xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision e8f6f3b4)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2000
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (weigand@de.ibm.com)
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *
8  *  Derived from "include/asm-i386/pgtable.h"
9  */
10 
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13 
14 /*
15  * The Linux memory management assumes a three-level page table setup. For
16  * s390 31 bit we "fold" the mid level into the top-level page table, so
17  * that we physically have the same two-level page table as the s390 mmu
18  * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19  * the hardware provides (region first and region second tables are not
20  * used).
21  *
22  * The "pgd_xxx()" functions are trivial for a folded two-level
23  * setup: the pgd is never bad, and a pmd always exists (as it's folded
24  * into the pgd entry)
25  *
26  * This file contains the functions and defines necessary to modify and use
27  * the S390 page table tree.
28  */
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/radix-tree.h>
34 #include <asm/bug.h>
35 #include <asm/page.h>
36 
37 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
38 extern void paging_init(void);
39 extern void vmem_map_init(void);
40 
41 /*
42  * The S390 doesn't have any external MMU info: the kernel page
43  * tables contain all the necessary information.
44  */
45 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
46 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
47 
48 /*
49  * ZERO_PAGE is a global shared page that is always zero; used
50  * for zero-mapped memory areas etc..
51  */
52 
53 extern unsigned long empty_zero_page;
54 extern unsigned long zero_page_mask;
55 
56 #define ZERO_PAGE(vaddr) \
57 	(virt_to_page((void *)(empty_zero_page + \
58 	 (((unsigned long)(vaddr)) &zero_page_mask))))
59 #define __HAVE_COLOR_ZERO_PAGE
60 
61 /* TODO: s390 cannot support io_remap_pfn_range... */
62 #endif /* !__ASSEMBLY__ */
63 
64 /*
65  * PMD_SHIFT determines the size of the area a second-level page
66  * table can map
67  * PGDIR_SHIFT determines what a third-level page table entry can map
68  */
69 #ifndef CONFIG_64BIT
70 # define PMD_SHIFT	20
71 # define PUD_SHIFT	20
72 # define PGDIR_SHIFT	20
73 #else /* CONFIG_64BIT */
74 # define PMD_SHIFT	20
75 # define PUD_SHIFT	31
76 # define PGDIR_SHIFT	42
77 #endif /* CONFIG_64BIT */
78 
79 #define PMD_SIZE        (1UL << PMD_SHIFT)
80 #define PMD_MASK        (~(PMD_SIZE-1))
81 #define PUD_SIZE	(1UL << PUD_SHIFT)
82 #define PUD_MASK	(~(PUD_SIZE-1))
83 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
84 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
85 
86 /*
87  * entries per page directory level: the S390 is two-level, so
88  * we don't really have any PMD directory physically.
89  * for S390 segment-table entries are combined to one PGD
90  * that leads to 1024 pte per pgd
91  */
92 #define PTRS_PER_PTE	256
93 #ifndef CONFIG_64BIT
94 #define PTRS_PER_PMD	1
95 #define PTRS_PER_PUD	1
96 #else /* CONFIG_64BIT */
97 #define PTRS_PER_PMD	2048
98 #define PTRS_PER_PUD	2048
99 #endif /* CONFIG_64BIT */
100 #define PTRS_PER_PGD	2048
101 
102 #define FIRST_USER_ADDRESS  0
103 
104 #define pte_ERROR(e) \
105 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
106 #define pmd_ERROR(e) \
107 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
108 #define pud_ERROR(e) \
109 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
110 #define pgd_ERROR(e) \
111 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
112 
113 #ifndef __ASSEMBLY__
114 /*
115  * The vmalloc and module area will always be on the topmost area of the kernel
116  * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
117  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
118  * modules will reside. That makes sure that inter module branches always
119  * happen without trampolines and in addition the placement within a 2GB frame
120  * is branch prediction unit friendly.
121  */
122 extern unsigned long VMALLOC_START;
123 extern unsigned long VMALLOC_END;
124 extern struct page *vmemmap;
125 
126 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
127 
128 #ifdef CONFIG_64BIT
129 extern unsigned long MODULES_VADDR;
130 extern unsigned long MODULES_END;
131 #define MODULES_VADDR	MODULES_VADDR
132 #define MODULES_END	MODULES_END
133 #define MODULES_LEN	(1UL << 31)
134 #endif
135 
136 static inline int is_module_addr(void *addr)
137 {
138 #ifdef CONFIG_64BIT
139 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
140 	if (addr < (void *)MODULES_VADDR)
141 		return 0;
142 	if (addr > (void *)MODULES_END)
143 		return 0;
144 #endif
145 	return 1;
146 }
147 
148 /*
149  * A 31 bit pagetable entry of S390 has following format:
150  *  |   PFRA          |    |  OS  |
151  * 0                   0IP0
152  * 00000000001111111111222222222233
153  * 01234567890123456789012345678901
154  *
155  * I Page-Invalid Bit:    Page is not available for address-translation
156  * P Page-Protection Bit: Store access not possible for page
157  *
158  * A 31 bit segmenttable entry of S390 has following format:
159  *  |   P-table origin      |  |PTL
160  * 0                         IC
161  * 00000000001111111111222222222233
162  * 01234567890123456789012345678901
163  *
164  * I Segment-Invalid Bit:    Segment is not available for address-translation
165  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
166  * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
167  *
168  * The 31 bit segmenttable origin of S390 has following format:
169  *
170  *  |S-table origin   |     | STL |
171  * X                   **GPS
172  * 00000000001111111111222222222233
173  * 01234567890123456789012345678901
174  *
175  * X Space-Switch event:
176  * G Segment-Invalid Bit:     *
177  * P Private-Space Bit:       Segment is not private (PoP 3-30)
178  * S Storage-Alteration:
179  * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
180  *
181  * A 64 bit pagetable entry of S390 has following format:
182  * |			 PFRA			      |0IPC|  OS  |
183  * 0000000000111111111122222222223333333333444444444455555555556666
184  * 0123456789012345678901234567890123456789012345678901234567890123
185  *
186  * I Page-Invalid Bit:    Page is not available for address-translation
187  * P Page-Protection Bit: Store access not possible for page
188  * C Change-bit override: HW is not required to set change bit
189  *
190  * A 64 bit segmenttable entry of S390 has following format:
191  * |        P-table origin                              |      TT
192  * 0000000000111111111122222222223333333333444444444455555555556666
193  * 0123456789012345678901234567890123456789012345678901234567890123
194  *
195  * I Segment-Invalid Bit:    Segment is not available for address-translation
196  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
197  * P Page-Protection Bit: Store access not possible for page
198  * TT Type 00
199  *
200  * A 64 bit region table entry of S390 has following format:
201  * |        S-table origin                             |   TF  TTTL
202  * 0000000000111111111122222222223333333333444444444455555555556666
203  * 0123456789012345678901234567890123456789012345678901234567890123
204  *
205  * I Segment-Invalid Bit:    Segment is not available for address-translation
206  * TT Type 01
207  * TF
208  * TL Table length
209  *
210  * The 64 bit regiontable origin of S390 has following format:
211  * |      region table origon                          |       DTTL
212  * 0000000000111111111122222222223333333333444444444455555555556666
213  * 0123456789012345678901234567890123456789012345678901234567890123
214  *
215  * X Space-Switch event:
216  * G Segment-Invalid Bit:
217  * P Private-Space Bit:
218  * S Storage-Alteration:
219  * R Real space
220  * TL Table-Length:
221  *
222  * A storage key has the following format:
223  * | ACC |F|R|C|0|
224  *  0   3 4 5 6 7
225  * ACC: access key
226  * F  : fetch protection bit
227  * R  : referenced bit
228  * C  : changed bit
229  */
230 
231 /* Hardware bits in the page table entry */
232 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
233 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
234 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
235 
236 /* Software bits in the page table entry */
237 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
238 #define _PAGE_TYPE	0x002		/* SW pte type bit */
239 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
240 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
241 #define _PAGE_READ	0x010		/* SW pte read bit */
242 #define _PAGE_WRITE	0x020		/* SW pte write bit */
243 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
244 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
245 #define __HAVE_ARCH_PTE_SPECIAL
246 
247 /* Set of bits not changed in pte_modify */
248 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
249 				 _PAGE_YOUNG)
250 
251 /*
252  * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
253  * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
254  * is used to distinguish present from not-present ptes. It is changed only
255  * with the page table lock held.
256  *
257  * The following table gives the different possible bit combinations for
258  * the pte hardware and software bits in the last 12 bits of a pte:
259  *
260  *				842100000000
261  *				000084210000
262  *				000000008421
263  *				.IR...wrdytp
264  * empty			.10...000000
265  * swap				.10...xxxx10
266  * file				.11...xxxxx0
267  * prot-none, clean, old	.11...000001
268  * prot-none, clean, young	.11...000101
269  * prot-none, dirty, old	.10...001001
270  * prot-none, dirty, young	.10...001101
271  * read-only, clean, old	.11...010001
272  * read-only, clean, young	.01...010101
273  * read-only, dirty, old	.11...011001
274  * read-only, dirty, young	.01...011101
275  * read-write, clean, old	.11...110001
276  * read-write, clean, young	.01...110101
277  * read-write, dirty, old	.10...111001
278  * read-write, dirty, young	.00...111101
279  *
280  * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
281  * pte_none    is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
282  * pte_file    is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
283  * pte_swap    is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
284  */
285 
286 #ifndef CONFIG_64BIT
287 
288 /* Bits in the segment table address-space-control-element */
289 #define _ASCE_SPACE_SWITCH	0x80000000UL	/* space switch event	    */
290 #define _ASCE_ORIGIN_MASK	0x7ffff000UL	/* segment table origin	    */
291 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
292 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
293 #define _ASCE_TABLE_LENGTH	0x7f	/* 128 x 64 entries = 8k	    */
294 
295 /* Bits in the segment table entry */
296 #define _SEGMENT_ENTRY_BITS	0x7fffffffUL	/* Valid segment table bits */
297 #define _SEGMENT_ENTRY_ORIGIN	0x7fffffc0UL	/* page table origin	    */
298 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
299 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
300 #define _SEGMENT_ENTRY_COMMON	0x10	/* common segment bit		    */
301 #define _SEGMENT_ENTRY_PTL	0x0f	/* page table length		    */
302 
303 #define _SEGMENT_ENTRY_DIRTY	0	/* No sw dirty bit for 31-bit */
304 #define _SEGMENT_ENTRY_YOUNG	0	/* No sw young bit for 31-bit */
305 #define _SEGMENT_ENTRY_READ	0	/* No sw read bit for 31-bit */
306 #define _SEGMENT_ENTRY_WRITE	0	/* No sw write bit for 31-bit */
307 #define _SEGMENT_ENTRY_LARGE	0	/* No large pages for 31-bit */
308 #define _SEGMENT_ENTRY_BITS_LARGE 0
309 #define _SEGMENT_ENTRY_ORIGIN_LARGE 0
310 
311 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PTL)
312 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
313 
314 /*
315  * Segment table entry encoding (I = invalid, R = read-only bit):
316  *		..R...I.....
317  * prot-none	..1...1.....
318  * read-only	..1...0.....
319  * read-write	..0...0.....
320  * empty	..0...1.....
321  */
322 
323 /* Page status table bits for virtualization */
324 #define PGSTE_ACC_BITS	0xf0000000UL
325 #define PGSTE_FP_BIT	0x08000000UL
326 #define PGSTE_PCL_BIT	0x00800000UL
327 #define PGSTE_HR_BIT	0x00400000UL
328 #define PGSTE_HC_BIT	0x00200000UL
329 #define PGSTE_GR_BIT	0x00040000UL
330 #define PGSTE_GC_BIT	0x00020000UL
331 #define PGSTE_UC_BIT	0x00008000UL	/* user dirty (migration) */
332 #define PGSTE_IN_BIT	0x00004000UL	/* IPTE notify bit */
333 
334 #else /* CONFIG_64BIT */
335 
336 /* Bits in the segment/region table address-space-control-element */
337 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
338 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
339 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
340 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
341 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
342 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
343 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
344 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
345 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
346 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
347 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
348 
349 /* Bits in the region table entry */
350 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
351 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
352 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
353 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
354 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
355 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
356 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
357 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
358 
359 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
360 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
361 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
362 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
363 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
364 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
365 
366 #define _REGION3_ENTRY_LARGE	0x400	/* RTTE-format control, large page  */
367 #define _REGION3_ENTRY_RO	0x200	/* page protection bit		    */
368 
369 /* Bits in the segment table entry */
370 #define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
371 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
372 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
373 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
374 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
375 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
376 
377 #define _SEGMENT_ENTRY		(0)
378 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
379 
380 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
381 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
382 #define _SEGMENT_ENTRY_SPLIT	0x0800	/* THP splitting bit */
383 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
384 #define _SEGMENT_ENTRY_READ	0x0002	/* SW segment read bit */
385 #define _SEGMENT_ENTRY_WRITE	0x0001	/* SW segment write bit */
386 
387 /*
388  * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
389  *				dy..R...I...wr
390  * prot-none, clean, old	00..1...1...00
391  * prot-none, clean, young	01..1...1...00
392  * prot-none, dirty, old	10..1...1...00
393  * prot-none, dirty, young	11..1...1...00
394  * read-only, clean, old	00..1...1...01
395  * read-only, clean, young	01..1...0...01
396  * read-only, dirty, old	10..1...1...01
397  * read-only, dirty, young	11..1...0...01
398  * read-write, clean, old	00..1...1...11
399  * read-write, clean, young	01..1...0...11
400  * read-write, dirty, old	10..0...1...11
401  * read-write, dirty, young	11..0...0...11
402  * The segment table origin is used to distinguish empty (origin==0) from
403  * read-write, old segment table entries (origin!=0)
404  */
405 
406 #define _SEGMENT_ENTRY_SPLIT_BIT 11	/* THP splitting bit number */
407 
408 /* Page status table bits for virtualization */
409 #define PGSTE_ACC_BITS	0xf000000000000000UL
410 #define PGSTE_FP_BIT	0x0800000000000000UL
411 #define PGSTE_PCL_BIT	0x0080000000000000UL
412 #define PGSTE_HR_BIT	0x0040000000000000UL
413 #define PGSTE_HC_BIT	0x0020000000000000UL
414 #define PGSTE_GR_BIT	0x0004000000000000UL
415 #define PGSTE_GC_BIT	0x0002000000000000UL
416 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
417 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
418 
419 #endif /* CONFIG_64BIT */
420 
421 /* Guest Page State used for virtualization */
422 #define _PGSTE_GPS_ZERO		0x0000000080000000UL
423 #define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
424 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
425 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
426 
427 /*
428  * A user page table pointer has the space-switch-event bit, the
429  * private-space-control bit and the storage-alteration-event-control
430  * bit set. A kernel page table pointer doesn't need them.
431  */
432 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
433 				 _ASCE_ALT_EVENT)
434 
435 /*
436  * Page protection definitions.
437  */
438 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID)
439 #define PAGE_READ	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
440 				 _PAGE_INVALID | _PAGE_PROTECT)
441 #define PAGE_WRITE	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
442 				 _PAGE_INVALID | _PAGE_PROTECT)
443 
444 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
445 				 _PAGE_YOUNG | _PAGE_DIRTY)
446 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
447 				 _PAGE_YOUNG | _PAGE_DIRTY)
448 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
449 				 _PAGE_PROTECT)
450 
451 /*
452  * On s390 the page table entry has an invalid bit and a read-only bit.
453  * Read permission implies execute permission and write permission
454  * implies read permission.
455  */
456          /*xwr*/
457 #define __P000	PAGE_NONE
458 #define __P001	PAGE_READ
459 #define __P010	PAGE_READ
460 #define __P011	PAGE_READ
461 #define __P100	PAGE_READ
462 #define __P101	PAGE_READ
463 #define __P110	PAGE_READ
464 #define __P111	PAGE_READ
465 
466 #define __S000	PAGE_NONE
467 #define __S001	PAGE_READ
468 #define __S010	PAGE_WRITE
469 #define __S011	PAGE_WRITE
470 #define __S100	PAGE_READ
471 #define __S101	PAGE_READ
472 #define __S110	PAGE_WRITE
473 #define __S111	PAGE_WRITE
474 
475 /*
476  * Segment entry (large page) protection definitions.
477  */
478 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
479 				 _SEGMENT_ENTRY_PROTECT)
480 #define SEGMENT_READ	__pgprot(_SEGMENT_ENTRY_PROTECT | \
481 				 _SEGMENT_ENTRY_READ)
482 #define SEGMENT_WRITE	__pgprot(_SEGMENT_ENTRY_READ | \
483 				 _SEGMENT_ENTRY_WRITE)
484 
485 static inline int mm_has_pgste(struct mm_struct *mm)
486 {
487 #ifdef CONFIG_PGSTE
488 	if (unlikely(mm->context.has_pgste))
489 		return 1;
490 #endif
491 	return 0;
492 }
493 
494 /*
495  * In the case that a guest uses storage keys
496  * faults should no longer be backed by zero pages
497  */
498 #define mm_forbids_zeropage mm_use_skey
499 static inline int mm_use_skey(struct mm_struct *mm)
500 {
501 #ifdef CONFIG_PGSTE
502 	if (mm->context.use_skey)
503 		return 1;
504 #endif
505 	return 0;
506 }
507 
508 /*
509  * pgd/pmd/pte query functions
510  */
511 #ifndef CONFIG_64BIT
512 
513 static inline int pgd_present(pgd_t pgd) { return 1; }
514 static inline int pgd_none(pgd_t pgd)    { return 0; }
515 static inline int pgd_bad(pgd_t pgd)     { return 0; }
516 
517 static inline int pud_present(pud_t pud) { return 1; }
518 static inline int pud_none(pud_t pud)	 { return 0; }
519 static inline int pud_large(pud_t pud)	 { return 0; }
520 static inline int pud_bad(pud_t pud)	 { return 0; }
521 
522 #else /* CONFIG_64BIT */
523 
524 static inline int pgd_present(pgd_t pgd)
525 {
526 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
527 		return 1;
528 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
529 }
530 
531 static inline int pgd_none(pgd_t pgd)
532 {
533 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
534 		return 0;
535 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
536 }
537 
538 static inline int pgd_bad(pgd_t pgd)
539 {
540 	/*
541 	 * With dynamic page table levels the pgd can be a region table
542 	 * entry or a segment table entry. Check for the bit that are
543 	 * invalid for either table entry.
544 	 */
545 	unsigned long mask =
546 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
547 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
548 	return (pgd_val(pgd) & mask) != 0;
549 }
550 
551 static inline int pud_present(pud_t pud)
552 {
553 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
554 		return 1;
555 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
556 }
557 
558 static inline int pud_none(pud_t pud)
559 {
560 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
561 		return 0;
562 	return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
563 }
564 
565 static inline int pud_large(pud_t pud)
566 {
567 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
568 		return 0;
569 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
570 }
571 
572 static inline int pud_bad(pud_t pud)
573 {
574 	/*
575 	 * With dynamic page table levels the pud can be a region table
576 	 * entry or a segment table entry. Check for the bit that are
577 	 * invalid for either table entry.
578 	 */
579 	unsigned long mask =
580 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
581 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
582 	return (pud_val(pud) & mask) != 0;
583 }
584 
585 #endif /* CONFIG_64BIT */
586 
587 static inline int pmd_present(pmd_t pmd)
588 {
589 	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
590 }
591 
592 static inline int pmd_none(pmd_t pmd)
593 {
594 	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
595 }
596 
597 static inline int pmd_large(pmd_t pmd)
598 {
599 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
600 }
601 
602 static inline int pmd_pfn(pmd_t pmd)
603 {
604 	unsigned long origin_mask;
605 
606 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
607 	if (pmd_large(pmd))
608 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
609 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
610 }
611 
612 static inline int pmd_bad(pmd_t pmd)
613 {
614 	if (pmd_large(pmd))
615 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
616 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
617 }
618 
619 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
620 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
621 				 unsigned long addr, pmd_t *pmdp);
622 
623 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
624 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
625 				 unsigned long address, pmd_t *pmdp,
626 				 pmd_t entry, int dirty);
627 
628 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
629 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
630 				  unsigned long address, pmd_t *pmdp);
631 
632 #define __HAVE_ARCH_PMD_WRITE
633 static inline int pmd_write(pmd_t pmd)
634 {
635 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
636 }
637 
638 static inline int pmd_dirty(pmd_t pmd)
639 {
640 	int dirty = 1;
641 	if (pmd_large(pmd))
642 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
643 	return dirty;
644 }
645 
646 static inline int pmd_young(pmd_t pmd)
647 {
648 	int young = 1;
649 	if (pmd_large(pmd))
650 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
651 	return young;
652 }
653 
654 static inline int pte_present(pte_t pte)
655 {
656 	/* Bit pattern: (pte & 0x001) == 0x001 */
657 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
658 }
659 
660 static inline int pte_none(pte_t pte)
661 {
662 	/* Bit pattern: pte == 0x400 */
663 	return pte_val(pte) == _PAGE_INVALID;
664 }
665 
666 static inline int pte_swap(pte_t pte)
667 {
668 	/* Bit pattern: (pte & 0x603) == 0x402 */
669 	return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
670 				_PAGE_TYPE | _PAGE_PRESENT))
671 		== (_PAGE_INVALID | _PAGE_TYPE);
672 }
673 
674 static inline int pte_file(pte_t pte)
675 {
676 	/* Bit pattern: (pte & 0x601) == 0x600 */
677 	return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
678 		== (_PAGE_INVALID | _PAGE_PROTECT);
679 }
680 
681 static inline int pte_special(pte_t pte)
682 {
683 	return (pte_val(pte) & _PAGE_SPECIAL);
684 }
685 
686 #define __HAVE_ARCH_PTE_SAME
687 static inline int pte_same(pte_t a, pte_t b)
688 {
689 	return pte_val(a) == pte_val(b);
690 }
691 
692 static inline pgste_t pgste_get_lock(pte_t *ptep)
693 {
694 	unsigned long new = 0;
695 #ifdef CONFIG_PGSTE
696 	unsigned long old;
697 
698 	preempt_disable();
699 	asm(
700 		"	lg	%0,%2\n"
701 		"0:	lgr	%1,%0\n"
702 		"	nihh	%0,0xff7f\n"	/* clear PCL bit in old */
703 		"	oihh	%1,0x0080\n"	/* set PCL bit in new */
704 		"	csg	%0,%1,%2\n"
705 		"	jl	0b\n"
706 		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
707 		: "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
708 #endif
709 	return __pgste(new);
710 }
711 
712 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
713 {
714 #ifdef CONFIG_PGSTE
715 	asm(
716 		"	nihh	%1,0xff7f\n"	/* clear PCL bit */
717 		"	stg	%1,%0\n"
718 		: "=Q" (ptep[PTRS_PER_PTE])
719 		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
720 		: "cc", "memory");
721 	preempt_enable();
722 #endif
723 }
724 
725 static inline pgste_t pgste_get(pte_t *ptep)
726 {
727 	unsigned long pgste = 0;
728 #ifdef CONFIG_PGSTE
729 	pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
730 #endif
731 	return __pgste(pgste);
732 }
733 
734 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
735 {
736 #ifdef CONFIG_PGSTE
737 	*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
738 #endif
739 }
740 
741 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
742 				       struct mm_struct *mm)
743 {
744 #ifdef CONFIG_PGSTE
745 	unsigned long address, bits, skey;
746 
747 	if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
748 		return pgste;
749 	address = pte_val(*ptep) & PAGE_MASK;
750 	skey = (unsigned long) page_get_storage_key(address);
751 	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
752 	/* Transfer page changed & referenced bit to guest bits in pgste */
753 	pgste_val(pgste) |= bits << 48;		/* GR bit & GC bit */
754 	/* Copy page access key and fetch protection bit to pgste */
755 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
756 	pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
757 #endif
758 	return pgste;
759 
760 }
761 
762 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
763 				 struct mm_struct *mm)
764 {
765 #ifdef CONFIG_PGSTE
766 	unsigned long address;
767 	unsigned long nkey;
768 
769 	if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
770 		return;
771 	VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
772 	address = pte_val(entry) & PAGE_MASK;
773 	/*
774 	 * Set page access key and fetch protection bit from pgste.
775 	 * The guest C/R information is still in the PGSTE, set real
776 	 * key C/R to 0.
777 	 */
778 	nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
779 	nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
780 	page_set_storage_key(address, nkey, 0);
781 #endif
782 }
783 
784 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
785 {
786 	if ((pte_val(entry) & _PAGE_PRESENT) &&
787 	    (pte_val(entry) & _PAGE_WRITE) &&
788 	    !(pte_val(entry) & _PAGE_INVALID)) {
789 		if (!MACHINE_HAS_ESOP) {
790 			/*
791 			 * Without enhanced suppression-on-protection force
792 			 * the dirty bit on for all writable ptes.
793 			 */
794 			pte_val(entry) |= _PAGE_DIRTY;
795 			pte_val(entry) &= ~_PAGE_PROTECT;
796 		}
797 		if (!(pte_val(entry) & _PAGE_PROTECT))
798 			/* This pte allows write access, set user-dirty */
799 			pgste_val(pgste) |= PGSTE_UC_BIT;
800 	}
801 	*ptep = entry;
802 	return pgste;
803 }
804 
805 /**
806  * struct gmap_struct - guest address space
807  * @crst_list: list of all crst tables used in the guest address space
808  * @mm: pointer to the parent mm_struct
809  * @guest_to_host: radix tree with guest to host address translation
810  * @host_to_guest: radix tree with pointer to segment table entries
811  * @guest_table_lock: spinlock to protect all entries in the guest page table
812  * @table: pointer to the page directory
813  * @asce: address space control element for gmap page table
814  * @pfault_enabled: defines if pfaults are applicable for the guest
815  */
816 struct gmap {
817 	struct list_head list;
818 	struct list_head crst_list;
819 	struct mm_struct *mm;
820 	struct radix_tree_root guest_to_host;
821 	struct radix_tree_root host_to_guest;
822 	spinlock_t guest_table_lock;
823 	unsigned long *table;
824 	unsigned long asce;
825 	unsigned long asce_end;
826 	void *private;
827 	bool pfault_enabled;
828 };
829 
830 /**
831  * struct gmap_notifier - notify function block for page invalidation
832  * @notifier_call: address of callback function
833  */
834 struct gmap_notifier {
835 	struct list_head list;
836 	void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
837 };
838 
839 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
840 void gmap_free(struct gmap *gmap);
841 void gmap_enable(struct gmap *gmap);
842 void gmap_disable(struct gmap *gmap);
843 int gmap_map_segment(struct gmap *gmap, unsigned long from,
844 		     unsigned long to, unsigned long len);
845 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
846 unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
847 unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
848 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
849 int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
850 void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
851 void __gmap_zap(struct gmap *, unsigned long gaddr);
852 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
853 
854 
855 void gmap_register_ipte_notifier(struct gmap_notifier *);
856 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
857 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
858 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
859 
860 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
861 					unsigned long addr,
862 					pte_t *ptep, pgste_t pgste)
863 {
864 #ifdef CONFIG_PGSTE
865 	if (pgste_val(pgste) & PGSTE_IN_BIT) {
866 		pgste_val(pgste) &= ~PGSTE_IN_BIT;
867 		gmap_do_ipte_notify(mm, addr, ptep);
868 	}
869 #endif
870 	return pgste;
871 }
872 
873 /*
874  * Certain architectures need to do special things when PTEs
875  * within a page table are directly modified.  Thus, the following
876  * hook is made available.
877  */
878 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
879 			      pte_t *ptep, pte_t entry)
880 {
881 	pgste_t pgste;
882 
883 	if (mm_has_pgste(mm)) {
884 		pgste = pgste_get_lock(ptep);
885 		pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
886 		pgste_set_key(ptep, pgste, entry, mm);
887 		pgste = pgste_set_pte(ptep, pgste, entry);
888 		pgste_set_unlock(ptep, pgste);
889 	} else {
890 		*ptep = entry;
891 	}
892 }
893 
894 /*
895  * query functions pte_write/pte_dirty/pte_young only work if
896  * pte_present() is true. Undefined behaviour if not..
897  */
898 static inline int pte_write(pte_t pte)
899 {
900 	return (pte_val(pte) & _PAGE_WRITE) != 0;
901 }
902 
903 static inline int pte_dirty(pte_t pte)
904 {
905 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
906 }
907 
908 static inline int pte_young(pte_t pte)
909 {
910 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
911 }
912 
913 #define __HAVE_ARCH_PTE_UNUSED
914 static inline int pte_unused(pte_t pte)
915 {
916 	return pte_val(pte) & _PAGE_UNUSED;
917 }
918 
919 /*
920  * pgd/pmd/pte modification functions
921  */
922 
923 static inline void pgd_clear(pgd_t *pgd)
924 {
925 #ifdef CONFIG_64BIT
926 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
927 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
928 #endif
929 }
930 
931 static inline void pud_clear(pud_t *pud)
932 {
933 #ifdef CONFIG_64BIT
934 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
935 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
936 #endif
937 }
938 
939 static inline void pmd_clear(pmd_t *pmdp)
940 {
941 	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
942 }
943 
944 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
945 {
946 	pte_val(*ptep) = _PAGE_INVALID;
947 }
948 
949 /*
950  * The following pte modification functions only work if
951  * pte_present() is true. Undefined behaviour if not..
952  */
953 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
954 {
955 	pte_val(pte) &= _PAGE_CHG_MASK;
956 	pte_val(pte) |= pgprot_val(newprot);
957 	/*
958 	 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
959 	 * invalid bit set, clear it again for readable, young pages
960 	 */
961 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
962 		pte_val(pte) &= ~_PAGE_INVALID;
963 	/*
964 	 * newprot for PAGE_READ and PAGE_WRITE has the page protection
965 	 * bit set, clear it again for writable, dirty pages
966 	 */
967 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
968 		pte_val(pte) &= ~_PAGE_PROTECT;
969 	return pte;
970 }
971 
972 static inline pte_t pte_wrprotect(pte_t pte)
973 {
974 	pte_val(pte) &= ~_PAGE_WRITE;
975 	pte_val(pte) |= _PAGE_PROTECT;
976 	return pte;
977 }
978 
979 static inline pte_t pte_mkwrite(pte_t pte)
980 {
981 	pte_val(pte) |= _PAGE_WRITE;
982 	if (pte_val(pte) & _PAGE_DIRTY)
983 		pte_val(pte) &= ~_PAGE_PROTECT;
984 	return pte;
985 }
986 
987 static inline pte_t pte_mkclean(pte_t pte)
988 {
989 	pte_val(pte) &= ~_PAGE_DIRTY;
990 	pte_val(pte) |= _PAGE_PROTECT;
991 	return pte;
992 }
993 
994 static inline pte_t pte_mkdirty(pte_t pte)
995 {
996 	pte_val(pte) |= _PAGE_DIRTY;
997 	if (pte_val(pte) & _PAGE_WRITE)
998 		pte_val(pte) &= ~_PAGE_PROTECT;
999 	return pte;
1000 }
1001 
1002 static inline pte_t pte_mkold(pte_t pte)
1003 {
1004 	pte_val(pte) &= ~_PAGE_YOUNG;
1005 	pte_val(pte) |= _PAGE_INVALID;
1006 	return pte;
1007 }
1008 
1009 static inline pte_t pte_mkyoung(pte_t pte)
1010 {
1011 	pte_val(pte) |= _PAGE_YOUNG;
1012 	if (pte_val(pte) & _PAGE_READ)
1013 		pte_val(pte) &= ~_PAGE_INVALID;
1014 	return pte;
1015 }
1016 
1017 static inline pte_t pte_mkspecial(pte_t pte)
1018 {
1019 	pte_val(pte) |= _PAGE_SPECIAL;
1020 	return pte;
1021 }
1022 
1023 #ifdef CONFIG_HUGETLB_PAGE
1024 static inline pte_t pte_mkhuge(pte_t pte)
1025 {
1026 	pte_val(pte) |= _PAGE_LARGE;
1027 	return pte;
1028 }
1029 #endif
1030 
1031 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1032 {
1033 	unsigned long pto = (unsigned long) ptep;
1034 
1035 #ifndef CONFIG_64BIT
1036 	/* pto in ESA mode must point to the start of the segment table */
1037 	pto &= 0x7ffffc00;
1038 #endif
1039 	/* Invalidation + global TLB flush for the pte */
1040 	asm volatile(
1041 		"	ipte	%2,%3"
1042 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1043 }
1044 
1045 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1046 {
1047 	unsigned long pto = (unsigned long) ptep;
1048 
1049 #ifndef CONFIG_64BIT
1050 	/* pto in ESA mode must point to the start of the segment table */
1051 	pto &= 0x7ffffc00;
1052 #endif
1053 	/* Invalidation + local TLB flush for the pte */
1054 	asm volatile(
1055 		"	.insn rrf,0xb2210000,%2,%3,0,1"
1056 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1057 }
1058 
1059 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
1060 {
1061 	unsigned long pto = (unsigned long) ptep;
1062 
1063 #ifndef CONFIG_64BIT
1064 	/* pto in ESA mode must point to the start of the segment table */
1065 	pto &= 0x7ffffc00;
1066 #endif
1067 	/* Invalidate a range of ptes + global TLB flush of the ptes */
1068 	do {
1069 		asm volatile(
1070 			"	.insn rrf,0xb2210000,%2,%0,%1,0"
1071 			: "+a" (address), "+a" (nr) : "a" (pto) : "memory");
1072 	} while (nr != 255);
1073 }
1074 
1075 static inline void ptep_flush_direct(struct mm_struct *mm,
1076 				     unsigned long address, pte_t *ptep)
1077 {
1078 	int active, count;
1079 
1080 	if (pte_val(*ptep) & _PAGE_INVALID)
1081 		return;
1082 	active = (mm == current->active_mm) ? 1 : 0;
1083 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1084 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1085 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1086 		__ptep_ipte_local(address, ptep);
1087 	else
1088 		__ptep_ipte(address, ptep);
1089 	atomic_sub(0x10000, &mm->context.attach_count);
1090 }
1091 
1092 static inline void ptep_flush_lazy(struct mm_struct *mm,
1093 				   unsigned long address, pte_t *ptep)
1094 {
1095 	int active, count;
1096 
1097 	if (pte_val(*ptep) & _PAGE_INVALID)
1098 		return;
1099 	active = (mm == current->active_mm) ? 1 : 0;
1100 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1101 	if ((count & 0xffff) <= active) {
1102 		pte_val(*ptep) |= _PAGE_INVALID;
1103 		mm->context.flush_mm = 1;
1104 	} else
1105 		__ptep_ipte(address, ptep);
1106 	atomic_sub(0x10000, &mm->context.attach_count);
1107 }
1108 
1109 /*
1110  * Get (and clear) the user dirty bit for a pte.
1111  */
1112 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1113 						 unsigned long addr,
1114 						 pte_t *ptep)
1115 {
1116 	pgste_t pgste;
1117 	pte_t pte;
1118 	int dirty;
1119 
1120 	if (!mm_has_pgste(mm))
1121 		return 0;
1122 	pgste = pgste_get_lock(ptep);
1123 	dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1124 	pgste_val(pgste) &= ~PGSTE_UC_BIT;
1125 	pte = *ptep;
1126 	if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1127 		pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1128 		__ptep_ipte(addr, ptep);
1129 		if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1130 			pte_val(pte) |= _PAGE_PROTECT;
1131 		else
1132 			pte_val(pte) |= _PAGE_INVALID;
1133 		*ptep = pte;
1134 	}
1135 	pgste_set_unlock(ptep, pgste);
1136 	return dirty;
1137 }
1138 
1139 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1140 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1141 					    unsigned long addr, pte_t *ptep)
1142 {
1143 	pgste_t pgste;
1144 	pte_t pte, oldpte;
1145 	int young;
1146 
1147 	if (mm_has_pgste(vma->vm_mm)) {
1148 		pgste = pgste_get_lock(ptep);
1149 		pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1150 	}
1151 
1152 	oldpte = pte = *ptep;
1153 	ptep_flush_direct(vma->vm_mm, addr, ptep);
1154 	young = pte_young(pte);
1155 	pte = pte_mkold(pte);
1156 
1157 	if (mm_has_pgste(vma->vm_mm)) {
1158 		pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1159 		pgste = pgste_set_pte(ptep, pgste, pte);
1160 		pgste_set_unlock(ptep, pgste);
1161 	} else
1162 		*ptep = pte;
1163 
1164 	return young;
1165 }
1166 
1167 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1168 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1169 					 unsigned long address, pte_t *ptep)
1170 {
1171 	return ptep_test_and_clear_young(vma, address, ptep);
1172 }
1173 
1174 /*
1175  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1176  * both clear the TLB for the unmapped pte. The reason is that
1177  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1178  * to modify an active pte. The sequence is
1179  *   1) ptep_get_and_clear
1180  *   2) set_pte_at
1181  *   3) flush_tlb_range
1182  * On s390 the tlb needs to get flushed with the modification of the pte
1183  * if the pte is active. The only way how this can be implemented is to
1184  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1185  * is a nop.
1186  */
1187 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1188 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1189 				       unsigned long address, pte_t *ptep)
1190 {
1191 	pgste_t pgste;
1192 	pte_t pte;
1193 
1194 	if (mm_has_pgste(mm)) {
1195 		pgste = pgste_get_lock(ptep);
1196 		pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1197 	}
1198 
1199 	pte = *ptep;
1200 	ptep_flush_lazy(mm, address, ptep);
1201 	pte_val(*ptep) = _PAGE_INVALID;
1202 
1203 	if (mm_has_pgste(mm)) {
1204 		pgste = pgste_update_all(&pte, pgste, mm);
1205 		pgste_set_unlock(ptep, pgste);
1206 	}
1207 	return pte;
1208 }
1209 
1210 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1211 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1212 					   unsigned long address,
1213 					   pte_t *ptep)
1214 {
1215 	pgste_t pgste;
1216 	pte_t pte;
1217 
1218 	if (mm_has_pgste(mm)) {
1219 		pgste = pgste_get_lock(ptep);
1220 		pgste_ipte_notify(mm, address, ptep, pgste);
1221 	}
1222 
1223 	pte = *ptep;
1224 	ptep_flush_lazy(mm, address, ptep);
1225 
1226 	if (mm_has_pgste(mm)) {
1227 		pgste = pgste_update_all(&pte, pgste, mm);
1228 		pgste_set(ptep, pgste);
1229 	}
1230 	return pte;
1231 }
1232 
1233 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1234 					   unsigned long address,
1235 					   pte_t *ptep, pte_t pte)
1236 {
1237 	pgste_t pgste;
1238 
1239 	if (mm_has_pgste(mm)) {
1240 		pgste = pgste_get(ptep);
1241 		pgste_set_key(ptep, pgste, pte, mm);
1242 		pgste = pgste_set_pte(ptep, pgste, pte);
1243 		pgste_set_unlock(ptep, pgste);
1244 	} else
1245 		*ptep = pte;
1246 }
1247 
1248 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1249 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1250 				     unsigned long address, pte_t *ptep)
1251 {
1252 	pgste_t pgste;
1253 	pte_t pte;
1254 
1255 	if (mm_has_pgste(vma->vm_mm)) {
1256 		pgste = pgste_get_lock(ptep);
1257 		pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1258 	}
1259 
1260 	pte = *ptep;
1261 	ptep_flush_direct(vma->vm_mm, address, ptep);
1262 	pte_val(*ptep) = _PAGE_INVALID;
1263 
1264 	if (mm_has_pgste(vma->vm_mm)) {
1265 		if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1266 		    _PGSTE_GPS_USAGE_UNUSED)
1267 			pte_val(pte) |= _PAGE_UNUSED;
1268 		pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1269 		pgste_set_unlock(ptep, pgste);
1270 	}
1271 	return pte;
1272 }
1273 
1274 /*
1275  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1276  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1277  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1278  * cannot be accessed while the batched unmap is running. In this case
1279  * full==1 and a simple pte_clear is enough. See tlb.h.
1280  */
1281 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1282 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1283 					    unsigned long address,
1284 					    pte_t *ptep, int full)
1285 {
1286 	pgste_t pgste;
1287 	pte_t pte;
1288 
1289 	if (!full && mm_has_pgste(mm)) {
1290 		pgste = pgste_get_lock(ptep);
1291 		pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1292 	}
1293 
1294 	pte = *ptep;
1295 	if (!full)
1296 		ptep_flush_lazy(mm, address, ptep);
1297 	pte_val(*ptep) = _PAGE_INVALID;
1298 
1299 	if (!full && mm_has_pgste(mm)) {
1300 		pgste = pgste_update_all(&pte, pgste, mm);
1301 		pgste_set_unlock(ptep, pgste);
1302 	}
1303 	return pte;
1304 }
1305 
1306 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1307 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1308 				       unsigned long address, pte_t *ptep)
1309 {
1310 	pgste_t pgste;
1311 	pte_t pte = *ptep;
1312 
1313 	if (pte_write(pte)) {
1314 		if (mm_has_pgste(mm)) {
1315 			pgste = pgste_get_lock(ptep);
1316 			pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1317 		}
1318 
1319 		ptep_flush_lazy(mm, address, ptep);
1320 		pte = pte_wrprotect(pte);
1321 
1322 		if (mm_has_pgste(mm)) {
1323 			pgste = pgste_set_pte(ptep, pgste, pte);
1324 			pgste_set_unlock(ptep, pgste);
1325 		} else
1326 			*ptep = pte;
1327 	}
1328 	return pte;
1329 }
1330 
1331 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1332 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1333 					unsigned long address, pte_t *ptep,
1334 					pte_t entry, int dirty)
1335 {
1336 	pgste_t pgste;
1337 
1338 	if (pte_same(*ptep, entry))
1339 		return 0;
1340 	if (mm_has_pgste(vma->vm_mm)) {
1341 		pgste = pgste_get_lock(ptep);
1342 		pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1343 	}
1344 
1345 	ptep_flush_direct(vma->vm_mm, address, ptep);
1346 
1347 	if (mm_has_pgste(vma->vm_mm)) {
1348 		pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1349 		pgste = pgste_set_pte(ptep, pgste, entry);
1350 		pgste_set_unlock(ptep, pgste);
1351 	} else
1352 		*ptep = entry;
1353 	return 1;
1354 }
1355 
1356 /*
1357  * Conversion functions: convert a page and protection to a page entry,
1358  * and a page entry and page directory to the page they refer to.
1359  */
1360 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1361 {
1362 	pte_t __pte;
1363 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1364 	return pte_mkyoung(__pte);
1365 }
1366 
1367 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1368 {
1369 	unsigned long physpage = page_to_phys(page);
1370 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1371 
1372 	if (pte_write(__pte) && PageDirty(page))
1373 		__pte = pte_mkdirty(__pte);
1374 	return __pte;
1375 }
1376 
1377 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1378 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1379 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1380 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1381 
1382 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1383 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1384 
1385 #ifndef CONFIG_64BIT
1386 
1387 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1388 #define pud_deref(pmd) ({ BUG(); 0UL; })
1389 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1390 
1391 #define pud_offset(pgd, address) ((pud_t *) pgd)
1392 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1393 
1394 #else /* CONFIG_64BIT */
1395 
1396 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1397 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1398 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1399 
1400 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1401 {
1402 	pud_t *pud = (pud_t *) pgd;
1403 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1404 		pud = (pud_t *) pgd_deref(*pgd);
1405 	return pud  + pud_index(address);
1406 }
1407 
1408 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1409 {
1410 	pmd_t *pmd = (pmd_t *) pud;
1411 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1412 		pmd = (pmd_t *) pud_deref(*pud);
1413 	return pmd + pmd_index(address);
1414 }
1415 
1416 #endif /* CONFIG_64BIT */
1417 
1418 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1419 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1420 #define pte_page(x) pfn_to_page(pte_pfn(x))
1421 
1422 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1423 
1424 /* Find an entry in the lowest level page table.. */
1425 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1426 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1427 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1428 #define pte_unmap(pte) do { } while (0)
1429 
1430 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1431 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1432 {
1433 	/*
1434 	 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1435 	 * Convert to segment table entry format.
1436 	 */
1437 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1438 		return pgprot_val(SEGMENT_NONE);
1439 	if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1440 		return pgprot_val(SEGMENT_READ);
1441 	return pgprot_val(SEGMENT_WRITE);
1442 }
1443 
1444 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1445 {
1446 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1447 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1448 	return pmd;
1449 }
1450 
1451 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1452 {
1453 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1454 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1455 		return pmd;
1456 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1457 	return pmd;
1458 }
1459 
1460 static inline pmd_t pmd_mkclean(pmd_t pmd)
1461 {
1462 	if (pmd_large(pmd)) {
1463 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1464 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1465 	}
1466 	return pmd;
1467 }
1468 
1469 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1470 {
1471 	if (pmd_large(pmd)) {
1472 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
1473 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1474 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1475 	}
1476 	return pmd;
1477 }
1478 
1479 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1480 {
1481 	if (pmd_large(pmd)) {
1482 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1483 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1484 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1485 	}
1486 	return pmd;
1487 }
1488 
1489 static inline pmd_t pmd_mkold(pmd_t pmd)
1490 {
1491 	if (pmd_large(pmd)) {
1492 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1493 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1494 	}
1495 	return pmd;
1496 }
1497 
1498 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1499 {
1500 	if (pmd_large(pmd)) {
1501 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1502 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1503 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
1504 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1505 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1506 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1507 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1508 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1509 		return pmd;
1510 	}
1511 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1512 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1513 	return pmd;
1514 }
1515 
1516 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1517 {
1518 	pmd_t __pmd;
1519 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1520 	return __pmd;
1521 }
1522 
1523 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1524 
1525 static inline void __pmdp_csp(pmd_t *pmdp)
1526 {
1527 	register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1528 	register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1529 					       _SEGMENT_ENTRY_INVALID;
1530 	register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1531 
1532 	asm volatile(
1533 		"	csp %1,%3"
1534 		: "=m" (*pmdp)
1535 		: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1536 }
1537 
1538 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1539 {
1540 	unsigned long sto;
1541 
1542 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1543 	asm volatile(
1544 		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1545 		: "=m" (*pmdp)
1546 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1547 		: "cc" );
1548 }
1549 
1550 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1551 {
1552 	unsigned long sto;
1553 
1554 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1555 	asm volatile(
1556 		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1557 		: "=m" (*pmdp)
1558 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1559 		: "cc" );
1560 }
1561 
1562 static inline void pmdp_flush_direct(struct mm_struct *mm,
1563 				     unsigned long address, pmd_t *pmdp)
1564 {
1565 	int active, count;
1566 
1567 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1568 		return;
1569 	if (!MACHINE_HAS_IDTE) {
1570 		__pmdp_csp(pmdp);
1571 		return;
1572 	}
1573 	active = (mm == current->active_mm) ? 1 : 0;
1574 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1575 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1576 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1577 		__pmdp_idte_local(address, pmdp);
1578 	else
1579 		__pmdp_idte(address, pmdp);
1580 	atomic_sub(0x10000, &mm->context.attach_count);
1581 }
1582 
1583 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1584 				   unsigned long address, pmd_t *pmdp)
1585 {
1586 	int active, count;
1587 
1588 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1589 		return;
1590 	active = (mm == current->active_mm) ? 1 : 0;
1591 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1592 	if ((count & 0xffff) <= active) {
1593 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1594 		mm->context.flush_mm = 1;
1595 	} else if (MACHINE_HAS_IDTE)
1596 		__pmdp_idte(address, pmdp);
1597 	else
1598 		__pmdp_csp(pmdp);
1599 	atomic_sub(0x10000, &mm->context.attach_count);
1600 }
1601 
1602 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1603 
1604 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1605 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1606 				       pgtable_t pgtable);
1607 
1608 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1609 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1610 
1611 static inline int pmd_trans_splitting(pmd_t pmd)
1612 {
1613 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1614 		(pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1615 }
1616 
1617 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1618 			      pmd_t *pmdp, pmd_t entry)
1619 {
1620 	*pmdp = entry;
1621 }
1622 
1623 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1624 {
1625 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1626 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1627 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1628 	return pmd;
1629 }
1630 
1631 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1632 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1633 					    unsigned long address, pmd_t *pmdp)
1634 {
1635 	pmd_t pmd;
1636 
1637 	pmd = *pmdp;
1638 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1639 	*pmdp = pmd_mkold(pmd);
1640 	return pmd_young(pmd);
1641 }
1642 
1643 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1644 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1645 				       unsigned long address, pmd_t *pmdp)
1646 {
1647 	pmd_t pmd = *pmdp;
1648 
1649 	pmdp_flush_direct(mm, address, pmdp);
1650 	pmd_clear(pmdp);
1651 	return pmd;
1652 }
1653 
1654 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
1655 static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
1656 					    unsigned long address,
1657 					    pmd_t *pmdp, int full)
1658 {
1659 	pmd_t pmd = *pmdp;
1660 
1661 	if (!full)
1662 		pmdp_flush_lazy(mm, address, pmdp);
1663 	pmd_clear(pmdp);
1664 	return pmd;
1665 }
1666 
1667 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1668 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1669 				     unsigned long address, pmd_t *pmdp)
1670 {
1671 	return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1672 }
1673 
1674 #define __HAVE_ARCH_PMDP_INVALIDATE
1675 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1676 				   unsigned long address, pmd_t *pmdp)
1677 {
1678 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1679 }
1680 
1681 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1682 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1683 				      unsigned long address, pmd_t *pmdp)
1684 {
1685 	pmd_t pmd = *pmdp;
1686 
1687 	if (pmd_write(pmd)) {
1688 		pmdp_flush_direct(mm, address, pmdp);
1689 		set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1690 	}
1691 }
1692 
1693 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1694 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1695 
1696 static inline int pmd_trans_huge(pmd_t pmd)
1697 {
1698 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1699 }
1700 
1701 static inline int has_transparent_hugepage(void)
1702 {
1703 	return MACHINE_HAS_HPAGE ? 1 : 0;
1704 }
1705 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1706 
1707 /*
1708  * 31 bit swap entry format:
1709  * A page-table entry has some bits we have to treat in a special way.
1710  * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1711  * exception will occur instead of a page translation exception. The
1712  * specifiation exception has the bad habit not to store necessary
1713  * information in the lowcore.
1714  * Bits 21, 22, 30 and 31 are used to indicate the page type.
1715  * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1716  * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1717  * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1718  * plus 24 for the offset.
1719  * 0|     offset        |0110|o|type |00|
1720  * 0 0000000001111111111 2222 2 22222 33
1721  * 0 1234567890123456789 0123 4 56789 01
1722  *
1723  * 64 bit swap entry format:
1724  * A page-table entry has some bits we have to treat in a special way.
1725  * Bits 52 and bit 55 have to be zero, otherwise an specification
1726  * exception will occur instead of a page translation exception. The
1727  * specifiation exception has the bad habit not to store necessary
1728  * information in the lowcore.
1729  * Bits 53, 54, 62 and 63 are used to indicate the page type.
1730  * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1731  * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1732  * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1733  * plus 56 for the offset.
1734  * |                      offset                        |0110|o|type |00|
1735  *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1736  *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1737  */
1738 #ifndef CONFIG_64BIT
1739 #define __SWP_OFFSET_MASK (~0UL >> 12)
1740 #else
1741 #define __SWP_OFFSET_MASK (~0UL >> 11)
1742 #endif
1743 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1744 {
1745 	pte_t pte;
1746 	offset &= __SWP_OFFSET_MASK;
1747 	pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1748 		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1749 	return pte;
1750 }
1751 
1752 #define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
1753 #define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
1754 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1755 
1756 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1757 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1758 
1759 #ifndef CONFIG_64BIT
1760 # define PTE_FILE_MAX_BITS	26
1761 #else /* CONFIG_64BIT */
1762 # define PTE_FILE_MAX_BITS	59
1763 #endif /* CONFIG_64BIT */
1764 
1765 #define pte_to_pgoff(__pte) \
1766 	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1767 
1768 #define pgoff_to_pte(__off) \
1769 	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1770 		   | _PAGE_INVALID | _PAGE_PROTECT })
1771 
1772 #endif /* !__ASSEMBLY__ */
1773 
1774 #define kern_addr_valid(addr)   (1)
1775 
1776 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1777 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1778 extern int s390_enable_sie(void);
1779 extern int s390_enable_skey(void);
1780 extern void s390_reset_cmma(struct mm_struct *mm);
1781 
1782 /*
1783  * No page table caches to initialise
1784  */
1785 static inline void pgtable_cache_init(void) { }
1786 static inline void check_pgt_cache(void) { }
1787 
1788 #include <asm-generic/pgtable.h>
1789 
1790 #endif /* _S390_PAGE_H */
1791