xref: /openbmc/linux/arch/s390/kernel/crash_dump.c (revision a8da474e)
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <linux/memblock.h>
17 #include <asm/os_info.h>
18 #include <asm/elf.h>
19 #include <asm/ipl.h>
20 #include <asm/sclp.h>
21 
22 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
23 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
24 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
25 
26 static struct memblock_region oldmem_region;
27 
28 static struct memblock_type oldmem_type = {
29 	.cnt = 1,
30 	.max = 1,
31 	.total_size = 0,
32 	.regions = &oldmem_region,
33 };
34 
35 struct dump_save_areas dump_save_areas;
36 
37 /*
38  * Return physical address for virtual address
39  */
40 static inline void *load_real_addr(void *addr)
41 {
42 	unsigned long real_addr;
43 
44 	asm volatile(
45 		   "	lra     %0,0(%1)\n"
46 		   "	jz	0f\n"
47 		   "	la	%0,0\n"
48 		   "0:"
49 		   : "=a" (real_addr) : "a" (addr) : "cc");
50 	return (void *)real_addr;
51 }
52 
53 /*
54  * Copy real to virtual or real memory
55  */
56 static int copy_from_realmem(void *dest, void *src, size_t count)
57 {
58 	unsigned long size;
59 
60 	if (!count)
61 		return 0;
62 	if (!is_vmalloc_or_module_addr(dest))
63 		return memcpy_real(dest, src, count);
64 	do {
65 		size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
66 		if (memcpy_real(load_real_addr(dest), src, size))
67 			return -EFAULT;
68 		count -= size;
69 		dest += size;
70 		src += size;
71 	} while (count);
72 	return 0;
73 }
74 
75 /*
76  * Pointer to ELF header in new kernel
77  */
78 static void *elfcorehdr_newmem;
79 
80 /*
81  * Copy one page from zfcpdump "oldmem"
82  *
83  * For pages below HSA size memory from the HSA is copied. Otherwise
84  * real memory copy is used.
85  */
86 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
87 					 unsigned long src, int userbuf)
88 {
89 	int rc;
90 
91 	if (src < sclp.hsa_size) {
92 		rc = memcpy_hsa(buf, src, csize, userbuf);
93 	} else {
94 		if (userbuf)
95 			rc = copy_to_user_real((void __force __user *) buf,
96 					       (void *) src, csize);
97 		else
98 			rc = memcpy_real(buf, (void *) src, csize);
99 	}
100 	return rc ? rc : csize;
101 }
102 
103 /*
104  * Copy one page from kdump "oldmem"
105  *
106  * For the kdump reserved memory this functions performs a swap operation:
107  *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
108  *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
109  */
110 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
111 				      unsigned long src, int userbuf)
112 
113 {
114 	int rc;
115 
116 	if (src < OLDMEM_SIZE)
117 		src += OLDMEM_BASE;
118 	else if (src > OLDMEM_BASE &&
119 		 src < OLDMEM_BASE + OLDMEM_SIZE)
120 		src -= OLDMEM_BASE;
121 	if (userbuf)
122 		rc = copy_to_user_real((void __force __user *) buf,
123 				       (void *) src, csize);
124 	else
125 		rc = copy_from_realmem(buf, (void *) src, csize);
126 	return (rc == 0) ? rc : csize;
127 }
128 
129 /*
130  * Copy one page from "oldmem"
131  */
132 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
133 			 unsigned long offset, int userbuf)
134 {
135 	unsigned long src;
136 
137 	if (!csize)
138 		return 0;
139 	src = (pfn << PAGE_SHIFT) + offset;
140 	if (OLDMEM_BASE)
141 		return copy_oldmem_page_kdump(buf, csize, src, userbuf);
142 	else
143 		return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
144 }
145 
146 /*
147  * Remap "oldmem" for kdump
148  *
149  * For the kdump reserved memory this functions performs a swap operation:
150  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
151  */
152 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
153 					unsigned long from, unsigned long pfn,
154 					unsigned long size, pgprot_t prot)
155 {
156 	unsigned long size_old;
157 	int rc;
158 
159 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
160 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
161 		rc = remap_pfn_range(vma, from,
162 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
163 				     size_old, prot);
164 		if (rc || size == size_old)
165 			return rc;
166 		size -= size_old;
167 		from += size_old;
168 		pfn += size_old >> PAGE_SHIFT;
169 	}
170 	return remap_pfn_range(vma, from, pfn, size, prot);
171 }
172 
173 /*
174  * Remap "oldmem" for zfcpdump
175  *
176  * We only map available memory above HSA size. Memory below HSA size
177  * is read on demand using the copy_oldmem_page() function.
178  */
179 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
180 					   unsigned long from,
181 					   unsigned long pfn,
182 					   unsigned long size, pgprot_t prot)
183 {
184 	unsigned long hsa_end = sclp.hsa_size;
185 	unsigned long size_hsa;
186 
187 	if (pfn < hsa_end >> PAGE_SHIFT) {
188 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
189 		if (size == size_hsa)
190 			return 0;
191 		size -= size_hsa;
192 		from += size_hsa;
193 		pfn += size_hsa >> PAGE_SHIFT;
194 	}
195 	return remap_pfn_range(vma, from, pfn, size, prot);
196 }
197 
198 /*
199  * Remap "oldmem" for kdump or zfcpdump
200  */
201 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
202 			   unsigned long pfn, unsigned long size, pgprot_t prot)
203 {
204 	if (OLDMEM_BASE)
205 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
206 	else
207 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
208 						       prot);
209 }
210 
211 /*
212  * Copy memory from old kernel
213  */
214 int copy_from_oldmem(void *dest, void *src, size_t count)
215 {
216 	unsigned long copied = 0;
217 	int rc;
218 
219 	if (OLDMEM_BASE) {
220 		if ((unsigned long) src < OLDMEM_SIZE) {
221 			copied = min(count, OLDMEM_SIZE - (unsigned long) src);
222 			rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
223 			if (rc)
224 				return rc;
225 		}
226 	} else {
227 		unsigned long hsa_end = sclp.hsa_size;
228 		if ((unsigned long) src < hsa_end) {
229 			copied = min(count, hsa_end - (unsigned long) src);
230 			rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
231 			if (rc)
232 				return rc;
233 		}
234 	}
235 	return copy_from_realmem(dest + copied, src + copied, count - copied);
236 }
237 
238 /*
239  * Alloc memory and panic in case of ENOMEM
240  */
241 static void *kzalloc_panic(int len)
242 {
243 	void *rc;
244 
245 	rc = kzalloc(len, GFP_KERNEL);
246 	if (!rc)
247 		panic("s390 kdump kzalloc (%d) failed", len);
248 	return rc;
249 }
250 
251 /*
252  * Initialize ELF note
253  */
254 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
255 		     const char *name)
256 {
257 	Elf64_Nhdr *note;
258 	u64 len;
259 
260 	note = (Elf64_Nhdr *)buf;
261 	note->n_namesz = strlen(name) + 1;
262 	note->n_descsz = d_len;
263 	note->n_type = type;
264 	len = sizeof(Elf64_Nhdr);
265 
266 	memcpy(buf + len, name, note->n_namesz);
267 	len = roundup(len + note->n_namesz, 4);
268 
269 	memcpy(buf + len, desc, note->n_descsz);
270 	len = roundup(len + note->n_descsz, 4);
271 
272 	return PTR_ADD(buf, len);
273 }
274 
275 /*
276  * Initialize prstatus note
277  */
278 static void *nt_prstatus(void *ptr, struct save_area *sa)
279 {
280 	struct elf_prstatus nt_prstatus;
281 	static int cpu_nr = 1;
282 
283 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
284 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
285 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
286 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
287 	nt_prstatus.pr_pid = cpu_nr;
288 	cpu_nr++;
289 
290 	return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
291 			 "CORE");
292 }
293 
294 /*
295  * Initialize fpregset (floating point) note
296  */
297 static void *nt_fpregset(void *ptr, struct save_area *sa)
298 {
299 	elf_fpregset_t nt_fpregset;
300 
301 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
302 	memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
303 	memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
304 
305 	return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
306 		       "CORE");
307 }
308 
309 /*
310  * Initialize timer note
311  */
312 static void *nt_s390_timer(void *ptr, struct save_area *sa)
313 {
314 	return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
315 			 KEXEC_CORE_NOTE_NAME);
316 }
317 
318 /*
319  * Initialize TOD clock comparator note
320  */
321 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
322 {
323 	return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
324 		       sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
325 }
326 
327 /*
328  * Initialize TOD programmable register note
329  */
330 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
331 {
332 	return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
333 		       sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
334 }
335 
336 /*
337  * Initialize control register note
338  */
339 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
340 {
341 	return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
342 		       sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
343 }
344 
345 /*
346  * Initialize prefix register note
347  */
348 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
349 {
350 	return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
351 			 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
352 }
353 
354 /*
355  * Initialize vxrs high note (full 128 bit VX registers 16-31)
356  */
357 static void *nt_s390_vx_high(void *ptr, __vector128 *vx_regs)
358 {
359 	return nt_init(ptr, NT_S390_VXRS_HIGH, &vx_regs[16],
360 		       16 * sizeof(__vector128), KEXEC_CORE_NOTE_NAME);
361 }
362 
363 /*
364  * Initialize vxrs low note (lower halves of VX registers 0-15)
365  */
366 static void *nt_s390_vx_low(void *ptr, __vector128 *vx_regs)
367 {
368 	Elf64_Nhdr *note;
369 	u64 len;
370 	int i;
371 
372 	note = (Elf64_Nhdr *)ptr;
373 	note->n_namesz = strlen(KEXEC_CORE_NOTE_NAME) + 1;
374 	note->n_descsz = 16 * 8;
375 	note->n_type = NT_S390_VXRS_LOW;
376 	len = sizeof(Elf64_Nhdr);
377 
378 	memcpy(ptr + len, KEXEC_CORE_NOTE_NAME, note->n_namesz);
379 	len = roundup(len + note->n_namesz, 4);
380 
381 	ptr += len;
382 	/* Copy lower halves of SIMD registers 0-15 */
383 	for (i = 0; i < 16; i++) {
384 		memcpy(ptr, &vx_regs[i].u[2], 8);
385 		ptr += 8;
386 	}
387 	return ptr;
388 }
389 
390 /*
391  * Fill ELF notes for one CPU with save area registers
392  */
393 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa, __vector128 *vx_regs)
394 {
395 	ptr = nt_prstatus(ptr, sa);
396 	ptr = nt_fpregset(ptr, sa);
397 	ptr = nt_s390_timer(ptr, sa);
398 	ptr = nt_s390_tod_cmp(ptr, sa);
399 	ptr = nt_s390_tod_preg(ptr, sa);
400 	ptr = nt_s390_ctrs(ptr, sa);
401 	ptr = nt_s390_prefix(ptr, sa);
402 	if (MACHINE_HAS_VX && vx_regs) {
403 		ptr = nt_s390_vx_low(ptr, vx_regs);
404 		ptr = nt_s390_vx_high(ptr, vx_regs);
405 	}
406 	return ptr;
407 }
408 
409 /*
410  * Initialize prpsinfo note (new kernel)
411  */
412 static void *nt_prpsinfo(void *ptr)
413 {
414 	struct elf_prpsinfo prpsinfo;
415 
416 	memset(&prpsinfo, 0, sizeof(prpsinfo));
417 	prpsinfo.pr_sname = 'R';
418 	strcpy(prpsinfo.pr_fname, "vmlinux");
419 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
420 		       KEXEC_CORE_NOTE_NAME);
421 }
422 
423 /*
424  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
425  */
426 static void *get_vmcoreinfo_old(unsigned long *size)
427 {
428 	char nt_name[11], *vmcoreinfo;
429 	Elf64_Nhdr note;
430 	void *addr;
431 
432 	if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
433 		return NULL;
434 	memset(nt_name, 0, sizeof(nt_name));
435 	if (copy_from_oldmem(&note, addr, sizeof(note)))
436 		return NULL;
437 	if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
438 		return NULL;
439 	if (strcmp(nt_name, "VMCOREINFO") != 0)
440 		return NULL;
441 	vmcoreinfo = kzalloc_panic(note.n_descsz);
442 	if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
443 		return NULL;
444 	*size = note.n_descsz;
445 	return vmcoreinfo;
446 }
447 
448 /*
449  * Initialize vmcoreinfo note (new kernel)
450  */
451 static void *nt_vmcoreinfo(void *ptr)
452 {
453 	unsigned long size;
454 	void *vmcoreinfo;
455 
456 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
457 	if (!vmcoreinfo)
458 		vmcoreinfo = get_vmcoreinfo_old(&size);
459 	if (!vmcoreinfo)
460 		return ptr;
461 	return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
462 }
463 
464 /*
465  * Initialize ELF header (new kernel)
466  */
467 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
468 {
469 	memset(ehdr, 0, sizeof(*ehdr));
470 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
471 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
472 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
473 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
474 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
475 	ehdr->e_type = ET_CORE;
476 	ehdr->e_machine = EM_S390;
477 	ehdr->e_version = EV_CURRENT;
478 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
479 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
480 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
481 	ehdr->e_phnum = mem_chunk_cnt + 1;
482 	return ehdr + 1;
483 }
484 
485 /*
486  * Return CPU count for ELF header (new kernel)
487  */
488 static int get_cpu_cnt(void)
489 {
490 	int i, cpus = 0;
491 
492 	for (i = 0; i < dump_save_areas.count; i++) {
493 		if (dump_save_areas.areas[i]->sa.pref_reg == 0)
494 			continue;
495 		cpus++;
496 	}
497 	return cpus;
498 }
499 
500 /*
501  * Return memory chunk count for ELF header (new kernel)
502  */
503 static int get_mem_chunk_cnt(void)
504 {
505 	int cnt = 0;
506 	u64 idx;
507 
508 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
509 			   MEMBLOCK_NONE, NULL, NULL, NULL)
510 		cnt++;
511 	return cnt;
512 }
513 
514 /*
515  * Initialize ELF loads (new kernel)
516  */
517 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
518 {
519 	phys_addr_t start, end;
520 	u64 idx;
521 
522 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
523 			   MEMBLOCK_NONE, &start, &end, NULL) {
524 		phdr->p_filesz = end - start;
525 		phdr->p_type = PT_LOAD;
526 		phdr->p_offset = start;
527 		phdr->p_vaddr = start;
528 		phdr->p_paddr = start;
529 		phdr->p_memsz = end - start;
530 		phdr->p_flags = PF_R | PF_W | PF_X;
531 		phdr->p_align = PAGE_SIZE;
532 		phdr++;
533 	}
534 }
535 
536 /*
537  * Initialize notes (new kernel)
538  */
539 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
540 {
541 	struct save_area_ext *sa_ext;
542 	void *ptr_start = ptr;
543 	int i;
544 
545 	ptr = nt_prpsinfo(ptr);
546 
547 	for (i = 0; i < dump_save_areas.count; i++) {
548 		sa_ext = dump_save_areas.areas[i];
549 		if (sa_ext->sa.pref_reg == 0)
550 			continue;
551 		ptr = fill_cpu_elf_notes(ptr, &sa_ext->sa, sa_ext->vx_regs);
552 	}
553 	ptr = nt_vmcoreinfo(ptr);
554 	memset(phdr, 0, sizeof(*phdr));
555 	phdr->p_type = PT_NOTE;
556 	phdr->p_offset = notes_offset;
557 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
558 	phdr->p_memsz = phdr->p_filesz;
559 	return ptr;
560 }
561 
562 /*
563  * Create ELF core header (new kernel)
564  */
565 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
566 {
567 	Elf64_Phdr *phdr_notes, *phdr_loads;
568 	int mem_chunk_cnt;
569 	void *ptr, *hdr;
570 	u32 alloc_size;
571 	u64 hdr_off;
572 
573 	/* If we are not in kdump or zfcpdump mode return */
574 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
575 		return 0;
576 	/* If elfcorehdr= has been passed via cmdline, we use that one */
577 	if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
578 		return 0;
579 	/* If we cannot get HSA size for zfcpdump return error */
580 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
581 		return -ENODEV;
582 
583 	/* For kdump, exclude previous crashkernel memory */
584 	if (OLDMEM_BASE) {
585 		oldmem_region.base = OLDMEM_BASE;
586 		oldmem_region.size = OLDMEM_SIZE;
587 		oldmem_type.total_size = OLDMEM_SIZE;
588 	}
589 
590 	mem_chunk_cnt = get_mem_chunk_cnt();
591 
592 	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
593 		mem_chunk_cnt * sizeof(Elf64_Phdr);
594 	hdr = kzalloc_panic(alloc_size);
595 	/* Init elf header */
596 	ptr = ehdr_init(hdr, mem_chunk_cnt);
597 	/* Init program headers */
598 	phdr_notes = ptr;
599 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
600 	phdr_loads = ptr;
601 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
602 	/* Init notes */
603 	hdr_off = PTR_DIFF(ptr, hdr);
604 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
605 	/* Init loads */
606 	hdr_off = PTR_DIFF(ptr, hdr);
607 	loads_init(phdr_loads, hdr_off);
608 	*addr = (unsigned long long) hdr;
609 	elfcorehdr_newmem = hdr;
610 	*size = (unsigned long long) hdr_off;
611 	BUG_ON(elfcorehdr_size > alloc_size);
612 	return 0;
613 }
614 
615 /*
616  * Free ELF core header (new kernel)
617  */
618 void elfcorehdr_free(unsigned long long addr)
619 {
620 	if (!elfcorehdr_newmem)
621 		return;
622 	kfree((void *)(unsigned long)addr);
623 }
624 
625 /*
626  * Read from ELF header
627  */
628 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
629 {
630 	void *src = (void *)(unsigned long)*ppos;
631 
632 	src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
633 	memcpy(buf, src, count);
634 	*ppos += count;
635 	return count;
636 }
637 
638 /*
639  * Read from ELF notes data
640  */
641 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
642 {
643 	void *src = (void *)(unsigned long)*ppos;
644 	int rc;
645 
646 	if (elfcorehdr_newmem) {
647 		memcpy(buf, src, count);
648 	} else {
649 		rc = copy_from_oldmem(buf, src, count);
650 		if (rc)
651 			return rc;
652 	}
653 	*ppos += count;
654 	return count;
655 }
656