237 	u8 op = 0xf4; /* set mask field to all ones */
238 
239 	s390_kernel_write(__va(ftrace_graph_caller)+1, &op, sizeof(op));
240 	return 0;
241 }
242 
243 #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
244