xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision f2a89d3b)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2000
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (weigand@de.ibm.com)
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *
8  *  Derived from "include/asm-i386/pgtable.h"
9  */
10 
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13 
14 /*
15  * The Linux memory management assumes a three-level page table setup.
16  * For s390 64 bit we use up to four of the five levels the hardware
17  * provides (region first tables are not used).
18  *
19  * The "pgd_xxx()" functions are trivial for a folded two-level
20  * setup: the pgd is never bad, and a pmd always exists (as it's folded
21  * into the pgd entry)
22  *
23  * This file contains the functions and defines necessary to modify and use
24  * the S390 page table tree.
25  */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <linux/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/page.h>
34 
35 extern pgd_t swapper_pg_dir[];
36 extern void paging_init(void);
37 extern void vmem_map_init(void);
38 pmd_t *vmem_pmd_alloc(void);
39 pte_t *vmem_pte_alloc(void);
40 
41 enum {
42 	PG_DIRECT_MAP_4K = 0,
43 	PG_DIRECT_MAP_1M,
44 	PG_DIRECT_MAP_2G,
45 	PG_DIRECT_MAP_MAX
46 };
47 
48 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
49 
50 static inline void update_page_count(int level, long count)
51 {
52 	if (IS_ENABLED(CONFIG_PROC_FS))
53 		atomic_long_add(count, &direct_pages_count[level]);
54 }
55 
56 struct seq_file;
57 void arch_report_meminfo(struct seq_file *m);
58 
59 /*
60  * The S390 doesn't have any external MMU info: the kernel page
61  * tables contain all the necessary information.
62  */
63 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
64 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
65 
66 /*
67  * ZERO_PAGE is a global shared page that is always zero; used
68  * for zero-mapped memory areas etc..
69  */
70 
71 extern unsigned long empty_zero_page;
72 extern unsigned long zero_page_mask;
73 
74 #define ZERO_PAGE(vaddr) \
75 	(virt_to_page((void *)(empty_zero_page + \
76 	 (((unsigned long)(vaddr)) &zero_page_mask))))
77 #define __HAVE_COLOR_ZERO_PAGE
78 
79 /* TODO: s390 cannot support io_remap_pfn_range... */
80 #endif /* !__ASSEMBLY__ */
81 
82 /*
83  * PMD_SHIFT determines the size of the area a second-level page
84  * table can map
85  * PGDIR_SHIFT determines what a third-level page table entry can map
86  */
87 #define PMD_SHIFT	20
88 #define PUD_SHIFT	31
89 #define PGDIR_SHIFT	42
90 
91 #define PMD_SIZE        (1UL << PMD_SHIFT)
92 #define PMD_MASK        (~(PMD_SIZE-1))
93 #define PUD_SIZE	(1UL << PUD_SHIFT)
94 #define PUD_MASK	(~(PUD_SIZE-1))
95 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
97 
98 /*
99  * entries per page directory level: the S390 is two-level, so
100  * we don't really have any PMD directory physically.
101  * for S390 segment-table entries are combined to one PGD
102  * that leads to 1024 pte per pgd
103  */
104 #define PTRS_PER_PTE	256
105 #define PTRS_PER_PMD	2048
106 #define PTRS_PER_PUD	2048
107 #define PTRS_PER_PGD	2048
108 
109 #define FIRST_USER_ADDRESS  0UL
110 
111 #define pte_ERROR(e) \
112 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
113 #define pmd_ERROR(e) \
114 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
115 #define pud_ERROR(e) \
116 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
117 #define pgd_ERROR(e) \
118 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
119 
120 #ifndef __ASSEMBLY__
121 /*
122  * The vmalloc and module area will always be on the topmost area of the
123  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
124  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
125  * modules will reside. That makes sure that inter module branches always
126  * happen without trampolines and in addition the placement within a 2GB frame
127  * is branch prediction unit friendly.
128  */
129 extern unsigned long VMALLOC_START;
130 extern unsigned long VMALLOC_END;
131 extern struct page *vmemmap;
132 
133 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
134 
135 extern unsigned long MODULES_VADDR;
136 extern unsigned long MODULES_END;
137 #define MODULES_VADDR	MODULES_VADDR
138 #define MODULES_END	MODULES_END
139 #define MODULES_LEN	(1UL << 31)
140 
141 static inline int is_module_addr(void *addr)
142 {
143 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
144 	if (addr < (void *)MODULES_VADDR)
145 		return 0;
146 	if (addr > (void *)MODULES_END)
147 		return 0;
148 	return 1;
149 }
150 
151 /*
152  * A 64 bit pagetable entry of S390 has following format:
153  * |			 PFRA			      |0IPC|  OS  |
154  * 0000000000111111111122222222223333333333444444444455555555556666
155  * 0123456789012345678901234567890123456789012345678901234567890123
156  *
157  * I Page-Invalid Bit:    Page is not available for address-translation
158  * P Page-Protection Bit: Store access not possible for page
159  * C Change-bit override: HW is not required to set change bit
160  *
161  * A 64 bit segmenttable entry of S390 has following format:
162  * |        P-table origin                              |      TT
163  * 0000000000111111111122222222223333333333444444444455555555556666
164  * 0123456789012345678901234567890123456789012345678901234567890123
165  *
166  * I Segment-Invalid Bit:    Segment is not available for address-translation
167  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
168  * P Page-Protection Bit: Store access not possible for page
169  * TT Type 00
170  *
171  * A 64 bit region table entry of S390 has following format:
172  * |        S-table origin                             |   TF  TTTL
173  * 0000000000111111111122222222223333333333444444444455555555556666
174  * 0123456789012345678901234567890123456789012345678901234567890123
175  *
176  * I Segment-Invalid Bit:    Segment is not available for address-translation
177  * TT Type 01
178  * TF
179  * TL Table length
180  *
181  * The 64 bit regiontable origin of S390 has following format:
182  * |      region table origon                          |       DTTL
183  * 0000000000111111111122222222223333333333444444444455555555556666
184  * 0123456789012345678901234567890123456789012345678901234567890123
185  *
186  * X Space-Switch event:
187  * G Segment-Invalid Bit:
188  * P Private-Space Bit:
189  * S Storage-Alteration:
190  * R Real space
191  * TL Table-Length:
192  *
193  * A storage key has the following format:
194  * | ACC |F|R|C|0|
195  *  0   3 4 5 6 7
196  * ACC: access key
197  * F  : fetch protection bit
198  * R  : referenced bit
199  * C  : changed bit
200  */
201 
202 /* Hardware bits in the page table entry */
203 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
204 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
205 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
206 
207 /* Software bits in the page table entry */
208 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
209 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
210 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
211 #define _PAGE_READ	0x010		/* SW pte read bit */
212 #define _PAGE_WRITE	0x020		/* SW pte write bit */
213 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
214 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
215 #define __HAVE_ARCH_PTE_SPECIAL
216 
217 #ifdef CONFIG_MEM_SOFT_DIRTY
218 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
219 #else
220 #define _PAGE_SOFT_DIRTY 0x000
221 #endif
222 
223 /* Set of bits not changed in pte_modify */
224 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
225 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
226 
227 /*
228  * handle_pte_fault uses pte_present and pte_none to find out the pte type
229  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
230  * distinguish present from not-present ptes. It is changed only with the page
231  * table lock held.
232  *
233  * The following table gives the different possible bit combinations for
234  * the pte hardware and software bits in the last 12 bits of a pte
235  * (. unassigned bit, x don't care, t swap type):
236  *
237  *				842100000000
238  *				000084210000
239  *				000000008421
240  *				.IR.uswrdy.p
241  * empty			.10.00000000
242  * swap				.11..ttttt.0
243  * prot-none, clean, old	.11.xx0000.1
244  * prot-none, clean, young	.11.xx0001.1
245  * prot-none, dirty, old	.11.xx0010.1
246  * prot-none, dirty, young	.11.xx0011.1
247  * read-only, clean, old	.11.xx0100.1
248  * read-only, clean, young	.01.xx0101.1
249  * read-only, dirty, old	.11.xx0110.1
250  * read-only, dirty, young	.01.xx0111.1
251  * read-write, clean, old	.11.xx1100.1
252  * read-write, clean, young	.01.xx1101.1
253  * read-write, dirty, old	.10.xx1110.1
254  * read-write, dirty, young	.00.xx1111.1
255  * HW-bits: R read-only, I invalid
256  * SW-bits: p present, y young, d dirty, r read, w write, s special,
257  *	    u unused, l large
258  *
259  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
260  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
261  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
262  */
263 
264 /* Bits in the segment/region table address-space-control-element */
265 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
266 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
267 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
268 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
269 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
270 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
271 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
272 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
273 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
274 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
275 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
276 
277 /* Bits in the region table entry */
278 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
279 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
280 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
281 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
282 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
283 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
284 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
285 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
286 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
287 
288 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
289 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
290 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
291 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
292 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
293 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
294 
295 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
296 #define _REGION3_ENTRY_ORIGIN  ~0x7ffUL/* region third table origin	     */
297 
298 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
299 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
300 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
301 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
302 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
303 
304 #ifdef CONFIG_MEM_SOFT_DIRTY
305 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
306 #else
307 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
308 #endif
309 
310 #define _REGION_ENTRY_BITS	 0xfffffffffffff227UL
311 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
312 
313 /* Bits in the segment table entry */
314 #define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
315 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
316 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
317 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
318 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
319 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
320 
321 #define _SEGMENT_ENTRY		(0)
322 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
323 
324 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
325 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
326 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
327 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
328 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
329 
330 #ifdef CONFIG_MEM_SOFT_DIRTY
331 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
332 #else
333 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
334 #endif
335 
336 /*
337  * Segment table and region3 table entry encoding
338  * (R = read-only, I = invalid, y = young bit):
339  *				dy..R...I...wr
340  * prot-none, clean, old	00..1...1...00
341  * prot-none, clean, young	01..1...1...00
342  * prot-none, dirty, old	10..1...1...00
343  * prot-none, dirty, young	11..1...1...00
344  * read-only, clean, old	00..1...1...01
345  * read-only, clean, young	01..1...0...01
346  * read-only, dirty, old	10..1...1...01
347  * read-only, dirty, young	11..1...0...01
348  * read-write, clean, old	00..1...1...11
349  * read-write, clean, young	01..1...0...11
350  * read-write, dirty, old	10..0...1...11
351  * read-write, dirty, young	11..0...0...11
352  * The segment table origin is used to distinguish empty (origin==0) from
353  * read-write, old segment table entries (origin!=0)
354  * HW-bits: R read-only, I invalid
355  * SW-bits: y young, d dirty, r read, w write
356  */
357 
358 /* Page status table bits for virtualization */
359 #define PGSTE_ACC_BITS	0xf000000000000000UL
360 #define PGSTE_FP_BIT	0x0800000000000000UL
361 #define PGSTE_PCL_BIT	0x0080000000000000UL
362 #define PGSTE_HR_BIT	0x0040000000000000UL
363 #define PGSTE_HC_BIT	0x0020000000000000UL
364 #define PGSTE_GR_BIT	0x0004000000000000UL
365 #define PGSTE_GC_BIT	0x0002000000000000UL
366 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
367 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
368 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
369 
370 /* Guest Page State used for virtualization */
371 #define _PGSTE_GPS_ZERO		0x0000000080000000UL
372 #define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
373 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
374 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
375 
376 /*
377  * A user page table pointer has the space-switch-event bit, the
378  * private-space-control bit and the storage-alteration-event-control
379  * bit set. A kernel page table pointer doesn't need them.
380  */
381 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
382 				 _ASCE_ALT_EVENT)
383 
384 /*
385  * Page protection definitions.
386  */
387 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
388 #define PAGE_READ	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
389 				 _PAGE_INVALID | _PAGE_PROTECT)
390 #define PAGE_WRITE	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
391 				 _PAGE_INVALID | _PAGE_PROTECT)
392 
393 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
394 				 _PAGE_YOUNG | _PAGE_DIRTY)
395 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
396 				 _PAGE_YOUNG | _PAGE_DIRTY)
397 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
398 				 _PAGE_PROTECT)
399 
400 /*
401  * On s390 the page table entry has an invalid bit and a read-only bit.
402  * Read permission implies execute permission and write permission
403  * implies read permission.
404  */
405          /*xwr*/
406 #define __P000	PAGE_NONE
407 #define __P001	PAGE_READ
408 #define __P010	PAGE_READ
409 #define __P011	PAGE_READ
410 #define __P100	PAGE_READ
411 #define __P101	PAGE_READ
412 #define __P110	PAGE_READ
413 #define __P111	PAGE_READ
414 
415 #define __S000	PAGE_NONE
416 #define __S001	PAGE_READ
417 #define __S010	PAGE_WRITE
418 #define __S011	PAGE_WRITE
419 #define __S100	PAGE_READ
420 #define __S101	PAGE_READ
421 #define __S110	PAGE_WRITE
422 #define __S111	PAGE_WRITE
423 
424 /*
425  * Segment entry (large page) protection definitions.
426  */
427 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
428 				 _SEGMENT_ENTRY_PROTECT)
429 #define SEGMENT_READ	__pgprot(_SEGMENT_ENTRY_PROTECT | \
430 				 _SEGMENT_ENTRY_READ)
431 #define SEGMENT_WRITE	__pgprot(_SEGMENT_ENTRY_READ | \
432 				 _SEGMENT_ENTRY_WRITE)
433 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
434 				 _SEGMENT_ENTRY_LARGE |	\
435 				 _SEGMENT_ENTRY_READ |	\
436 				 _SEGMENT_ENTRY_WRITE | \
437 				 _SEGMENT_ENTRY_YOUNG | \
438 				 _SEGMENT_ENTRY_DIRTY)
439 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
440 				 _SEGMENT_ENTRY_LARGE |	\
441 				 _SEGMENT_ENTRY_READ |	\
442 				 _SEGMENT_ENTRY_YOUNG |	\
443 				 _SEGMENT_ENTRY_PROTECT)
444 
445 /*
446  * Region3 entry (large page) protection definitions.
447  */
448 
449 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
450 				 _REGION3_ENTRY_LARGE |	 \
451 				 _REGION3_ENTRY_READ |	 \
452 				 _REGION3_ENTRY_WRITE |	 \
453 				 _REGION3_ENTRY_YOUNG |	 \
454 				 _REGION3_ENTRY_DIRTY)
455 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
456 				   _REGION3_ENTRY_LARGE |  \
457 				   _REGION3_ENTRY_READ |   \
458 				   _REGION3_ENTRY_YOUNG |  \
459 				   _REGION_ENTRY_PROTECT)
460 
461 static inline int mm_has_pgste(struct mm_struct *mm)
462 {
463 #ifdef CONFIG_PGSTE
464 	if (unlikely(mm->context.has_pgste))
465 		return 1;
466 #endif
467 	return 0;
468 }
469 
470 static inline int mm_alloc_pgste(struct mm_struct *mm)
471 {
472 #ifdef CONFIG_PGSTE
473 	if (unlikely(mm->context.alloc_pgste))
474 		return 1;
475 #endif
476 	return 0;
477 }
478 
479 /*
480  * In the case that a guest uses storage keys
481  * faults should no longer be backed by zero pages
482  */
483 #define mm_forbids_zeropage mm_use_skey
484 static inline int mm_use_skey(struct mm_struct *mm)
485 {
486 #ifdef CONFIG_PGSTE
487 	if (mm->context.use_skey)
488 		return 1;
489 #endif
490 	return 0;
491 }
492 
493 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
494 {
495 	register unsigned long reg2 asm("2") = old;
496 	register unsigned long reg3 asm("3") = new;
497 	unsigned long address = (unsigned long)ptr | 1;
498 
499 	asm volatile(
500 		"	csp	%0,%3"
501 		: "+d" (reg2), "+m" (*ptr)
502 		: "d" (reg3), "d" (address)
503 		: "cc");
504 }
505 
506 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
507 {
508 	register unsigned long reg2 asm("2") = old;
509 	register unsigned long reg3 asm("3") = new;
510 	unsigned long address = (unsigned long)ptr | 1;
511 
512 	asm volatile(
513 		"	.insn	rre,0xb98a0000,%0,%3"
514 		: "+d" (reg2), "+m" (*ptr)
515 		: "d" (reg3), "d" (address)
516 		: "cc");
517 }
518 
519 #define CRDTE_DTT_PAGE		0x00UL
520 #define CRDTE_DTT_SEGMENT	0x10UL
521 #define CRDTE_DTT_REGION3	0x14UL
522 #define CRDTE_DTT_REGION2	0x18UL
523 #define CRDTE_DTT_REGION1	0x1cUL
524 
525 static inline void crdte(unsigned long old, unsigned long new,
526 			 unsigned long table, unsigned long dtt,
527 			 unsigned long address, unsigned long asce)
528 {
529 	register unsigned long reg2 asm("2") = old;
530 	register unsigned long reg3 asm("3") = new;
531 	register unsigned long reg4 asm("4") = table | dtt;
532 	register unsigned long reg5 asm("5") = address;
533 
534 	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
535 		     : "+d" (reg2)
536 		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
537 		     : "memory", "cc");
538 }
539 
540 /*
541  * pgd/pmd/pte query functions
542  */
543 static inline int pgd_present(pgd_t pgd)
544 {
545 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
546 		return 1;
547 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
548 }
549 
550 static inline int pgd_none(pgd_t pgd)
551 {
552 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
553 		return 0;
554 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
555 }
556 
557 static inline int pgd_bad(pgd_t pgd)
558 {
559 	/*
560 	 * With dynamic page table levels the pgd can be a region table
561 	 * entry or a segment table entry. Check for the bit that are
562 	 * invalid for either table entry.
563 	 */
564 	unsigned long mask =
565 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
566 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
567 	return (pgd_val(pgd) & mask) != 0;
568 }
569 
570 static inline int pud_present(pud_t pud)
571 {
572 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
573 		return 1;
574 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
575 }
576 
577 static inline int pud_none(pud_t pud)
578 {
579 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
580 		return 0;
581 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
582 }
583 
584 static inline int pud_large(pud_t pud)
585 {
586 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
587 		return 0;
588 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
589 }
590 
591 static inline unsigned long pud_pfn(pud_t pud)
592 {
593 	unsigned long origin_mask;
594 
595 	origin_mask = _REGION3_ENTRY_ORIGIN;
596 	if (pud_large(pud))
597 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
598 	return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
599 }
600 
601 static inline int pmd_large(pmd_t pmd)
602 {
603 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
604 }
605 
606 static inline int pmd_bad(pmd_t pmd)
607 {
608 	if (pmd_large(pmd))
609 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
610 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
611 }
612 
613 static inline int pud_bad(pud_t pud)
614 {
615 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
616 		return pmd_bad(__pmd(pud_val(pud)));
617 	if (pud_large(pud))
618 		return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
619 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
620 }
621 
622 static inline int pmd_present(pmd_t pmd)
623 {
624 	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
625 }
626 
627 static inline int pmd_none(pmd_t pmd)
628 {
629 	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
630 }
631 
632 static inline unsigned long pmd_pfn(pmd_t pmd)
633 {
634 	unsigned long origin_mask;
635 
636 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
637 	if (pmd_large(pmd))
638 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
639 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
640 }
641 
642 #define __HAVE_ARCH_PMD_WRITE
643 static inline int pmd_write(pmd_t pmd)
644 {
645 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
646 }
647 
648 static inline int pmd_dirty(pmd_t pmd)
649 {
650 	int dirty = 1;
651 	if (pmd_large(pmd))
652 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
653 	return dirty;
654 }
655 
656 static inline int pmd_young(pmd_t pmd)
657 {
658 	int young = 1;
659 	if (pmd_large(pmd))
660 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
661 	return young;
662 }
663 
664 static inline int pte_present(pte_t pte)
665 {
666 	/* Bit pattern: (pte & 0x001) == 0x001 */
667 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
668 }
669 
670 static inline int pte_none(pte_t pte)
671 {
672 	/* Bit pattern: pte == 0x400 */
673 	return pte_val(pte) == _PAGE_INVALID;
674 }
675 
676 static inline int pte_swap(pte_t pte)
677 {
678 	/* Bit pattern: (pte & 0x201) == 0x200 */
679 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
680 		== _PAGE_PROTECT;
681 }
682 
683 static inline int pte_special(pte_t pte)
684 {
685 	return (pte_val(pte) & _PAGE_SPECIAL);
686 }
687 
688 #define __HAVE_ARCH_PTE_SAME
689 static inline int pte_same(pte_t a, pte_t b)
690 {
691 	return pte_val(a) == pte_val(b);
692 }
693 
694 #ifdef CONFIG_NUMA_BALANCING
695 static inline int pte_protnone(pte_t pte)
696 {
697 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
698 }
699 
700 static inline int pmd_protnone(pmd_t pmd)
701 {
702 	/* pmd_large(pmd) implies pmd_present(pmd) */
703 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
704 }
705 #endif
706 
707 static inline int pte_soft_dirty(pte_t pte)
708 {
709 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
710 }
711 #define pte_swp_soft_dirty pte_soft_dirty
712 
713 static inline pte_t pte_mksoft_dirty(pte_t pte)
714 {
715 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
716 	return pte;
717 }
718 #define pte_swp_mksoft_dirty pte_mksoft_dirty
719 
720 static inline pte_t pte_clear_soft_dirty(pte_t pte)
721 {
722 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
723 	return pte;
724 }
725 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
726 
727 static inline int pmd_soft_dirty(pmd_t pmd)
728 {
729 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
730 }
731 
732 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
733 {
734 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
735 	return pmd;
736 }
737 
738 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
739 {
740 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
741 	return pmd;
742 }
743 
744 /*
745  * query functions pte_write/pte_dirty/pte_young only work if
746  * pte_present() is true. Undefined behaviour if not..
747  */
748 static inline int pte_write(pte_t pte)
749 {
750 	return (pte_val(pte) & _PAGE_WRITE) != 0;
751 }
752 
753 static inline int pte_dirty(pte_t pte)
754 {
755 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
756 }
757 
758 static inline int pte_young(pte_t pte)
759 {
760 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
761 }
762 
763 #define __HAVE_ARCH_PTE_UNUSED
764 static inline int pte_unused(pte_t pte)
765 {
766 	return pte_val(pte) & _PAGE_UNUSED;
767 }
768 
769 /*
770  * pgd/pmd/pte modification functions
771  */
772 
773 static inline void pgd_clear(pgd_t *pgd)
774 {
775 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
776 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
777 }
778 
779 static inline void pud_clear(pud_t *pud)
780 {
781 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
782 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
783 }
784 
785 static inline void pmd_clear(pmd_t *pmdp)
786 {
787 	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
788 }
789 
790 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
791 {
792 	pte_val(*ptep) = _PAGE_INVALID;
793 }
794 
795 /*
796  * The following pte modification functions only work if
797  * pte_present() is true. Undefined behaviour if not..
798  */
799 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
800 {
801 	pte_val(pte) &= _PAGE_CHG_MASK;
802 	pte_val(pte) |= pgprot_val(newprot);
803 	/*
804 	 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
805 	 * invalid bit set, clear it again for readable, young pages
806 	 */
807 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
808 		pte_val(pte) &= ~_PAGE_INVALID;
809 	/*
810 	 * newprot for PAGE_READ and PAGE_WRITE has the page protection
811 	 * bit set, clear it again for writable, dirty pages
812 	 */
813 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
814 		pte_val(pte) &= ~_PAGE_PROTECT;
815 	return pte;
816 }
817 
818 static inline pte_t pte_wrprotect(pte_t pte)
819 {
820 	pte_val(pte) &= ~_PAGE_WRITE;
821 	pte_val(pte) |= _PAGE_PROTECT;
822 	return pte;
823 }
824 
825 static inline pte_t pte_mkwrite(pte_t pte)
826 {
827 	pte_val(pte) |= _PAGE_WRITE;
828 	if (pte_val(pte) & _PAGE_DIRTY)
829 		pte_val(pte) &= ~_PAGE_PROTECT;
830 	return pte;
831 }
832 
833 static inline pte_t pte_mkclean(pte_t pte)
834 {
835 	pte_val(pte) &= ~_PAGE_DIRTY;
836 	pte_val(pte) |= _PAGE_PROTECT;
837 	return pte;
838 }
839 
840 static inline pte_t pte_mkdirty(pte_t pte)
841 {
842 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
843 	if (pte_val(pte) & _PAGE_WRITE)
844 		pte_val(pte) &= ~_PAGE_PROTECT;
845 	return pte;
846 }
847 
848 static inline pte_t pte_mkold(pte_t pte)
849 {
850 	pte_val(pte) &= ~_PAGE_YOUNG;
851 	pte_val(pte) |= _PAGE_INVALID;
852 	return pte;
853 }
854 
855 static inline pte_t pte_mkyoung(pte_t pte)
856 {
857 	pte_val(pte) |= _PAGE_YOUNG;
858 	if (pte_val(pte) & _PAGE_READ)
859 		pte_val(pte) &= ~_PAGE_INVALID;
860 	return pte;
861 }
862 
863 static inline pte_t pte_mkspecial(pte_t pte)
864 {
865 	pte_val(pte) |= _PAGE_SPECIAL;
866 	return pte;
867 }
868 
869 #ifdef CONFIG_HUGETLB_PAGE
870 static inline pte_t pte_mkhuge(pte_t pte)
871 {
872 	pte_val(pte) |= _PAGE_LARGE;
873 	return pte;
874 }
875 #endif
876 
877 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
878 {
879 	unsigned long pto = (unsigned long) ptep;
880 
881 	/* Invalidation + global TLB flush for the pte */
882 	asm volatile(
883 		"	ipte	%2,%3"
884 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
885 }
886 
887 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
888 {
889 	unsigned long pto = (unsigned long) ptep;
890 
891 	/* Invalidation + local TLB flush for the pte */
892 	asm volatile(
893 		"	.insn rrf,0xb2210000,%2,%3,0,1"
894 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
895 }
896 
897 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
898 {
899 	unsigned long pto = (unsigned long) ptep;
900 
901 	/* Invalidate a range of ptes + global TLB flush of the ptes */
902 	do {
903 		asm volatile(
904 			"	.insn rrf,0xb2210000,%2,%0,%1,0"
905 			: "+a" (address), "+a" (nr) : "a" (pto) : "memory");
906 	} while (nr != 255);
907 }
908 
909 /*
910  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
911  * both clear the TLB for the unmapped pte. The reason is that
912  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
913  * to modify an active pte. The sequence is
914  *   1) ptep_get_and_clear
915  *   2) set_pte_at
916  *   3) flush_tlb_range
917  * On s390 the tlb needs to get flushed with the modification of the pte
918  * if the pte is active. The only way how this can be implemented is to
919  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
920  * is a nop.
921  */
922 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
923 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
924 
925 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
926 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
927 					    unsigned long addr, pte_t *ptep)
928 {
929 	pte_t pte = *ptep;
930 
931 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
932 	return pte_young(pte);
933 }
934 
935 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
936 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
937 					 unsigned long address, pte_t *ptep)
938 {
939 	return ptep_test_and_clear_young(vma, address, ptep);
940 }
941 
942 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
943 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
944 				       unsigned long addr, pte_t *ptep)
945 {
946 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
947 }
948 
949 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
950 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
951 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
952 
953 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
954 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
955 				     unsigned long addr, pte_t *ptep)
956 {
957 	return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
958 }
959 
960 /*
961  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
962  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
963  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
964  * cannot be accessed while the batched unmap is running. In this case
965  * full==1 and a simple pte_clear is enough. See tlb.h.
966  */
967 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
968 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
969 					    unsigned long addr,
970 					    pte_t *ptep, int full)
971 {
972 	if (full) {
973 		pte_t pte = *ptep;
974 		*ptep = __pte(_PAGE_INVALID);
975 		return pte;
976 	}
977 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
978 }
979 
980 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
981 static inline void ptep_set_wrprotect(struct mm_struct *mm,
982 				      unsigned long addr, pte_t *ptep)
983 {
984 	pte_t pte = *ptep;
985 
986 	if (pte_write(pte))
987 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
988 }
989 
990 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
991 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
992 					unsigned long addr, pte_t *ptep,
993 					pte_t entry, int dirty)
994 {
995 	if (pte_same(*ptep, entry))
996 		return 0;
997 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
998 	return 1;
999 }
1000 
1001 /*
1002  * Additional functions to handle KVM guest page tables
1003  */
1004 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1005 		     pte_t *ptep, pte_t entry);
1006 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1007 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1008 		 pte_t *ptep, unsigned long bits);
1009 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1010 		    pte_t *ptep, int prot, unsigned long bit);
1011 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1012 		     pte_t *ptep , int reset);
1013 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1014 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1015 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1016 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1017 
1018 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1019 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1020 			  unsigned char key, bool nq);
1021 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1022 			       unsigned char key, unsigned char *oldkey,
1023 			       bool nq, bool mr, bool mc);
1024 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1025 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1026 			  unsigned char *key);
1027 
1028 /*
1029  * Certain architectures need to do special things when PTEs
1030  * within a page table are directly modified.  Thus, the following
1031  * hook is made available.
1032  */
1033 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1034 			      pte_t *ptep, pte_t entry)
1035 {
1036 	if (mm_has_pgste(mm))
1037 		ptep_set_pte_at(mm, addr, ptep, entry);
1038 	else
1039 		*ptep = entry;
1040 }
1041 
1042 /*
1043  * Conversion functions: convert a page and protection to a page entry,
1044  * and a page entry and page directory to the page they refer to.
1045  */
1046 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1047 {
1048 	pte_t __pte;
1049 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1050 	return pte_mkyoung(__pte);
1051 }
1052 
1053 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1054 {
1055 	unsigned long physpage = page_to_phys(page);
1056 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1057 
1058 	if (pte_write(__pte) && PageDirty(page))
1059 		__pte = pte_mkdirty(__pte);
1060 	return __pte;
1061 }
1062 
1063 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1064 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1065 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1066 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1067 
1068 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1069 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1070 
1071 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1072 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1073 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1074 
1075 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1076 {
1077 	pud_t *pud = (pud_t *) pgd;
1078 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1079 		pud = (pud_t *) pgd_deref(*pgd);
1080 	return pud  + pud_index(address);
1081 }
1082 
1083 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1084 {
1085 	pmd_t *pmd = (pmd_t *) pud;
1086 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1087 		pmd = (pmd_t *) pud_deref(*pud);
1088 	return pmd + pmd_index(address);
1089 }
1090 
1091 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1092 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1093 #define pte_page(x) pfn_to_page(pte_pfn(x))
1094 
1095 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1096 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1097 
1098 /* Find an entry in the lowest level page table.. */
1099 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1100 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1101 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1102 #define pte_unmap(pte) do { } while (0)
1103 
1104 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1105 {
1106 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1107 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1108 	return pmd;
1109 }
1110 
1111 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1112 {
1113 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1114 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1115 		return pmd;
1116 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1117 	return pmd;
1118 }
1119 
1120 static inline pmd_t pmd_mkclean(pmd_t pmd)
1121 {
1122 	if (pmd_large(pmd)) {
1123 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1124 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1125 	}
1126 	return pmd;
1127 }
1128 
1129 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1130 {
1131 	if (pmd_large(pmd)) {
1132 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1133 				_SEGMENT_ENTRY_SOFT_DIRTY;
1134 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1135 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1136 	}
1137 	return pmd;
1138 }
1139 
1140 static inline pud_t pud_wrprotect(pud_t pud)
1141 {
1142 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1143 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1144 	return pud;
1145 }
1146 
1147 static inline pud_t pud_mkwrite(pud_t pud)
1148 {
1149 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1150 	if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1151 		return pud;
1152 	pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1153 	return pud;
1154 }
1155 
1156 static inline pud_t pud_mkclean(pud_t pud)
1157 {
1158 	if (pud_large(pud)) {
1159 		pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1160 		pud_val(pud) |= _REGION_ENTRY_PROTECT;
1161 	}
1162 	return pud;
1163 }
1164 
1165 static inline pud_t pud_mkdirty(pud_t pud)
1166 {
1167 	if (pud_large(pud)) {
1168 		pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1169 				_REGION3_ENTRY_SOFT_DIRTY;
1170 		if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1171 			pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1172 	}
1173 	return pud;
1174 }
1175 
1176 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1177 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1178 {
1179 	/*
1180 	 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1181 	 * Convert to segment table entry format.
1182 	 */
1183 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1184 		return pgprot_val(SEGMENT_NONE);
1185 	if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1186 		return pgprot_val(SEGMENT_READ);
1187 	return pgprot_val(SEGMENT_WRITE);
1188 }
1189 
1190 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1191 {
1192 	if (pmd_large(pmd)) {
1193 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1194 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1195 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1196 	}
1197 	return pmd;
1198 }
1199 
1200 static inline pmd_t pmd_mkold(pmd_t pmd)
1201 {
1202 	if (pmd_large(pmd)) {
1203 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1204 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1205 	}
1206 	return pmd;
1207 }
1208 
1209 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1210 {
1211 	if (pmd_large(pmd)) {
1212 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1213 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1214 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1215 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1216 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1217 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1218 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1219 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1220 		return pmd;
1221 	}
1222 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1223 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1224 	return pmd;
1225 }
1226 
1227 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1228 {
1229 	pmd_t __pmd;
1230 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1231 	return __pmd;
1232 }
1233 
1234 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1235 
1236 static inline void __pmdp_csp(pmd_t *pmdp)
1237 {
1238 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1239 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1240 }
1241 
1242 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1243 {
1244 	unsigned long sto;
1245 
1246 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1247 	asm volatile(
1248 		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1249 		: "=m" (*pmdp)
1250 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1251 		: "cc" );
1252 }
1253 
1254 static inline void __pudp_idte(unsigned long address, pud_t *pudp)
1255 {
1256 	unsigned long r3o;
1257 
1258 	r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1259 	r3o |= _ASCE_TYPE_REGION3;
1260 	asm volatile(
1261 		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1262 		: "=m" (*pudp)
1263 		: "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK))
1264 		: "cc");
1265 }
1266 
1267 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1268 {
1269 	unsigned long sto;
1270 
1271 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1272 	asm volatile(
1273 		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1274 		: "=m" (*pmdp)
1275 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1276 		: "cc" );
1277 }
1278 
1279 static inline void __pudp_idte_local(unsigned long address, pud_t *pudp)
1280 {
1281 	unsigned long r3o;
1282 
1283 	r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1284 	r3o |= _ASCE_TYPE_REGION3;
1285 	asm volatile(
1286 		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1287 		: "=m" (*pudp)
1288 		: "m" (*pudp), "a" (r3o), "a" ((address & PUD_MASK))
1289 		: "cc");
1290 }
1291 
1292 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1293 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1294 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1295 
1296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1297 
1298 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1299 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1300 				pgtable_t pgtable);
1301 
1302 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1303 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1304 
1305 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1306 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1307 					unsigned long addr, pmd_t *pmdp,
1308 					pmd_t entry, int dirty)
1309 {
1310 	VM_BUG_ON(addr & ~HPAGE_MASK);
1311 
1312 	entry = pmd_mkyoung(entry);
1313 	if (dirty)
1314 		entry = pmd_mkdirty(entry);
1315 	if (pmd_val(*pmdp) == pmd_val(entry))
1316 		return 0;
1317 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1318 	return 1;
1319 }
1320 
1321 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1322 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1323 					    unsigned long addr, pmd_t *pmdp)
1324 {
1325 	pmd_t pmd = *pmdp;
1326 
1327 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1328 	return pmd_young(pmd);
1329 }
1330 
1331 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1332 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1333 					 unsigned long addr, pmd_t *pmdp)
1334 {
1335 	VM_BUG_ON(addr & ~HPAGE_MASK);
1336 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1337 }
1338 
1339 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1340 			      pmd_t *pmdp, pmd_t entry)
1341 {
1342 	*pmdp = entry;
1343 }
1344 
1345 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1346 {
1347 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1348 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1349 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1350 	return pmd;
1351 }
1352 
1353 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1354 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1355 					    unsigned long addr, pmd_t *pmdp)
1356 {
1357 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1358 }
1359 
1360 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1361 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1362 						 unsigned long addr,
1363 						 pmd_t *pmdp, int full)
1364 {
1365 	if (full) {
1366 		pmd_t pmd = *pmdp;
1367 		*pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
1368 		return pmd;
1369 	}
1370 	return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1371 }
1372 
1373 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1374 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1375 					  unsigned long addr, pmd_t *pmdp)
1376 {
1377 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1378 }
1379 
1380 #define __HAVE_ARCH_PMDP_INVALIDATE
1381 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1382 				   unsigned long addr, pmd_t *pmdp)
1383 {
1384 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1385 }
1386 
1387 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1388 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1389 				      unsigned long addr, pmd_t *pmdp)
1390 {
1391 	pmd_t pmd = *pmdp;
1392 
1393 	if (pmd_write(pmd))
1394 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1395 }
1396 
1397 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1398 					unsigned long address,
1399 					pmd_t *pmdp)
1400 {
1401 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1402 }
1403 #define pmdp_collapse_flush pmdp_collapse_flush
1404 
1405 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1406 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1407 
1408 static inline int pmd_trans_huge(pmd_t pmd)
1409 {
1410 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1411 }
1412 
1413 #define has_transparent_hugepage has_transparent_hugepage
1414 static inline int has_transparent_hugepage(void)
1415 {
1416 	return MACHINE_HAS_HPAGE ? 1 : 0;
1417 }
1418 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1419 
1420 /*
1421  * 64 bit swap entry format:
1422  * A page-table entry has some bits we have to treat in a special way.
1423  * Bits 52 and bit 55 have to be zero, otherwise a specification
1424  * exception will occur instead of a page translation exception. The
1425  * specification exception has the bad habit not to store necessary
1426  * information in the lowcore.
1427  * Bits 54 and 63 are used to indicate the page type.
1428  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1429  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1430  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1431  * for the offset.
1432  * |			  offset			|01100|type |00|
1433  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1434  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1435  */
1436 
1437 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1438 #define __SWP_OFFSET_SHIFT	12
1439 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1440 #define __SWP_TYPE_SHIFT	2
1441 
1442 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1443 {
1444 	pte_t pte;
1445 
1446 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1447 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1448 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1449 	return pte;
1450 }
1451 
1452 static inline unsigned long __swp_type(swp_entry_t entry)
1453 {
1454 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1455 }
1456 
1457 static inline unsigned long __swp_offset(swp_entry_t entry)
1458 {
1459 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1460 }
1461 
1462 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1463 {
1464 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1465 }
1466 
1467 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1468 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1469 
1470 #endif /* !__ASSEMBLY__ */
1471 
1472 #define kern_addr_valid(addr)   (1)
1473 
1474 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1475 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1476 extern int s390_enable_sie(void);
1477 extern int s390_enable_skey(void);
1478 extern void s390_reset_cmma(struct mm_struct *mm);
1479 
1480 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1481 #define HAVE_ARCH_UNMAPPED_AREA
1482 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1483 
1484 /*
1485  * No page table caches to initialise
1486  */
1487 static inline void pgtable_cache_init(void) { }
1488 static inline void check_pgt_cache(void) { }
1489 
1490 #include <asm-generic/pgtable.h>
1491 
1492 #endif /* _S390_PAGE_H */
1493