xref: /openbmc/linux/arch/s390/kernel/crash_dump.c (revision 293d5b43)
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7 
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/asm-offsets.h>
17 #include <linux/memblock.h>
18 #include <asm/os_info.h>
19 #include <asm/elf.h>
20 #include <asm/ipl.h>
21 #include <asm/sclp.h>
22 
23 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
24 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
25 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
26 
27 static struct memblock_region oldmem_region;
28 
29 static struct memblock_type oldmem_type = {
30 	.cnt = 1,
31 	.max = 1,
32 	.total_size = 0,
33 	.regions = &oldmem_region,
34 };
35 
36 struct save_area {
37 	struct list_head list;
38 	u64 psw[2];
39 	u64 ctrs[16];
40 	u64 gprs[16];
41 	u32 acrs[16];
42 	u64 fprs[16];
43 	u32 fpc;
44 	u32 prefix;
45 	u64 todpreg;
46 	u64 timer;
47 	u64 todcmp;
48 	u64 vxrs_low[16];
49 	__vector128 vxrs_high[16];
50 };
51 
52 static LIST_HEAD(dump_save_areas);
53 
54 /*
55  * Allocate a save area
56  */
57 struct save_area * __init save_area_alloc(bool is_boot_cpu)
58 {
59 	struct save_area *sa;
60 
61 	sa = (void *) memblock_alloc(sizeof(*sa), 8);
62 	if (is_boot_cpu)
63 		list_add(&sa->list, &dump_save_areas);
64 	else
65 		list_add_tail(&sa->list, &dump_save_areas);
66 	return sa;
67 }
68 
69 /*
70  * Return the address of the save area for the boot CPU
71  */
72 struct save_area * __init save_area_boot_cpu(void)
73 {
74 	if (list_empty(&dump_save_areas))
75 		return NULL;
76 	return list_first_entry(&dump_save_areas, struct save_area, list);
77 }
78 
79 /*
80  * Copy CPU registers into the save area
81  */
82 void __init save_area_add_regs(struct save_area *sa, void *regs)
83 {
84 	struct lowcore *lc;
85 
86 	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
87 	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
88 	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
89 	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
90 	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
91 	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
92 	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
93 	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
94 	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
95 	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
96 	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
97 }
98 
99 /*
100  * Copy vector registers into the save area
101  */
102 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
103 {
104 	int i;
105 
106 	/* Copy lower halves of vector registers 0-15 */
107 	for (i = 0; i < 16; i++)
108 		memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
109 	/* Copy vector registers 16-31 */
110 	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
111 }
112 
113 /*
114  * Return physical address for virtual address
115  */
116 static inline void *load_real_addr(void *addr)
117 {
118 	unsigned long real_addr;
119 
120 	asm volatile(
121 		   "	lra     %0,0(%1)\n"
122 		   "	jz	0f\n"
123 		   "	la	%0,0\n"
124 		   "0:"
125 		   : "=a" (real_addr) : "a" (addr) : "cc");
126 	return (void *)real_addr;
127 }
128 
129 /*
130  * Copy memory of the old, dumped system to a kernel space virtual address
131  */
132 int copy_oldmem_kernel(void *dst, void *src, size_t count)
133 {
134 	unsigned long from, len;
135 	void *ra;
136 	int rc;
137 
138 	while (count) {
139 		from = __pa(src);
140 		if (!OLDMEM_BASE && from < sclp.hsa_size) {
141 			/* Copy from zfcpdump HSA area */
142 			len = min(count, sclp.hsa_size - from);
143 			rc = memcpy_hsa_kernel(dst, from, len);
144 			if (rc)
145 				return rc;
146 		} else {
147 			/* Check for swapped kdump oldmem areas */
148 			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
149 				from -= OLDMEM_BASE;
150 				len = min(count, OLDMEM_SIZE - from);
151 			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
152 				len = min(count, OLDMEM_SIZE - from);
153 				from += OLDMEM_BASE;
154 			} else {
155 				len = count;
156 			}
157 			if (is_vmalloc_or_module_addr(dst)) {
158 				ra = load_real_addr(dst);
159 				len = min(PAGE_SIZE - offset_in_page(ra), len);
160 			} else {
161 				ra = dst;
162 			}
163 			if (memcpy_real(ra, (void *) from, len))
164 				return -EFAULT;
165 		}
166 		dst += len;
167 		src += len;
168 		count -= len;
169 	}
170 	return 0;
171 }
172 
173 /*
174  * Copy memory of the old, dumped system to a user space virtual address
175  */
176 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
177 {
178 	unsigned long from, len;
179 	int rc;
180 
181 	while (count) {
182 		from = __pa(src);
183 		if (!OLDMEM_BASE && from < sclp.hsa_size) {
184 			/* Copy from zfcpdump HSA area */
185 			len = min(count, sclp.hsa_size - from);
186 			rc = memcpy_hsa_user(dst, from, len);
187 			if (rc)
188 				return rc;
189 		} else {
190 			/* Check for swapped kdump oldmem areas */
191 			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
192 				from -= OLDMEM_BASE;
193 				len = min(count, OLDMEM_SIZE - from);
194 			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
195 				len = min(count, OLDMEM_SIZE - from);
196 				from += OLDMEM_BASE;
197 			} else {
198 				len = count;
199 			}
200 			rc = copy_to_user_real(dst, (void *) from, count);
201 			if (rc)
202 				return rc;
203 		}
204 		dst += len;
205 		src += len;
206 		count -= len;
207 	}
208 	return 0;
209 }
210 
211 /*
212  * Copy one page from "oldmem"
213  */
214 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
215 			 unsigned long offset, int userbuf)
216 {
217 	void *src;
218 	int rc;
219 
220 	if (!csize)
221 		return 0;
222 	src = (void *) (pfn << PAGE_SHIFT) + offset;
223 	if (userbuf)
224 		rc = copy_oldmem_user((void __force __user *) buf, src, csize);
225 	else
226 		rc = copy_oldmem_kernel((void *) buf, src, csize);
227 	return rc;
228 }
229 
230 /*
231  * Remap "oldmem" for kdump
232  *
233  * For the kdump reserved memory this functions performs a swap operation:
234  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
235  */
236 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
237 					unsigned long from, unsigned long pfn,
238 					unsigned long size, pgprot_t prot)
239 {
240 	unsigned long size_old;
241 	int rc;
242 
243 	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
244 		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
245 		rc = remap_pfn_range(vma, from,
246 				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
247 				     size_old, prot);
248 		if (rc || size == size_old)
249 			return rc;
250 		size -= size_old;
251 		from += size_old;
252 		pfn += size_old >> PAGE_SHIFT;
253 	}
254 	return remap_pfn_range(vma, from, pfn, size, prot);
255 }
256 
257 /*
258  * Remap "oldmem" for zfcpdump
259  *
260  * We only map available memory above HSA size. Memory below HSA size
261  * is read on demand using the copy_oldmem_page() function.
262  */
263 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
264 					   unsigned long from,
265 					   unsigned long pfn,
266 					   unsigned long size, pgprot_t prot)
267 {
268 	unsigned long hsa_end = sclp.hsa_size;
269 	unsigned long size_hsa;
270 
271 	if (pfn < hsa_end >> PAGE_SHIFT) {
272 		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
273 		if (size == size_hsa)
274 			return 0;
275 		size -= size_hsa;
276 		from += size_hsa;
277 		pfn += size_hsa >> PAGE_SHIFT;
278 	}
279 	return remap_pfn_range(vma, from, pfn, size, prot);
280 }
281 
282 /*
283  * Remap "oldmem" for kdump or zfcpdump
284  */
285 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
286 			   unsigned long pfn, unsigned long size, pgprot_t prot)
287 {
288 	if (OLDMEM_BASE)
289 		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
290 	else
291 		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
292 						       prot);
293 }
294 
295 /*
296  * Alloc memory and panic in case of ENOMEM
297  */
298 static void *kzalloc_panic(int len)
299 {
300 	void *rc;
301 
302 	rc = kzalloc(len, GFP_KERNEL);
303 	if (!rc)
304 		panic("s390 kdump kzalloc (%d) failed", len);
305 	return rc;
306 }
307 
308 /*
309  * Initialize ELF note
310  */
311 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
312 			  const char *name)
313 {
314 	Elf64_Nhdr *note;
315 	u64 len;
316 
317 	note = (Elf64_Nhdr *)buf;
318 	note->n_namesz = strlen(name) + 1;
319 	note->n_descsz = d_len;
320 	note->n_type = type;
321 	len = sizeof(Elf64_Nhdr);
322 
323 	memcpy(buf + len, name, note->n_namesz);
324 	len = roundup(len + note->n_namesz, 4);
325 
326 	memcpy(buf + len, desc, note->n_descsz);
327 	len = roundup(len + note->n_descsz, 4);
328 
329 	return PTR_ADD(buf, len);
330 }
331 
332 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
333 {
334 	return nt_init_name(buf, type, desc, d_len, KEXEC_CORE_NOTE_NAME);
335 }
336 
337 /*
338  * Fill ELF notes for one CPU with save area registers
339  */
340 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
341 {
342 	struct elf_prstatus nt_prstatus;
343 	elf_fpregset_t nt_fpregset;
344 
345 	/* Prepare prstatus note */
346 	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
347 	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
348 	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
349 	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
350 	nt_prstatus.pr_pid = cpu;
351 	/* Prepare fpregset (floating point) note */
352 	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
353 	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
354 	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
355 	/* Create ELF notes for the CPU */
356 	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
357 	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
358 	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
359 	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
360 	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
361 	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
362 	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
363 	if (MACHINE_HAS_VX) {
364 		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
365 			      &sa->vxrs_high, sizeof(sa->vxrs_high));
366 		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
367 			      &sa->vxrs_low, sizeof(sa->vxrs_low));
368 	}
369 	return ptr;
370 }
371 
372 /*
373  * Initialize prpsinfo note (new kernel)
374  */
375 static void *nt_prpsinfo(void *ptr)
376 {
377 	struct elf_prpsinfo prpsinfo;
378 
379 	memset(&prpsinfo, 0, sizeof(prpsinfo));
380 	prpsinfo.pr_sname = 'R';
381 	strcpy(prpsinfo.pr_fname, "vmlinux");
382 	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
383 }
384 
385 /*
386  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
387  */
388 static void *get_vmcoreinfo_old(unsigned long *size)
389 {
390 	char nt_name[11], *vmcoreinfo;
391 	Elf64_Nhdr note;
392 	void *addr;
393 
394 	if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
395 		return NULL;
396 	memset(nt_name, 0, sizeof(nt_name));
397 	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
398 		return NULL;
399 	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
400 			       sizeof(nt_name) - 1))
401 		return NULL;
402 	if (strcmp(nt_name, "VMCOREINFO") != 0)
403 		return NULL;
404 	vmcoreinfo = kzalloc_panic(note.n_descsz);
405 	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
406 		return NULL;
407 	*size = note.n_descsz;
408 	return vmcoreinfo;
409 }
410 
411 /*
412  * Initialize vmcoreinfo note (new kernel)
413  */
414 static void *nt_vmcoreinfo(void *ptr)
415 {
416 	unsigned long size;
417 	void *vmcoreinfo;
418 
419 	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
420 	if (!vmcoreinfo)
421 		vmcoreinfo = get_vmcoreinfo_old(&size);
422 	if (!vmcoreinfo)
423 		return ptr;
424 	return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
425 }
426 
427 /*
428  * Initialize ELF header (new kernel)
429  */
430 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
431 {
432 	memset(ehdr, 0, sizeof(*ehdr));
433 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
434 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
435 	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
436 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
437 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
438 	ehdr->e_type = ET_CORE;
439 	ehdr->e_machine = EM_S390;
440 	ehdr->e_version = EV_CURRENT;
441 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
442 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
443 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
444 	ehdr->e_phnum = mem_chunk_cnt + 1;
445 	return ehdr + 1;
446 }
447 
448 /*
449  * Return CPU count for ELF header (new kernel)
450  */
451 static int get_cpu_cnt(void)
452 {
453 	struct save_area *sa;
454 	int cpus = 0;
455 
456 	list_for_each_entry(sa, &dump_save_areas, list)
457 		if (sa->prefix != 0)
458 			cpus++;
459 	return cpus;
460 }
461 
462 /*
463  * Return memory chunk count for ELF header (new kernel)
464  */
465 static int get_mem_chunk_cnt(void)
466 {
467 	int cnt = 0;
468 	u64 idx;
469 
470 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
471 			   MEMBLOCK_NONE, NULL, NULL, NULL)
472 		cnt++;
473 	return cnt;
474 }
475 
476 /*
477  * Initialize ELF loads (new kernel)
478  */
479 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
480 {
481 	phys_addr_t start, end;
482 	u64 idx;
483 
484 	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
485 			   MEMBLOCK_NONE, &start, &end, NULL) {
486 		phdr->p_filesz = end - start;
487 		phdr->p_type = PT_LOAD;
488 		phdr->p_offset = start;
489 		phdr->p_vaddr = start;
490 		phdr->p_paddr = start;
491 		phdr->p_memsz = end - start;
492 		phdr->p_flags = PF_R | PF_W | PF_X;
493 		phdr->p_align = PAGE_SIZE;
494 		phdr++;
495 	}
496 }
497 
498 /*
499  * Initialize notes (new kernel)
500  */
501 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
502 {
503 	struct save_area *sa;
504 	void *ptr_start = ptr;
505 	int cpu;
506 
507 	ptr = nt_prpsinfo(ptr);
508 
509 	cpu = 1;
510 	list_for_each_entry(sa, &dump_save_areas, list)
511 		if (sa->prefix != 0)
512 			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
513 	ptr = nt_vmcoreinfo(ptr);
514 	memset(phdr, 0, sizeof(*phdr));
515 	phdr->p_type = PT_NOTE;
516 	phdr->p_offset = notes_offset;
517 	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
518 	phdr->p_memsz = phdr->p_filesz;
519 	return ptr;
520 }
521 
522 /*
523  * Create ELF core header (new kernel)
524  */
525 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
526 {
527 	Elf64_Phdr *phdr_notes, *phdr_loads;
528 	int mem_chunk_cnt;
529 	void *ptr, *hdr;
530 	u32 alloc_size;
531 	u64 hdr_off;
532 
533 	/* If we are not in kdump or zfcpdump mode return */
534 	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
535 		return 0;
536 	/* If we cannot get HSA size for zfcpdump return error */
537 	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
538 		return -ENODEV;
539 
540 	/* For kdump, exclude previous crashkernel memory */
541 	if (OLDMEM_BASE) {
542 		oldmem_region.base = OLDMEM_BASE;
543 		oldmem_region.size = OLDMEM_SIZE;
544 		oldmem_type.total_size = OLDMEM_SIZE;
545 	}
546 
547 	mem_chunk_cnt = get_mem_chunk_cnt();
548 
549 	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
550 		mem_chunk_cnt * sizeof(Elf64_Phdr);
551 	hdr = kzalloc_panic(alloc_size);
552 	/* Init elf header */
553 	ptr = ehdr_init(hdr, mem_chunk_cnt);
554 	/* Init program headers */
555 	phdr_notes = ptr;
556 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
557 	phdr_loads = ptr;
558 	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
559 	/* Init notes */
560 	hdr_off = PTR_DIFF(ptr, hdr);
561 	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
562 	/* Init loads */
563 	hdr_off = PTR_DIFF(ptr, hdr);
564 	loads_init(phdr_loads, hdr_off);
565 	*addr = (unsigned long long) hdr;
566 	*size = (unsigned long long) hdr_off;
567 	BUG_ON(elfcorehdr_size > alloc_size);
568 	return 0;
569 }
570 
571 /*
572  * Free ELF core header (new kernel)
573  */
574 void elfcorehdr_free(unsigned long long addr)
575 {
576 	kfree((void *)(unsigned long)addr);
577 }
578 
579 /*
580  * Read from ELF header
581  */
582 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
583 {
584 	void *src = (void *)(unsigned long)*ppos;
585 
586 	memcpy(buf, src, count);
587 	*ppos += count;
588 	return count;
589 }
590 
591 /*
592  * Read from ELF notes data
593  */
594 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
595 {
596 	void *src = (void *)(unsigned long)*ppos;
597 
598 	memcpy(buf, src, count);
599 	*ppos += count;
600 	return count;
601 }
602