1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * S390 kdump implementation 4 * 5 * Copyright IBM Corp. 2011 6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com> 7 */ 8 9 #include <linux/crash_dump.h> 10 #include <asm/lowcore.h> 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/mm.h> 14 #include <linux/gfp.h> 15 #include <linux/slab.h> 16 #include <linux/memblock.h> 17 #include <linux/elf.h> 18 #include <linux/uio.h> 19 #include <asm/asm-offsets.h> 20 #include <asm/os_info.h> 21 #include <asm/elf.h> 22 #include <asm/ipl.h> 23 #include <asm/sclp.h> 24 25 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y))) 26 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y))) 27 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y)))) 28 29 static struct memblock_region oldmem_region; 30 31 static struct memblock_type oldmem_type = { 32 .cnt = 1, 33 .max = 1, 34 .total_size = 0, 35 .regions = &oldmem_region, 36 .name = "oldmem", 37 }; 38 39 struct save_area { 40 struct list_head list; 41 u64 psw[2]; 42 u64 ctrs[16]; 43 u64 gprs[16]; 44 u32 acrs[16]; 45 u64 fprs[16]; 46 u32 fpc; 47 u32 prefix; 48 u64 todpreg; 49 u64 timer; 50 u64 todcmp; 51 u64 vxrs_low[16]; 52 __vector128 vxrs_high[16]; 53 }; 54 55 static LIST_HEAD(dump_save_areas); 56 57 /* 58 * Allocate a save area 59 */ 60 struct save_area * __init save_area_alloc(bool is_boot_cpu) 61 { 62 struct save_area *sa; 63 64 sa = memblock_alloc(sizeof(*sa), 8); 65 if (!sa) 66 panic("Failed to allocate save area\n"); 67 68 if (is_boot_cpu) 69 list_add(&sa->list, &dump_save_areas); 70 else 71 list_add_tail(&sa->list, &dump_save_areas); 72 return sa; 73 } 74 75 /* 76 * Return the address of the save area for the boot CPU 77 */ 78 struct save_area * __init save_area_boot_cpu(void) 79 { 80 return list_first_entry_or_null(&dump_save_areas, struct save_area, list); 81 } 82 83 /* 84 * Copy CPU registers into the save area 85 */ 86 void __init save_area_add_regs(struct save_area *sa, void *regs) 87 { 88 struct lowcore *lc; 89 90 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA); 91 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw)); 92 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs)); 93 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs)); 94 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs)); 95 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs)); 96 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc)); 97 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix)); 98 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg)); 99 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer)); 100 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp)); 101 } 102 103 /* 104 * Copy vector registers into the save area 105 */ 106 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs) 107 { 108 int i; 109 110 /* Copy lower halves of vector registers 0-15 */ 111 for (i = 0; i < 16; i++) 112 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8); 113 /* Copy vector registers 16-31 */ 114 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128)); 115 } 116 117 /* 118 * Return physical address for virtual address 119 */ 120 static inline void *load_real_addr(void *addr) 121 { 122 unsigned long real_addr; 123 124 asm volatile( 125 " lra %0,0(%1)\n" 126 " jz 0f\n" 127 " la %0,0\n" 128 "0:" 129 : "=a" (real_addr) : "a" (addr) : "cc"); 130 return (void *)real_addr; 131 } 132 133 /* 134 * Copy memory of the old, dumped system to a kernel space virtual address 135 */ 136 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count) 137 { 138 unsigned long len; 139 void *ra; 140 int rc; 141 142 while (count) { 143 if (!oldmem_data.start && src < sclp.hsa_size) { 144 /* Copy from zfcp/nvme dump HSA area */ 145 len = min(count, sclp.hsa_size - src); 146 rc = memcpy_hsa_kernel(dst, src, len); 147 if (rc) 148 return rc; 149 } else { 150 /* Check for swapped kdump oldmem areas */ 151 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) { 152 src -= oldmem_data.start; 153 len = min(count, oldmem_data.size - src); 154 } else if (oldmem_data.start && src < oldmem_data.size) { 155 len = min(count, oldmem_data.size - src); 156 src += oldmem_data.start; 157 } else { 158 len = count; 159 } 160 if (is_vmalloc_or_module_addr(dst)) { 161 ra = load_real_addr(dst); 162 len = min(PAGE_SIZE - offset_in_page(ra), len); 163 } else { 164 ra = dst; 165 } 166 if (memcpy_real(ra, src, len)) 167 return -EFAULT; 168 } 169 dst += len; 170 src += len; 171 count -= len; 172 } 173 return 0; 174 } 175 176 /* 177 * Copy memory of the old, dumped system to a user space virtual address 178 */ 179 static int copy_oldmem_user(void __user *dst, unsigned long src, size_t count) 180 { 181 unsigned long len; 182 int rc; 183 184 while (count) { 185 if (!oldmem_data.start && src < sclp.hsa_size) { 186 /* Copy from zfcp/nvme dump HSA area */ 187 len = min(count, sclp.hsa_size - src); 188 rc = memcpy_hsa_user(dst, src, len); 189 if (rc) 190 return rc; 191 } else { 192 /* Check for swapped kdump oldmem areas */ 193 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) { 194 src -= oldmem_data.start; 195 len = min(count, oldmem_data.size - src); 196 } else if (oldmem_data.start && src < oldmem_data.size) { 197 len = min(count, oldmem_data.size - src); 198 src += oldmem_data.start; 199 } else { 200 len = count; 201 } 202 rc = copy_to_user_real(dst, src, count); 203 if (rc) 204 return rc; 205 } 206 dst += len; 207 src += len; 208 count -= len; 209 } 210 return 0; 211 } 212 213 /* 214 * Copy one page from "oldmem" 215 */ 216 ssize_t copy_oldmem_page(struct iov_iter *iter, unsigned long pfn, size_t csize, 217 unsigned long offset) 218 { 219 unsigned long src; 220 int rc; 221 222 if (!csize) 223 return 0; 224 src = pfn_to_phys(pfn) + offset; 225 226 /* XXX: pass the iov_iter down to a common function */ 227 if (iter_is_iovec(iter)) 228 rc = copy_oldmem_user(iter->iov->iov_base, src, csize); 229 else 230 rc = copy_oldmem_kernel(iter->kvec->iov_base, src, csize); 231 return rc; 232 } 233 234 /* 235 * Remap "oldmem" for kdump 236 * 237 * For the kdump reserved memory this functions performs a swap operation: 238 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] 239 */ 240 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma, 241 unsigned long from, unsigned long pfn, 242 unsigned long size, pgprot_t prot) 243 { 244 unsigned long size_old; 245 int rc; 246 247 if (pfn < oldmem_data.size >> PAGE_SHIFT) { 248 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT)); 249 rc = remap_pfn_range(vma, from, 250 pfn + (oldmem_data.start >> PAGE_SHIFT), 251 size_old, prot); 252 if (rc || size == size_old) 253 return rc; 254 size -= size_old; 255 from += size_old; 256 pfn += size_old >> PAGE_SHIFT; 257 } 258 return remap_pfn_range(vma, from, pfn, size, prot); 259 } 260 261 /* 262 * Remap "oldmem" for zfcp/nvme dump 263 * 264 * We only map available memory above HSA size. Memory below HSA size 265 * is read on demand using the copy_oldmem_page() function. 266 */ 267 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma, 268 unsigned long from, 269 unsigned long pfn, 270 unsigned long size, pgprot_t prot) 271 { 272 unsigned long hsa_end = sclp.hsa_size; 273 unsigned long size_hsa; 274 275 if (pfn < hsa_end >> PAGE_SHIFT) { 276 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT)); 277 if (size == size_hsa) 278 return 0; 279 size -= size_hsa; 280 from += size_hsa; 281 pfn += size_hsa >> PAGE_SHIFT; 282 } 283 return remap_pfn_range(vma, from, pfn, size, prot); 284 } 285 286 /* 287 * Remap "oldmem" for kdump or zfcp/nvme dump 288 */ 289 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from, 290 unsigned long pfn, unsigned long size, pgprot_t prot) 291 { 292 if (oldmem_data.start) 293 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot); 294 else 295 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size, 296 prot); 297 } 298 299 static const char *nt_name(Elf64_Word type) 300 { 301 const char *name = "LINUX"; 302 303 if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG) 304 name = KEXEC_CORE_NOTE_NAME; 305 return name; 306 } 307 308 /* 309 * Initialize ELF note 310 */ 311 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len, 312 const char *name) 313 { 314 Elf64_Nhdr *note; 315 u64 len; 316 317 note = (Elf64_Nhdr *)buf; 318 note->n_namesz = strlen(name) + 1; 319 note->n_descsz = d_len; 320 note->n_type = type; 321 len = sizeof(Elf64_Nhdr); 322 323 memcpy(buf + len, name, note->n_namesz); 324 len = roundup(len + note->n_namesz, 4); 325 326 memcpy(buf + len, desc, note->n_descsz); 327 len = roundup(len + note->n_descsz, 4); 328 329 return PTR_ADD(buf, len); 330 } 331 332 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len) 333 { 334 return nt_init_name(buf, type, desc, d_len, nt_name(type)); 335 } 336 337 /* 338 * Calculate the size of ELF note 339 */ 340 static size_t nt_size_name(int d_len, const char *name) 341 { 342 size_t size; 343 344 size = sizeof(Elf64_Nhdr); 345 size += roundup(strlen(name) + 1, 4); 346 size += roundup(d_len, 4); 347 348 return size; 349 } 350 351 static inline size_t nt_size(Elf64_Word type, int d_len) 352 { 353 return nt_size_name(d_len, nt_name(type)); 354 } 355 356 /* 357 * Fill ELF notes for one CPU with save area registers 358 */ 359 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa) 360 { 361 struct elf_prstatus nt_prstatus; 362 elf_fpregset_t nt_fpregset; 363 364 /* Prepare prstatus note */ 365 memset(&nt_prstatus, 0, sizeof(nt_prstatus)); 366 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs)); 367 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw)); 368 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs)); 369 nt_prstatus.common.pr_pid = cpu; 370 /* Prepare fpregset (floating point) note */ 371 memset(&nt_fpregset, 0, sizeof(nt_fpregset)); 372 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc)); 373 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs)); 374 /* Create ELF notes for the CPU */ 375 ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus)); 376 ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset)); 377 ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer)); 378 ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp)); 379 ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg)); 380 ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs)); 381 ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix)); 382 if (MACHINE_HAS_VX) { 383 ptr = nt_init(ptr, NT_S390_VXRS_HIGH, 384 &sa->vxrs_high, sizeof(sa->vxrs_high)); 385 ptr = nt_init(ptr, NT_S390_VXRS_LOW, 386 &sa->vxrs_low, sizeof(sa->vxrs_low)); 387 } 388 return ptr; 389 } 390 391 /* 392 * Calculate size of ELF notes per cpu 393 */ 394 static size_t get_cpu_elf_notes_size(void) 395 { 396 struct save_area *sa = NULL; 397 size_t size; 398 399 size = nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus)); 400 size += nt_size(NT_PRFPREG, sizeof(elf_fpregset_t)); 401 size += nt_size(NT_S390_TIMER, sizeof(sa->timer)); 402 size += nt_size(NT_S390_TODCMP, sizeof(sa->todcmp)); 403 size += nt_size(NT_S390_TODPREG, sizeof(sa->todpreg)); 404 size += nt_size(NT_S390_CTRS, sizeof(sa->ctrs)); 405 size += nt_size(NT_S390_PREFIX, sizeof(sa->prefix)); 406 if (MACHINE_HAS_VX) { 407 size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high)); 408 size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low)); 409 } 410 411 return size; 412 } 413 414 /* 415 * Initialize prpsinfo note (new kernel) 416 */ 417 static void *nt_prpsinfo(void *ptr) 418 { 419 struct elf_prpsinfo prpsinfo; 420 421 memset(&prpsinfo, 0, sizeof(prpsinfo)); 422 prpsinfo.pr_sname = 'R'; 423 strcpy(prpsinfo.pr_fname, "vmlinux"); 424 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo)); 425 } 426 427 /* 428 * Get vmcoreinfo using lowcore->vmcore_info (new kernel) 429 */ 430 static void *get_vmcoreinfo_old(unsigned long *size) 431 { 432 char nt_name[11], *vmcoreinfo; 433 unsigned long addr; 434 Elf64_Nhdr note; 435 436 if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr))) 437 return NULL; 438 memset(nt_name, 0, sizeof(nt_name)); 439 if (copy_oldmem_kernel(¬e, addr, sizeof(note))) 440 return NULL; 441 if (copy_oldmem_kernel(nt_name, addr + sizeof(note), 442 sizeof(nt_name) - 1)) 443 return NULL; 444 if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0) 445 return NULL; 446 vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL); 447 if (!vmcoreinfo) 448 return NULL; 449 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) { 450 kfree(vmcoreinfo); 451 return NULL; 452 } 453 *size = note.n_descsz; 454 return vmcoreinfo; 455 } 456 457 /* 458 * Initialize vmcoreinfo note (new kernel) 459 */ 460 static void *nt_vmcoreinfo(void *ptr) 461 { 462 const char *name = VMCOREINFO_NOTE_NAME; 463 unsigned long size; 464 void *vmcoreinfo; 465 466 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); 467 if (vmcoreinfo) 468 return nt_init_name(ptr, 0, vmcoreinfo, size, name); 469 470 vmcoreinfo = get_vmcoreinfo_old(&size); 471 if (!vmcoreinfo) 472 return ptr; 473 ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name); 474 kfree(vmcoreinfo); 475 return ptr; 476 } 477 478 static size_t nt_vmcoreinfo_size(void) 479 { 480 const char *name = VMCOREINFO_NOTE_NAME; 481 unsigned long size; 482 void *vmcoreinfo; 483 484 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size); 485 if (vmcoreinfo) 486 return nt_size_name(size, name); 487 488 vmcoreinfo = get_vmcoreinfo_old(&size); 489 if (!vmcoreinfo) 490 return 0; 491 492 kfree(vmcoreinfo); 493 return nt_size_name(size, name); 494 } 495 496 /* 497 * Initialize final note (needed for /proc/vmcore code) 498 */ 499 static void *nt_final(void *ptr) 500 { 501 Elf64_Nhdr *note; 502 503 note = (Elf64_Nhdr *) ptr; 504 note->n_namesz = 0; 505 note->n_descsz = 0; 506 note->n_type = 0; 507 return PTR_ADD(ptr, sizeof(Elf64_Nhdr)); 508 } 509 510 /* 511 * Initialize ELF header (new kernel) 512 */ 513 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt) 514 { 515 memset(ehdr, 0, sizeof(*ehdr)); 516 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 517 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 518 ehdr->e_ident[EI_DATA] = ELFDATA2MSB; 519 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 520 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 521 ehdr->e_type = ET_CORE; 522 ehdr->e_machine = EM_S390; 523 ehdr->e_version = EV_CURRENT; 524 ehdr->e_phoff = sizeof(Elf64_Ehdr); 525 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 526 ehdr->e_phentsize = sizeof(Elf64_Phdr); 527 ehdr->e_phnum = mem_chunk_cnt + 1; 528 return ehdr + 1; 529 } 530 531 /* 532 * Return CPU count for ELF header (new kernel) 533 */ 534 static int get_cpu_cnt(void) 535 { 536 struct save_area *sa; 537 int cpus = 0; 538 539 list_for_each_entry(sa, &dump_save_areas, list) 540 if (sa->prefix != 0) 541 cpus++; 542 return cpus; 543 } 544 545 /* 546 * Return memory chunk count for ELF header (new kernel) 547 */ 548 static int get_mem_chunk_cnt(void) 549 { 550 int cnt = 0; 551 u64 idx; 552 553 for_each_physmem_range(idx, &oldmem_type, NULL, NULL) 554 cnt++; 555 return cnt; 556 } 557 558 /* 559 * Initialize ELF loads (new kernel) 560 */ 561 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset) 562 { 563 phys_addr_t start, end; 564 u64 idx; 565 566 for_each_physmem_range(idx, &oldmem_type, &start, &end) { 567 phdr->p_filesz = end - start; 568 phdr->p_type = PT_LOAD; 569 phdr->p_offset = start; 570 phdr->p_vaddr = start; 571 phdr->p_paddr = start; 572 phdr->p_memsz = end - start; 573 phdr->p_flags = PF_R | PF_W | PF_X; 574 phdr->p_align = PAGE_SIZE; 575 phdr++; 576 } 577 } 578 579 /* 580 * Initialize notes (new kernel) 581 */ 582 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset) 583 { 584 struct save_area *sa; 585 void *ptr_start = ptr; 586 int cpu; 587 588 ptr = nt_prpsinfo(ptr); 589 590 cpu = 1; 591 list_for_each_entry(sa, &dump_save_areas, list) 592 if (sa->prefix != 0) 593 ptr = fill_cpu_elf_notes(ptr, cpu++, sa); 594 ptr = nt_vmcoreinfo(ptr); 595 ptr = nt_final(ptr); 596 memset(phdr, 0, sizeof(*phdr)); 597 phdr->p_type = PT_NOTE; 598 phdr->p_offset = notes_offset; 599 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start); 600 phdr->p_memsz = phdr->p_filesz; 601 return ptr; 602 } 603 604 static size_t get_elfcorehdr_size(int mem_chunk_cnt) 605 { 606 size_t size; 607 608 size = sizeof(Elf64_Ehdr); 609 /* PT_NOTES */ 610 size += sizeof(Elf64_Phdr); 611 /* nt_prpsinfo */ 612 size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo)); 613 /* regsets */ 614 size += get_cpu_cnt() * get_cpu_elf_notes_size(); 615 /* nt_vmcoreinfo */ 616 size += nt_vmcoreinfo_size(); 617 /* nt_final */ 618 size += sizeof(Elf64_Nhdr); 619 /* PT_LOADS */ 620 size += mem_chunk_cnt * sizeof(Elf64_Phdr); 621 622 return size; 623 } 624 625 /* 626 * Create ELF core header (new kernel) 627 */ 628 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size) 629 { 630 Elf64_Phdr *phdr_notes, *phdr_loads; 631 int mem_chunk_cnt; 632 void *ptr, *hdr; 633 u32 alloc_size; 634 u64 hdr_off; 635 636 /* If we are not in kdump or zfcp/nvme dump mode return */ 637 if (!oldmem_data.start && !is_ipl_type_dump()) 638 return 0; 639 /* If we cannot get HSA size for zfcp/nvme dump return error */ 640 if (is_ipl_type_dump() && !sclp.hsa_size) 641 return -ENODEV; 642 643 /* For kdump, exclude previous crashkernel memory */ 644 if (oldmem_data.start) { 645 oldmem_region.base = oldmem_data.start; 646 oldmem_region.size = oldmem_data.size; 647 oldmem_type.total_size = oldmem_data.size; 648 } 649 650 mem_chunk_cnt = get_mem_chunk_cnt(); 651 652 alloc_size = get_elfcorehdr_size(mem_chunk_cnt); 653 654 hdr = kzalloc(alloc_size, GFP_KERNEL); 655 656 /* Without elfcorehdr /proc/vmcore cannot be created. Thus creating 657 * a dump with this crash kernel will fail. Panic now to allow other 658 * dump mechanisms to take over. 659 */ 660 if (!hdr) 661 panic("s390 kdump allocating elfcorehdr failed"); 662 663 /* Init elf header */ 664 ptr = ehdr_init(hdr, mem_chunk_cnt); 665 /* Init program headers */ 666 phdr_notes = ptr; 667 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr)); 668 phdr_loads = ptr; 669 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt); 670 /* Init notes */ 671 hdr_off = PTR_DIFF(ptr, hdr); 672 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off); 673 /* Init loads */ 674 hdr_off = PTR_DIFF(ptr, hdr); 675 loads_init(phdr_loads, hdr_off); 676 *addr = (unsigned long long) hdr; 677 *size = (unsigned long long) hdr_off; 678 BUG_ON(elfcorehdr_size > alloc_size); 679 return 0; 680 } 681 682 /* 683 * Free ELF core header (new kernel) 684 */ 685 void elfcorehdr_free(unsigned long long addr) 686 { 687 kfree((void *)(unsigned long)addr); 688 } 689 690 /* 691 * Read from ELF header 692 */ 693 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos) 694 { 695 void *src = (void *)(unsigned long)*ppos; 696 697 memcpy(buf, src, count); 698 *ppos += count; 699 return count; 700 } 701 702 /* 703 * Read from ELF notes data 704 */ 705 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos) 706 { 707 void *src = (void *)(unsigned long)*ppos; 708 709 memcpy(buf, src, count); 710 *ppos += count; 711 return count; 712 } 713