xref: /openbmc/linux/arch/s390/kernel/crash_dump.c (revision f3a8b664)
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/asm-offsets.h>
17 #include <linux/memblock.h>
18 #include <asm/os_info.h>
19 #include <asm/elf.h>
20 #include <asm/ipl.h>
21 #include <asm/sclp.h>
22 
23 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
24 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
25 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
26 
27 static struct memblock_region oldmem_region;
28 
29 static struct memblock_type oldmem_type = {
30 	.cnt = 1,
31 	.max = 1,
32 	.total_size = 0,
33 	.regions = &oldmem_region,
34 };
35 
36 struct save_area {
37 	struct list_head list;
38 	u64 psw[2];
39 	u64 ctrs[16];
40 	u64 gprs[16];
41 	u32 acrs[16];
42 	u64 fprs[16];
43 	u32 fpc;
44 	u32 prefix;
45 	u64 todpreg;
46 	u64 timer;
47 	u64 todcmp;
48 	u64 vxrs_low[16];
49 	__vector128 vxrs_high[16];
50 };
51 
52 static LIST_HEAD(dump_save_areas);
53 
54 /*
55  * Allocate a save area
56  */
57 struct save_area * __init save_area_alloc(bool is_boot_cpu)
58 {
59 	struct save_area *sa;
60 
61 	sa = (void *) memblock_alloc(sizeof(*sa), 8);
62 	if (is_boot_cpu)
63 		list_add(&sa->list, &dump_save_areas);
64 	else
65 		list_add_tail(&sa->list, &dump_save_areas);
66 	return sa;
67 }
68 
69 /*
70  * Return the address of the save area for the boot CPU
71  */
72 struct save_area * __init save_area_boot_cpu(void)
73 {
74 	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
75 }
76 
77 /*
78  * Copy CPU registers into the save area
79  */
80 void __init save_area_add_regs(struct save_area *sa, void *regs)
81 {
82 	struct lowcore *lc;
83 
84 	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
85 	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
86 	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
87 	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
88 	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
89 	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
90 	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
91 	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
92 	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
93 	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
94 	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
95 }
96 
97 /*
98  * Copy vector registers into the save area
99  */
100 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
101 {
102 	int i;
103 
104 	/* Copy lower halves of vector registers 0-15 */
105 	for (i = 0; i < 16; i++)
106 		memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
107 	/* Copy vector registers 16-31 */
108 	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
109 }
110 
111 /*
112  * Return physical address for virtual address
113  */
114 static inline void *load_real_addr(void *addr)
115 {
116 	unsigned long real_addr;
117 
118 	asm volatile(
119 		   "	lra     %0,0(%1)\n"
120 		   "	jz	0f\n"
121 		   "	la	%0,0\n"
122 		   "0:"
123 		   : "=a" (real_addr) : "a" (addr) : "cc");
124 	return (void *)real_addr;
125 }
126 
127 /*
128  * Copy memory of the old, dumped system to a kernel space virtual address
129  */
130 int copy_oldmem_kernel(void *dst, void *src, size_t count)
131 {
132 	unsigned long from, len;
133 	void *ra;
134 	int rc;
135 
136 	while (count) {
137 		from = __pa(src);
138 		if (!OLDMEM_BASE && from < sclp.hsa_size) {
139 			/* Copy from zfcpdump HSA area */
140 			len = min(count, sclp.hsa_size - from);
141 			rc = memcpy_hsa_kernel(dst, from, len);
142 			if (rc)
143 				return rc;
144 		} else {
145 			/* Check for swapped kdump oldmem areas */
146 			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
147 				from -= OLDMEM_BASE;
148 				len = min(count, OLDMEM_SIZE - from);
149 			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
150 				len = min(count, OLDMEM_SIZE - from);
151 				from += OLDMEM_BASE;
152 			} else {
153 				len = count;
154 			}
155 			if (is_vmalloc_or_module_addr(dst)) {
156 				ra = load_real_addr(dst);
157 				len = min(PAGE_SIZE - offset_in_page(ra), len);
158 			} else {
159 				ra = dst;
160 			}
161 			if (memcpy_real(ra, (void *) from, len))
162 				return -EFAULT;
163 		}
164 		dst += len;
165 		src += len;
166 		count -= len;
167 	}
168 	return 0;
169 }
170 
171 /*
172  * Copy memory of the old, dumped system to a user space virtual address
173  */
174 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
175 {
176 	unsigned long from, len;
177 	int rc;
178 
179 	while (count) {
180 		from = __pa(src);
181 		if (!OLDMEM_BASE && from < sclp.hsa_size) {
182 			/* Copy from zfcpdump HSA area */
183 			len = min(count, sclp.hsa_size - from);
184 			rc = memcpy_hsa_user(dst, from, len);
185 			if (rc)
186 				return rc;
187 		} else {
188 			/* Check for swapped kdump oldmem areas */
189 			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
190 				from -= OLDMEM_BASE;
191 				len = min(count, OLDMEM_SIZE - from);
192 			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
193 				len = min(count, OLDMEM_SIZE - from);
194 				from += OLDMEM_BASE;
195 			} else {
196 				len = count;
197 			}
198 			rc = copy_to_user_real(dst, (void *) from, count);
199 			if (rc)
200 				return rc;
201 		}
202 		dst += len;
203 		src += len;
204 		count -= len;
205 	}
206 	return 0;
207 }
208 
209 /*
210  * Copy one page from "oldmem"
211  */
212 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
213 			 unsigned long offset, int userbuf)
214 {
215 	void *src;
216 	int rc;
217 
218 	if (!csize)
219 		return 0;
220 	src = (void *) (pfn << PAGE_SHIFT) + offset;
221 	if (userbuf)
222 		rc = copy_oldmem_user((void __force __user *) buf, src, csize);
223 	else
224 		rc = copy_oldmem_kernel((void *) buf, src, csize);
225 	return rc;
226 }
227 
228 /*
229  * Remap "oldmem" for kdump
230  *
231  * For the kdump reserved memory this functions performs a swap operation:
232  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
233  */
234 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
235 					unsigned long from, unsigned long pfn,
236 					unsigned long size, pgprot_t prot)
237 {
238 	unsigned long size_old;
239 	int rc;
240 
241 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
242 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
243 		rc = remap_pfn_range(vma, from,
244 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
245 				     size_old, prot);
246 		if (rc || size == size_old)
247 			return rc;
248 		size -= size_old;
249 		from += size_old;
250 		pfn += size_old >> PAGE_SHIFT;
251 	}
252 	return remap_pfn_range(vma, from, pfn, size, prot);
253 }
254 
255 /*
256  * Remap "oldmem" for zfcpdump
257  *
258  * We only map available memory above HSA size. Memory below HSA size
259  * is read on demand using the copy_oldmem_page() function.
260  */
261 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
262 					   unsigned long from,
263 					   unsigned long pfn,
264 					   unsigned long size, pgprot_t prot)
265 {
266 	unsigned long hsa_end = sclp.hsa_size;
267 	unsigned long size_hsa;
268 
269 	if (pfn < hsa_end >> PAGE_SHIFT) {
270 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
271 		if (size == size_hsa)
272 			return 0;
273 		size -= size_hsa;
274 		from += size_hsa;
275 		pfn += size_hsa >> PAGE_SHIFT;
276 	}
277 	return remap_pfn_range(vma, from, pfn, size, prot);
278 }
279 
280 /*
281  * Remap "oldmem" for kdump or zfcpdump
282  */
283 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
284 			   unsigned long pfn, unsigned long size, pgprot_t prot)
285 {
286 	if (OLDMEM_BASE)
287 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
288 	else
289 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
290 						       prot);
291 }
292 
293 /*
294  * Alloc memory and panic in case of ENOMEM
295  */
296 static void *kzalloc_panic(int len)
297 {
298 	void *rc;
299 
300 	rc = kzalloc(len, GFP_KERNEL);
301 	if (!rc)
302 		panic("s390 kdump kzalloc (%d) failed", len);
303 	return rc;
304 }
305 
306 /*
307  * Initialize ELF note
308  */
309 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
310 			  const char *name)
311 {
312 	Elf64_Nhdr *note;
313 	u64 len;
314 
315 	note = (Elf64_Nhdr *)buf;
316 	note->n_namesz = strlen(name) + 1;
317 	note->n_descsz = d_len;
318 	note->n_type = type;
319 	len = sizeof(Elf64_Nhdr);
320 
321 	memcpy(buf + len, name, note->n_namesz);
322 	len = roundup(len + note->n_namesz, 4);
323 
324 	memcpy(buf + len, desc, note->n_descsz);
325 	len = roundup(len + note->n_descsz, 4);
326 
327 	return PTR_ADD(buf, len);
328 }
329 
330 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
331 {
332 	return nt_init_name(buf, type, desc, d_len, KEXEC_CORE_NOTE_NAME);
333 }
334 
335 /*
336  * Fill ELF notes for one CPU with save area registers
337  */
338 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
339 {
340 	struct elf_prstatus nt_prstatus;
341 	elf_fpregset_t nt_fpregset;
342 
343 	/* Prepare prstatus note */
344 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
345 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
346 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
347 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
348 	nt_prstatus.pr_pid = cpu;
349 	/* Prepare fpregset (floating point) note */
350 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
351 	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
352 	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
353 	/* Create ELF notes for the CPU */
354 	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
355 	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
356 	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
357 	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
358 	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
359 	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
360 	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
361 	if (MACHINE_HAS_VX) {
362 		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
363 			      &sa->vxrs_high, sizeof(sa->vxrs_high));
364 		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
365 			      &sa->vxrs_low, sizeof(sa->vxrs_low));
366 	}
367 	return ptr;
368 }
369 
370 /*
371  * Initialize prpsinfo note (new kernel)
372  */
373 static void *nt_prpsinfo(void *ptr)
374 {
375 	struct elf_prpsinfo prpsinfo;
376 
377 	memset(&prpsinfo, 0, sizeof(prpsinfo));
378 	prpsinfo.pr_sname = 'R';
379 	strcpy(prpsinfo.pr_fname, "vmlinux");
380 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
381 }
382 
383 /*
384  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
385  */
386 static void *get_vmcoreinfo_old(unsigned long *size)
387 {
388 	char nt_name[11], *vmcoreinfo;
389 	Elf64_Nhdr note;
390 	void *addr;
391 
392 	if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
393 		return NULL;
394 	memset(nt_name, 0, sizeof(nt_name));
395 	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
396 		return NULL;
397 	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
398 			       sizeof(nt_name) - 1))
399 		return NULL;
400 	if (strcmp(nt_name, "VMCOREINFO") != 0)
401 		return NULL;
402 	vmcoreinfo = kzalloc_panic(note.n_descsz);
403 	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
404 		return NULL;
405 	*size = note.n_descsz;
406 	return vmcoreinfo;
407 }
408 
409 /*
410  * Initialize vmcoreinfo note (new kernel)
411  */
412 static void *nt_vmcoreinfo(void *ptr)
413 {
414 	unsigned long size;
415 	void *vmcoreinfo;
416 
417 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
418 	if (!vmcoreinfo)
419 		vmcoreinfo = get_vmcoreinfo_old(&size);
420 	if (!vmcoreinfo)
421 		return ptr;
422 	return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
423 }
424 
425 /*
426  * Initialize ELF header (new kernel)
427  */
428 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
429 {
430 	memset(ehdr, 0, sizeof(*ehdr));
431 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
432 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
433 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
434 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
435 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
436 	ehdr->e_type = ET_CORE;
437 	ehdr->e_machine = EM_S390;
438 	ehdr->e_version = EV_CURRENT;
439 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
440 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
441 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
442 	ehdr->e_phnum = mem_chunk_cnt + 1;
443 	return ehdr + 1;
444 }
445 
446 /*
447  * Return CPU count for ELF header (new kernel)
448  */
449 static int get_cpu_cnt(void)
450 {
451 	struct save_area *sa;
452 	int cpus = 0;
453 
454 	list_for_each_entry(sa, &dump_save_areas, list)
455 		if (sa->prefix != 0)
456 			cpus++;
457 	return cpus;
458 }
459 
460 /*
461  * Return memory chunk count for ELF header (new kernel)
462  */
463 static int get_mem_chunk_cnt(void)
464 {
465 	int cnt = 0;
466 	u64 idx;
467 
468 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
469 			   MEMBLOCK_NONE, NULL, NULL, NULL)
470 		cnt++;
471 	return cnt;
472 }
473 
474 /*
475  * Initialize ELF loads (new kernel)
476  */
477 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
478 {
479 	phys_addr_t start, end;
480 	u64 idx;
481 
482 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
483 			   MEMBLOCK_NONE, &start, &end, NULL) {
484 		phdr->p_filesz = end - start;
485 		phdr->p_type = PT_LOAD;
486 		phdr->p_offset = start;
487 		phdr->p_vaddr = start;
488 		phdr->p_paddr = start;
489 		phdr->p_memsz = end - start;
490 		phdr->p_flags = PF_R | PF_W | PF_X;
491 		phdr->p_align = PAGE_SIZE;
492 		phdr++;
493 	}
494 }
495 
496 /*
497  * Initialize notes (new kernel)
498  */
499 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
500 {
501 	struct save_area *sa;
502 	void *ptr_start = ptr;
503 	int cpu;
504 
505 	ptr = nt_prpsinfo(ptr);
506 
507 	cpu = 1;
508 	list_for_each_entry(sa, &dump_save_areas, list)
509 		if (sa->prefix != 0)
510 			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
511 	ptr = nt_vmcoreinfo(ptr);
512 	memset(phdr, 0, sizeof(*phdr));
513 	phdr->p_type = PT_NOTE;
514 	phdr->p_offset = notes_offset;
515 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
516 	phdr->p_memsz = phdr->p_filesz;
517 	return ptr;
518 }
519 
520 /*
521  * Create ELF core header (new kernel)
522  */
523 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
524 {
525 	Elf64_Phdr *phdr_notes, *phdr_loads;
526 	int mem_chunk_cnt;
527 	void *ptr, *hdr;
528 	u32 alloc_size;
529 	u64 hdr_off;
530 
531 	/* If we are not in kdump or zfcpdump mode return */
532 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
533 		return 0;
534 	/* If we cannot get HSA size for zfcpdump return error */
535 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
536 		return -ENODEV;
537 
538 	/* For kdump, exclude previous crashkernel memory */
539 	if (OLDMEM_BASE) {
540 		oldmem_region.base = OLDMEM_BASE;
541 		oldmem_region.size = OLDMEM_SIZE;
542 		oldmem_type.total_size = OLDMEM_SIZE;
543 	}
544 
545 	mem_chunk_cnt = get_mem_chunk_cnt();
546 
547 	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
548 		mem_chunk_cnt * sizeof(Elf64_Phdr);
549 	hdr = kzalloc_panic(alloc_size);
550 	/* Init elf header */
551 	ptr = ehdr_init(hdr, mem_chunk_cnt);
552 	/* Init program headers */
553 	phdr_notes = ptr;
554 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
555 	phdr_loads = ptr;
556 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
557 	/* Init notes */
558 	hdr_off = PTR_DIFF(ptr, hdr);
559 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
560 	/* Init loads */
561 	hdr_off = PTR_DIFF(ptr, hdr);
562 	loads_init(phdr_loads, hdr_off);
563 	*addr = (unsigned long long) hdr;
564 	*size = (unsigned long long) hdr_off;
565 	BUG_ON(elfcorehdr_size > alloc_size);
566 	return 0;
567 }
568 
569 /*
570  * Free ELF core header (new kernel)
571  */
572 void elfcorehdr_free(unsigned long long addr)
573 {
574 	kfree((void *)(unsigned long)addr);
575 }
576 
577 /*
578  * Read from ELF header
579  */
580 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
581 {
582 	void *src = (void *)(unsigned long)*ppos;
583 
584 	memcpy(buf, src, count);
585 	*ppos += count;
586 	return count;
587 }
588 
589 /*
590  * Read from ELF notes data
591  */
592 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
593 {
594 	void *src = (void *)(unsigned long)*ppos;
595 
596 	memcpy(buf, src, count);
597 	*ppos += count;
598 	return count;
599 }
600