xref: /openbmc/linux/arch/s390/kernel/crash_dump.c (revision b34081f1)
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/os_info.h>
17 #include <asm/elf.h>
18 #include <asm/ipl.h>
19 #include <asm/sclp.h>
20 
21 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
22 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
23 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
24 
25 
26 /*
27  * Return physical address for virtual address
28  */
29 static inline void *load_real_addr(void *addr)
30 {
31 	unsigned long real_addr;
32 
33 	asm volatile(
34 		   "	lra     %0,0(%1)\n"
35 		   "	jz	0f\n"
36 		   "	la	%0,0\n"
37 		   "0:"
38 		   : "=a" (real_addr) : "a" (addr) : "cc");
39 	return (void *)real_addr;
40 }
41 
42 /*
43  * Copy up to one page to vmalloc or real memory
44  */
45 static ssize_t copy_page_real(void *buf, void *src, size_t csize)
46 {
47 	size_t size;
48 
49 	if (is_vmalloc_addr(buf)) {
50 		BUG_ON(csize >= PAGE_SIZE);
51 		/* If buf is not page aligned, copy first part */
52 		size = min(roundup(__pa(buf), PAGE_SIZE) - __pa(buf), csize);
53 		if (size) {
54 			if (memcpy_real(load_real_addr(buf), src, size))
55 				return -EFAULT;
56 			buf += size;
57 			src += size;
58 		}
59 		/* Copy second part */
60 		size = csize - size;
61 		return (size) ? memcpy_real(load_real_addr(buf), src, size) : 0;
62 	} else {
63 		return memcpy_real(buf, src, csize);
64 	}
65 }
66 
67 /*
68  * Pointer to ELF header in new kernel
69  */
70 static void *elfcorehdr_newmem;
71 
72 /*
73  * Copy one page from zfcpdump "oldmem"
74  *
75  * For pages below ZFCPDUMP_HSA_SIZE memory from the HSA is copied. Otherwise
76  * real memory copy is used.
77  */
78 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
79 					 unsigned long src, int userbuf)
80 {
81 	int rc;
82 
83 	if (src < ZFCPDUMP_HSA_SIZE) {
84 		rc = memcpy_hsa(buf, src, csize, userbuf);
85 	} else {
86 		if (userbuf)
87 			rc = copy_to_user_real((void __force __user *) buf,
88 					       (void *) src, csize);
89 		else
90 			rc = memcpy_real(buf, (void *) src, csize);
91 	}
92 	return rc ? rc : csize;
93 }
94 
95 /*
96  * Copy one page from kdump "oldmem"
97  *
98  * For the kdump reserved memory this functions performs a swap operation:
99  *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
100  *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
101  */
102 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
103 				      unsigned long src, int userbuf)
104 
105 {
106 	int rc;
107 
108 	if (src < OLDMEM_SIZE)
109 		src += OLDMEM_BASE;
110 	else if (src > OLDMEM_BASE &&
111 		 src < OLDMEM_BASE + OLDMEM_SIZE)
112 		src -= OLDMEM_BASE;
113 	if (userbuf)
114 		rc = copy_to_user_real((void __force __user *) buf,
115 				       (void *) src, csize);
116 	else
117 		rc = copy_page_real(buf, (void *) src, csize);
118 	return (rc == 0) ? rc : csize;
119 }
120 
121 /*
122  * Copy one page from "oldmem"
123  */
124 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
125 			 unsigned long offset, int userbuf)
126 {
127 	unsigned long src;
128 
129 	if (!csize)
130 		return 0;
131 	src = (pfn << PAGE_SHIFT) + offset;
132 	if (OLDMEM_BASE)
133 		return copy_oldmem_page_kdump(buf, csize, src, userbuf);
134 	else
135 		return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
136 }
137 
138 /*
139  * Remap "oldmem" for kdump
140  *
141  * For the kdump reserved memory this functions performs a swap operation:
142  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
143  */
144 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
145 					unsigned long from, unsigned long pfn,
146 					unsigned long size, pgprot_t prot)
147 {
148 	unsigned long size_old;
149 	int rc;
150 
151 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
152 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
153 		rc = remap_pfn_range(vma, from,
154 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
155 				     size_old, prot);
156 		if (rc || size == size_old)
157 			return rc;
158 		size -= size_old;
159 		from += size_old;
160 		pfn += size_old >> PAGE_SHIFT;
161 	}
162 	return remap_pfn_range(vma, from, pfn, size, prot);
163 }
164 
165 /*
166  * Remap "oldmem" for zfcpdump
167  *
168  * We only map available memory above ZFCPDUMP_HSA_SIZE. Memory below
169  * ZFCPDUMP_HSA_SIZE is read on demand using the copy_oldmem_page() function.
170  */
171 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
172 					   unsigned long from,
173 					   unsigned long pfn,
174 					   unsigned long size, pgprot_t prot)
175 {
176 	unsigned long size_hsa;
177 
178 	if (pfn < ZFCPDUMP_HSA_SIZE >> PAGE_SHIFT) {
179 		size_hsa = min(size, ZFCPDUMP_HSA_SIZE - (pfn << PAGE_SHIFT));
180 		if (size == size_hsa)
181 			return 0;
182 		size -= size_hsa;
183 		from += size_hsa;
184 		pfn += size_hsa >> PAGE_SHIFT;
185 	}
186 	return remap_pfn_range(vma, from, pfn, size, prot);
187 }
188 
189 /*
190  * Remap "oldmem" for kdump or zfcpdump
191  */
192 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
193 			   unsigned long pfn, unsigned long size, pgprot_t prot)
194 {
195 	if (OLDMEM_BASE)
196 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
197 	else
198 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
199 						       prot);
200 }
201 
202 /*
203  * Copy memory from old kernel
204  */
205 int copy_from_oldmem(void *dest, void *src, size_t count)
206 {
207 	unsigned long copied = 0;
208 	int rc;
209 
210 	if (OLDMEM_BASE) {
211 		if ((unsigned long) src < OLDMEM_SIZE) {
212 			copied = min(count, OLDMEM_SIZE - (unsigned long) src);
213 			rc = memcpy_real(dest, src + OLDMEM_BASE, copied);
214 			if (rc)
215 				return rc;
216 		}
217 	} else {
218 		if ((unsigned long) src < ZFCPDUMP_HSA_SIZE) {
219 			copied = min(count,
220 				     ZFCPDUMP_HSA_SIZE - (unsigned long) src);
221 			rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
222 			if (rc)
223 				return rc;
224 		}
225 	}
226 	return memcpy_real(dest + copied, src + copied, count - copied);
227 }
228 
229 /*
230  * Alloc memory and panic in case of ENOMEM
231  */
232 static void *kzalloc_panic(int len)
233 {
234 	void *rc;
235 
236 	rc = kzalloc(len, GFP_KERNEL);
237 	if (!rc)
238 		panic("s390 kdump kzalloc (%d) failed", len);
239 	return rc;
240 }
241 
242 /*
243  * Get memory layout and create hole for oldmem
244  */
245 static struct mem_chunk *get_memory_layout(void)
246 {
247 	struct mem_chunk *chunk_array;
248 
249 	chunk_array = kzalloc_panic(MEMORY_CHUNKS * sizeof(struct mem_chunk));
250 	detect_memory_layout(chunk_array, 0);
251 	create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE);
252 	return chunk_array;
253 }
254 
255 /*
256  * Initialize ELF note
257  */
258 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
259 		     const char *name)
260 {
261 	Elf64_Nhdr *note;
262 	u64 len;
263 
264 	note = (Elf64_Nhdr *)buf;
265 	note->n_namesz = strlen(name) + 1;
266 	note->n_descsz = d_len;
267 	note->n_type = type;
268 	len = sizeof(Elf64_Nhdr);
269 
270 	memcpy(buf + len, name, note->n_namesz);
271 	len = roundup(len + note->n_namesz, 4);
272 
273 	memcpy(buf + len, desc, note->n_descsz);
274 	len = roundup(len + note->n_descsz, 4);
275 
276 	return PTR_ADD(buf, len);
277 }
278 
279 /*
280  * Initialize prstatus note
281  */
282 static void *nt_prstatus(void *ptr, struct save_area *sa)
283 {
284 	struct elf_prstatus nt_prstatus;
285 	static int cpu_nr = 1;
286 
287 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
288 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
289 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
290 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
291 	nt_prstatus.pr_pid = cpu_nr;
292 	cpu_nr++;
293 
294 	return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
295 			 "CORE");
296 }
297 
298 /*
299  * Initialize fpregset (floating point) note
300  */
301 static void *nt_fpregset(void *ptr, struct save_area *sa)
302 {
303 	elf_fpregset_t nt_fpregset;
304 
305 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
306 	memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
307 	memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
308 
309 	return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
310 		       "CORE");
311 }
312 
313 /*
314  * Initialize timer note
315  */
316 static void *nt_s390_timer(void *ptr, struct save_area *sa)
317 {
318 	return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
319 			 KEXEC_CORE_NOTE_NAME);
320 }
321 
322 /*
323  * Initialize TOD clock comparator note
324  */
325 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
326 {
327 	return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
328 		       sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
329 }
330 
331 /*
332  * Initialize TOD programmable register note
333  */
334 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
335 {
336 	return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
337 		       sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
338 }
339 
340 /*
341  * Initialize control register note
342  */
343 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
344 {
345 	return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
346 		       sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
347 }
348 
349 /*
350  * Initialize prefix register note
351  */
352 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
353 {
354 	return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
355 			 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
356 }
357 
358 /*
359  * Fill ELF notes for one CPU with save area registers
360  */
361 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa)
362 {
363 	ptr = nt_prstatus(ptr, sa);
364 	ptr = nt_fpregset(ptr, sa);
365 	ptr = nt_s390_timer(ptr, sa);
366 	ptr = nt_s390_tod_cmp(ptr, sa);
367 	ptr = nt_s390_tod_preg(ptr, sa);
368 	ptr = nt_s390_ctrs(ptr, sa);
369 	ptr = nt_s390_prefix(ptr, sa);
370 	return ptr;
371 }
372 
373 /*
374  * Initialize prpsinfo note (new kernel)
375  */
376 static void *nt_prpsinfo(void *ptr)
377 {
378 	struct elf_prpsinfo prpsinfo;
379 
380 	memset(&prpsinfo, 0, sizeof(prpsinfo));
381 	prpsinfo.pr_sname = 'R';
382 	strcpy(prpsinfo.pr_fname, "vmlinux");
383 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
384 		       KEXEC_CORE_NOTE_NAME);
385 }
386 
387 /*
388  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
389  */
390 static void *get_vmcoreinfo_old(unsigned long *size)
391 {
392 	char nt_name[11], *vmcoreinfo;
393 	Elf64_Nhdr note;
394 	void *addr;
395 
396 	if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
397 		return NULL;
398 	memset(nt_name, 0, sizeof(nt_name));
399 	if (copy_from_oldmem(&note, addr, sizeof(note)))
400 		return NULL;
401 	if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
402 		return NULL;
403 	if (strcmp(nt_name, "VMCOREINFO") != 0)
404 		return NULL;
405 	vmcoreinfo = kzalloc_panic(note.n_descsz);
406 	if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
407 		return NULL;
408 	*size = note.n_descsz;
409 	return vmcoreinfo;
410 }
411 
412 /*
413  * Initialize vmcoreinfo note (new kernel)
414  */
415 static void *nt_vmcoreinfo(void *ptr)
416 {
417 	unsigned long size;
418 	void *vmcoreinfo;
419 
420 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
421 	if (!vmcoreinfo)
422 		vmcoreinfo = get_vmcoreinfo_old(&size);
423 	if (!vmcoreinfo)
424 		return ptr;
425 	return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
426 }
427 
428 /*
429  * Initialize ELF header (new kernel)
430  */
431 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
432 {
433 	memset(ehdr, 0, sizeof(*ehdr));
434 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
435 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
436 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
437 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
438 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
439 	ehdr->e_type = ET_CORE;
440 	ehdr->e_machine = EM_S390;
441 	ehdr->e_version = EV_CURRENT;
442 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
443 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
444 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
445 	ehdr->e_phnum = mem_chunk_cnt + 1;
446 	return ehdr + 1;
447 }
448 
449 /*
450  * Return CPU count for ELF header (new kernel)
451  */
452 static int get_cpu_cnt(void)
453 {
454 	int i, cpus = 0;
455 
456 	for (i = 0; zfcpdump_save_areas[i]; i++) {
457 		if (zfcpdump_save_areas[i]->pref_reg == 0)
458 			continue;
459 		cpus++;
460 	}
461 	return cpus;
462 }
463 
464 /*
465  * Return memory chunk count for ELF header (new kernel)
466  */
467 static int get_mem_chunk_cnt(void)
468 {
469 	struct mem_chunk *chunk_array, *mem_chunk;
470 	int i, cnt = 0;
471 
472 	chunk_array = get_memory_layout();
473 	for (i = 0; i < MEMORY_CHUNKS; i++) {
474 		mem_chunk = &chunk_array[i];
475 		if (chunk_array[i].type != CHUNK_READ_WRITE &&
476 		    chunk_array[i].type != CHUNK_READ_ONLY)
477 			continue;
478 		if (mem_chunk->size == 0)
479 			continue;
480 		cnt++;
481 	}
482 	kfree(chunk_array);
483 	return cnt;
484 }
485 
486 /*
487  * Initialize ELF loads (new kernel)
488  */
489 static int loads_init(Elf64_Phdr *phdr, u64 loads_offset)
490 {
491 	struct mem_chunk *chunk_array, *mem_chunk;
492 	int i;
493 
494 	chunk_array = get_memory_layout();
495 	for (i = 0; i < MEMORY_CHUNKS; i++) {
496 		mem_chunk = &chunk_array[i];
497 		if (mem_chunk->size == 0)
498 			continue;
499 		if (chunk_array[i].type != CHUNK_READ_WRITE &&
500 		    chunk_array[i].type != CHUNK_READ_ONLY)
501 			continue;
502 		else
503 			phdr->p_filesz = mem_chunk->size;
504 		phdr->p_type = PT_LOAD;
505 		phdr->p_offset = mem_chunk->addr;
506 		phdr->p_vaddr = mem_chunk->addr;
507 		phdr->p_paddr = mem_chunk->addr;
508 		phdr->p_memsz = mem_chunk->size;
509 		phdr->p_flags = PF_R | PF_W | PF_X;
510 		phdr->p_align = PAGE_SIZE;
511 		phdr++;
512 	}
513 	kfree(chunk_array);
514 	return i;
515 }
516 
517 /*
518  * Initialize notes (new kernel)
519  */
520 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
521 {
522 	struct save_area *sa;
523 	void *ptr_start = ptr;
524 	int i;
525 
526 	ptr = nt_prpsinfo(ptr);
527 
528 	for (i = 0; zfcpdump_save_areas[i]; i++) {
529 		sa = zfcpdump_save_areas[i];
530 		if (sa->pref_reg == 0)
531 			continue;
532 		ptr = fill_cpu_elf_notes(ptr, sa);
533 	}
534 	ptr = nt_vmcoreinfo(ptr);
535 	memset(phdr, 0, sizeof(*phdr));
536 	phdr->p_type = PT_NOTE;
537 	phdr->p_offset = notes_offset;
538 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
539 	phdr->p_memsz = phdr->p_filesz;
540 	return ptr;
541 }
542 
543 /*
544  * Create ELF core header (new kernel)
545  */
546 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
547 {
548 	Elf64_Phdr *phdr_notes, *phdr_loads;
549 	int mem_chunk_cnt;
550 	void *ptr, *hdr;
551 	u32 alloc_size;
552 	u64 hdr_off;
553 
554 	/* If we are not in kdump or zfcpdump mode return */
555 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
556 		return 0;
557 	/* If elfcorehdr= has been passed via cmdline, we use that one */
558 	if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
559 		return 0;
560 	mem_chunk_cnt = get_mem_chunk_cnt();
561 
562 	alloc_size = 0x1000 + get_cpu_cnt() * 0x300 +
563 		mem_chunk_cnt * sizeof(Elf64_Phdr);
564 	hdr = kzalloc_panic(alloc_size);
565 	/* Init elf header */
566 	ptr = ehdr_init(hdr, mem_chunk_cnt);
567 	/* Init program headers */
568 	phdr_notes = ptr;
569 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
570 	phdr_loads = ptr;
571 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
572 	/* Init notes */
573 	hdr_off = PTR_DIFF(ptr, hdr);
574 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
575 	/* Init loads */
576 	hdr_off = PTR_DIFF(ptr, hdr);
577 	loads_init(phdr_loads, hdr_off);
578 	*addr = (unsigned long long) hdr;
579 	elfcorehdr_newmem = hdr;
580 	*size = (unsigned long long) hdr_off;
581 	BUG_ON(elfcorehdr_size > alloc_size);
582 	return 0;
583 }
584 
585 /*
586  * Free ELF core header (new kernel)
587  */
588 void elfcorehdr_free(unsigned long long addr)
589 {
590 	if (!elfcorehdr_newmem)
591 		return;
592 	kfree((void *)(unsigned long)addr);
593 }
594 
595 /*
596  * Read from ELF header
597  */
598 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
599 {
600 	void *src = (void *)(unsigned long)*ppos;
601 
602 	src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
603 	memcpy(buf, src, count);
604 	*ppos += count;
605 	return count;
606 }
607 
608 /*
609  * Read from ELF notes data
610  */
611 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
612 {
613 	void *src = (void *)(unsigned long)*ppos;
614 	int rc;
615 
616 	if (elfcorehdr_newmem) {
617 		memcpy(buf, src, count);
618 	} else {
619 		rc = copy_from_oldmem(buf, src, count);
620 		if (rc)
621 			return rc;
622 	}
623 	*ppos += count;
624 	return count;
625 }
626