xref: /openbmc/linux/arch/s390/kernel/crash_dump.c (revision 5104d265)
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/os_info.h>
17 #include <asm/elf.h>
18 #include <asm/ipl.h>
19 
20 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
21 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
22 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
23 
24 
25 /*
26  * Return physical address for virtual address
27  */
28 static inline void *load_real_addr(void *addr)
29 {
30 	unsigned long real_addr;
31 
32 	asm volatile(
33 		   "	lra     %0,0(%1)\n"
34 		   "	jz	0f\n"
35 		   "	la	%0,0\n"
36 		   "0:"
37 		   : "=a" (real_addr) : "a" (addr) : "cc");
38 	return (void *)real_addr;
39 }
40 
41 /*
42  * Copy up to one page to vmalloc or real memory
43  */
44 static ssize_t copy_page_real(void *buf, void *src, size_t csize)
45 {
46 	size_t size;
47 
48 	if (is_vmalloc_addr(buf)) {
49 		BUG_ON(csize >= PAGE_SIZE);
50 		/* If buf is not page aligned, copy first part */
51 		size = min(roundup(__pa(buf), PAGE_SIZE) - __pa(buf), csize);
52 		if (size) {
53 			if (memcpy_real(load_real_addr(buf), src, size))
54 				return -EFAULT;
55 			buf += size;
56 			src += size;
57 		}
58 		/* Copy second part */
59 		size = csize - size;
60 		return (size) ? memcpy_real(load_real_addr(buf), src, size) : 0;
61 	} else {
62 		return memcpy_real(buf, src, csize);
63 	}
64 }
65 
66 /*
67  * Copy one page from "oldmem"
68  *
69  * For the kdump reserved memory this functions performs a swap operation:
70  *  - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
71  *  - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
72  */
73 ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
74 			 size_t csize, unsigned long offset, int userbuf)
75 {
76 	unsigned long src;
77 	int rc;
78 
79 	if (!csize)
80 		return 0;
81 
82 	src = (pfn << PAGE_SHIFT) + offset;
83 	if (src < OLDMEM_SIZE)
84 		src += OLDMEM_BASE;
85 	else if (src > OLDMEM_BASE &&
86 		 src < OLDMEM_BASE + OLDMEM_SIZE)
87 		src -= OLDMEM_BASE;
88 	if (userbuf)
89 		rc = copy_to_user_real((void __force __user *) buf,
90 				       (void *) src, csize);
91 	else
92 		rc = copy_page_real(buf, (void *) src, csize);
93 	return (rc == 0) ? csize : rc;
94 }
95 
96 /*
97  * Copy memory from old kernel
98  */
99 int copy_from_oldmem(void *dest, void *src, size_t count)
100 {
101 	unsigned long copied = 0;
102 	int rc;
103 
104 	if ((unsigned long) src < OLDMEM_SIZE) {
105 		copied = min(count, OLDMEM_SIZE - (unsigned long) src);
106 		rc = memcpy_real(dest, src + OLDMEM_BASE, copied);
107 		if (rc)
108 			return rc;
109 	}
110 	return memcpy_real(dest + copied, src + copied, count - copied);
111 }
112 
113 /*
114  * Alloc memory and panic in case of ENOMEM
115  */
116 static void *kzalloc_panic(int len)
117 {
118 	void *rc;
119 
120 	rc = kzalloc(len, GFP_KERNEL);
121 	if (!rc)
122 		panic("s390 kdump kzalloc (%d) failed", len);
123 	return rc;
124 }
125 
126 /*
127  * Get memory layout and create hole for oldmem
128  */
129 static struct mem_chunk *get_memory_layout(void)
130 {
131 	struct mem_chunk *chunk_array;
132 
133 	chunk_array = kzalloc_panic(MEMORY_CHUNKS * sizeof(struct mem_chunk));
134 	detect_memory_layout(chunk_array, 0);
135 	create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE);
136 	return chunk_array;
137 }
138 
139 /*
140  * Initialize ELF note
141  */
142 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
143 		     const char *name)
144 {
145 	Elf64_Nhdr *note;
146 	u64 len;
147 
148 	note = (Elf64_Nhdr *)buf;
149 	note->n_namesz = strlen(name) + 1;
150 	note->n_descsz = d_len;
151 	note->n_type = type;
152 	len = sizeof(Elf64_Nhdr);
153 
154 	memcpy(buf + len, name, note->n_namesz);
155 	len = roundup(len + note->n_namesz, 4);
156 
157 	memcpy(buf + len, desc, note->n_descsz);
158 	len = roundup(len + note->n_descsz, 4);
159 
160 	return PTR_ADD(buf, len);
161 }
162 
163 /*
164  * Initialize prstatus note
165  */
166 static void *nt_prstatus(void *ptr, struct save_area *sa)
167 {
168 	struct elf_prstatus nt_prstatus;
169 	static int cpu_nr = 1;
170 
171 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
172 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
173 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
174 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
175 	nt_prstatus.pr_pid = cpu_nr;
176 	cpu_nr++;
177 
178 	return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
179 			 "CORE");
180 }
181 
182 /*
183  * Initialize fpregset (floating point) note
184  */
185 static void *nt_fpregset(void *ptr, struct save_area *sa)
186 {
187 	elf_fpregset_t nt_fpregset;
188 
189 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
190 	memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
191 	memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
192 
193 	return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
194 		       "CORE");
195 }
196 
197 /*
198  * Initialize timer note
199  */
200 static void *nt_s390_timer(void *ptr, struct save_area *sa)
201 {
202 	return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
203 			 KEXEC_CORE_NOTE_NAME);
204 }
205 
206 /*
207  * Initialize TOD clock comparator note
208  */
209 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
210 {
211 	return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
212 		       sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
213 }
214 
215 /*
216  * Initialize TOD programmable register note
217  */
218 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
219 {
220 	return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
221 		       sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
222 }
223 
224 /*
225  * Initialize control register note
226  */
227 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
228 {
229 	return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
230 		       sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
231 }
232 
233 /*
234  * Initialize prefix register note
235  */
236 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
237 {
238 	return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
239 			 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
240 }
241 
242 /*
243  * Fill ELF notes for one CPU with save area registers
244  */
245 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa)
246 {
247 	ptr = nt_prstatus(ptr, sa);
248 	ptr = nt_fpregset(ptr, sa);
249 	ptr = nt_s390_timer(ptr, sa);
250 	ptr = nt_s390_tod_cmp(ptr, sa);
251 	ptr = nt_s390_tod_preg(ptr, sa);
252 	ptr = nt_s390_ctrs(ptr, sa);
253 	ptr = nt_s390_prefix(ptr, sa);
254 	return ptr;
255 }
256 
257 /*
258  * Initialize prpsinfo note (new kernel)
259  */
260 static void *nt_prpsinfo(void *ptr)
261 {
262 	struct elf_prpsinfo prpsinfo;
263 
264 	memset(&prpsinfo, 0, sizeof(prpsinfo));
265 	prpsinfo.pr_sname = 'R';
266 	strcpy(prpsinfo.pr_fname, "vmlinux");
267 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
268 		       KEXEC_CORE_NOTE_NAME);
269 }
270 
271 /*
272  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
273  */
274 static void *get_vmcoreinfo_old(unsigned long *size)
275 {
276 	char nt_name[11], *vmcoreinfo;
277 	Elf64_Nhdr note;
278 	void *addr;
279 
280 	if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
281 		return NULL;
282 	memset(nt_name, 0, sizeof(nt_name));
283 	if (copy_from_oldmem(&note, addr, sizeof(note)))
284 		return NULL;
285 	if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
286 		return NULL;
287 	if (strcmp(nt_name, "VMCOREINFO") != 0)
288 		return NULL;
289 	vmcoreinfo = kzalloc_panic(note.n_descsz);
290 	if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
291 		return NULL;
292 	*size = note.n_descsz;
293 	return vmcoreinfo;
294 }
295 
296 /*
297  * Initialize vmcoreinfo note (new kernel)
298  */
299 static void *nt_vmcoreinfo(void *ptr)
300 {
301 	unsigned long size;
302 	void *vmcoreinfo;
303 
304 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
305 	if (!vmcoreinfo)
306 		vmcoreinfo = get_vmcoreinfo_old(&size);
307 	if (!vmcoreinfo)
308 		return ptr;
309 	return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
310 }
311 
312 /*
313  * Initialize ELF header (new kernel)
314  */
315 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
316 {
317 	memset(ehdr, 0, sizeof(*ehdr));
318 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
319 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
320 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
321 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
322 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
323 	ehdr->e_type = ET_CORE;
324 	ehdr->e_machine = EM_S390;
325 	ehdr->e_version = EV_CURRENT;
326 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
327 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
328 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
329 	ehdr->e_phnum = mem_chunk_cnt + 1;
330 	return ehdr + 1;
331 }
332 
333 /*
334  * Return CPU count for ELF header (new kernel)
335  */
336 static int get_cpu_cnt(void)
337 {
338 	int i, cpus = 0;
339 
340 	for (i = 0; zfcpdump_save_areas[i]; i++) {
341 		if (zfcpdump_save_areas[i]->pref_reg == 0)
342 			continue;
343 		cpus++;
344 	}
345 	return cpus;
346 }
347 
348 /*
349  * Return memory chunk count for ELF header (new kernel)
350  */
351 static int get_mem_chunk_cnt(void)
352 {
353 	struct mem_chunk *chunk_array, *mem_chunk;
354 	int i, cnt = 0;
355 
356 	chunk_array = get_memory_layout();
357 	for (i = 0; i < MEMORY_CHUNKS; i++) {
358 		mem_chunk = &chunk_array[i];
359 		if (chunk_array[i].type != CHUNK_READ_WRITE &&
360 		    chunk_array[i].type != CHUNK_READ_ONLY)
361 			continue;
362 		if (mem_chunk->size == 0)
363 			continue;
364 		cnt++;
365 	}
366 	kfree(chunk_array);
367 	return cnt;
368 }
369 
370 /*
371  * Relocate pointer in order to allow vmcore code access the data
372  */
373 static inline unsigned long relocate(unsigned long addr)
374 {
375 	return OLDMEM_BASE + addr;
376 }
377 
378 /*
379  * Initialize ELF loads (new kernel)
380  */
381 static int loads_init(Elf64_Phdr *phdr, u64 loads_offset)
382 {
383 	struct mem_chunk *chunk_array, *mem_chunk;
384 	int i;
385 
386 	chunk_array = get_memory_layout();
387 	for (i = 0; i < MEMORY_CHUNKS; i++) {
388 		mem_chunk = &chunk_array[i];
389 		if (mem_chunk->size == 0)
390 			continue;
391 		if (chunk_array[i].type != CHUNK_READ_WRITE &&
392 		    chunk_array[i].type != CHUNK_READ_ONLY)
393 			continue;
394 		else
395 			phdr->p_filesz = mem_chunk->size;
396 		phdr->p_type = PT_LOAD;
397 		phdr->p_offset = mem_chunk->addr;
398 		phdr->p_vaddr = mem_chunk->addr;
399 		phdr->p_paddr = mem_chunk->addr;
400 		phdr->p_memsz = mem_chunk->size;
401 		phdr->p_flags = PF_R | PF_W | PF_X;
402 		phdr->p_align = PAGE_SIZE;
403 		phdr++;
404 	}
405 	kfree(chunk_array);
406 	return i;
407 }
408 
409 /*
410  * Initialize notes (new kernel)
411  */
412 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
413 {
414 	struct save_area *sa;
415 	void *ptr_start = ptr;
416 	int i;
417 
418 	ptr = nt_prpsinfo(ptr);
419 
420 	for (i = 0; zfcpdump_save_areas[i]; i++) {
421 		sa = zfcpdump_save_areas[i];
422 		if (sa->pref_reg == 0)
423 			continue;
424 		ptr = fill_cpu_elf_notes(ptr, sa);
425 	}
426 	ptr = nt_vmcoreinfo(ptr);
427 	memset(phdr, 0, sizeof(*phdr));
428 	phdr->p_type = PT_NOTE;
429 	phdr->p_offset = relocate(notes_offset);
430 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
431 	phdr->p_memsz = phdr->p_filesz;
432 	return ptr;
433 }
434 
435 /*
436  * Create ELF core header (new kernel)
437  */
438 static void s390_elf_corehdr_create(char **elfcorebuf, size_t *elfcorebuf_sz)
439 {
440 	Elf64_Phdr *phdr_notes, *phdr_loads;
441 	int mem_chunk_cnt;
442 	void *ptr, *hdr;
443 	u32 alloc_size;
444 	u64 hdr_off;
445 
446 	mem_chunk_cnt = get_mem_chunk_cnt();
447 
448 	alloc_size = 0x1000 + get_cpu_cnt() * 0x300 +
449 		mem_chunk_cnt * sizeof(Elf64_Phdr);
450 	hdr = kzalloc_panic(alloc_size);
451 	/* Init elf header */
452 	ptr = ehdr_init(hdr, mem_chunk_cnt);
453 	/* Init program headers */
454 	phdr_notes = ptr;
455 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
456 	phdr_loads = ptr;
457 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
458 	/* Init notes */
459 	hdr_off = PTR_DIFF(ptr, hdr);
460 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
461 	/* Init loads */
462 	hdr_off = PTR_DIFF(ptr, hdr);
463 	loads_init(phdr_loads, ((unsigned long) hdr) + hdr_off);
464 	*elfcorebuf_sz = hdr_off;
465 	*elfcorebuf = (void *) relocate((unsigned long) hdr);
466 	BUG_ON(*elfcorebuf_sz > alloc_size);
467 }
468 
469 /*
470  * Create kdump ELF core header in new kernel, if it has not been passed via
471  * the "elfcorehdr" kernel parameter
472  */
473 static int setup_kdump_elfcorehdr(void)
474 {
475 	size_t elfcorebuf_sz;
476 	char *elfcorebuf;
477 
478 	if (!OLDMEM_BASE || is_kdump_kernel())
479 		return -EINVAL;
480 	s390_elf_corehdr_create(&elfcorebuf, &elfcorebuf_sz);
481 	elfcorehdr_addr = (unsigned long long) elfcorebuf;
482 	elfcorehdr_size = elfcorebuf_sz;
483 	return 0;
484 }
485 
486 subsys_initcall(setup_kdump_elfcorehdr);
487