xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision d2999e1b)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2000
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (weigand@de.ibm.com)
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *
8  *  Derived from "include/asm-i386/pgtable.h"
9  */
10 
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13 
14 /*
15  * The Linux memory management assumes a three-level page table setup. For
16  * s390 31 bit we "fold" the mid level into the top-level page table, so
17  * that we physically have the same two-level page table as the s390 mmu
18  * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19  * the hardware provides (region first and region second tables are not
20  * used).
21  *
22  * The "pgd_xxx()" functions are trivial for a folded two-level
23  * setup: the pgd is never bad, and a pmd always exists (as it's folded
24  * into the pgd entry)
25  *
26  * This file contains the functions and defines necessary to modify and use
27  * the S390 page table tree.
28  */
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
35 
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39 
40 /*
41  * The S390 doesn't have any external MMU info: the kernel page
42  * tables contain all the necessary information.
43  */
44 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46 
47 /*
48  * ZERO_PAGE is a global shared page that is always zero; used
49  * for zero-mapped memory areas etc..
50  */
51 
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
54 
55 #define ZERO_PAGE(vaddr) \
56 	(virt_to_page((void *)(empty_zero_page + \
57 	 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
59 
60 /* TODO: s390 cannot support io_remap_pfn_range... */
61 #endif /* !__ASSEMBLY__ */
62 
63 /*
64  * PMD_SHIFT determines the size of the area a second-level page
65  * table can map
66  * PGDIR_SHIFT determines what a third-level page table entry can map
67  */
68 #ifndef CONFIG_64BIT
69 # define PMD_SHIFT	20
70 # define PUD_SHIFT	20
71 # define PGDIR_SHIFT	20
72 #else /* CONFIG_64BIT */
73 # define PMD_SHIFT	20
74 # define PUD_SHIFT	31
75 # define PGDIR_SHIFT	42
76 #endif /* CONFIG_64BIT */
77 
78 #define PMD_SIZE        (1UL << PMD_SHIFT)
79 #define PMD_MASK        (~(PMD_SIZE-1))
80 #define PUD_SIZE	(1UL << PUD_SHIFT)
81 #define PUD_MASK	(~(PUD_SIZE-1))
82 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
83 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
84 
85 /*
86  * entries per page directory level: the S390 is two-level, so
87  * we don't really have any PMD directory physically.
88  * for S390 segment-table entries are combined to one PGD
89  * that leads to 1024 pte per pgd
90  */
91 #define PTRS_PER_PTE	256
92 #ifndef CONFIG_64BIT
93 #define PTRS_PER_PMD	1
94 #define PTRS_PER_PUD	1
95 #else /* CONFIG_64BIT */
96 #define PTRS_PER_PMD	2048
97 #define PTRS_PER_PUD	2048
98 #endif /* CONFIG_64BIT */
99 #define PTRS_PER_PGD	2048
100 
101 #define FIRST_USER_ADDRESS  0
102 
103 #define pte_ERROR(e) \
104 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
105 #define pmd_ERROR(e) \
106 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
107 #define pud_ERROR(e) \
108 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
109 #define pgd_ERROR(e) \
110 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
111 
112 #ifndef __ASSEMBLY__
113 /*
114  * The vmalloc and module area will always be on the topmost area of the kernel
115  * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
116  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
117  * modules will reside. That makes sure that inter module branches always
118  * happen without trampolines and in addition the placement within a 2GB frame
119  * is branch prediction unit friendly.
120  */
121 extern unsigned long VMALLOC_START;
122 extern unsigned long VMALLOC_END;
123 extern struct page *vmemmap;
124 
125 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
126 
127 #ifdef CONFIG_64BIT
128 extern unsigned long MODULES_VADDR;
129 extern unsigned long MODULES_END;
130 #define MODULES_VADDR	MODULES_VADDR
131 #define MODULES_END	MODULES_END
132 #define MODULES_LEN	(1UL << 31)
133 #endif
134 
135 /*
136  * A 31 bit pagetable entry of S390 has following format:
137  *  |   PFRA          |    |  OS  |
138  * 0                   0IP0
139  * 00000000001111111111222222222233
140  * 01234567890123456789012345678901
141  *
142  * I Page-Invalid Bit:    Page is not available for address-translation
143  * P Page-Protection Bit: Store access not possible for page
144  *
145  * A 31 bit segmenttable entry of S390 has following format:
146  *  |   P-table origin      |  |PTL
147  * 0                         IC
148  * 00000000001111111111222222222233
149  * 01234567890123456789012345678901
150  *
151  * I Segment-Invalid Bit:    Segment is not available for address-translation
152  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
153  * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
154  *
155  * The 31 bit segmenttable origin of S390 has following format:
156  *
157  *  |S-table origin   |     | STL |
158  * X                   **GPS
159  * 00000000001111111111222222222233
160  * 01234567890123456789012345678901
161  *
162  * X Space-Switch event:
163  * G Segment-Invalid Bit:     *
164  * P Private-Space Bit:       Segment is not private (PoP 3-30)
165  * S Storage-Alteration:
166  * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
167  *
168  * A 64 bit pagetable entry of S390 has following format:
169  * |			 PFRA			      |0IPC|  OS  |
170  * 0000000000111111111122222222223333333333444444444455555555556666
171  * 0123456789012345678901234567890123456789012345678901234567890123
172  *
173  * I Page-Invalid Bit:    Page is not available for address-translation
174  * P Page-Protection Bit: Store access not possible for page
175  * C Change-bit override: HW is not required to set change bit
176  *
177  * A 64 bit segmenttable entry of S390 has following format:
178  * |        P-table origin                              |      TT
179  * 0000000000111111111122222222223333333333444444444455555555556666
180  * 0123456789012345678901234567890123456789012345678901234567890123
181  *
182  * I Segment-Invalid Bit:    Segment is not available for address-translation
183  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
184  * P Page-Protection Bit: Store access not possible for page
185  * TT Type 00
186  *
187  * A 64 bit region table entry of S390 has following format:
188  * |        S-table origin                             |   TF  TTTL
189  * 0000000000111111111122222222223333333333444444444455555555556666
190  * 0123456789012345678901234567890123456789012345678901234567890123
191  *
192  * I Segment-Invalid Bit:    Segment is not available for address-translation
193  * TT Type 01
194  * TF
195  * TL Table length
196  *
197  * The 64 bit regiontable origin of S390 has following format:
198  * |      region table origon                          |       DTTL
199  * 0000000000111111111122222222223333333333444444444455555555556666
200  * 0123456789012345678901234567890123456789012345678901234567890123
201  *
202  * X Space-Switch event:
203  * G Segment-Invalid Bit:
204  * P Private-Space Bit:
205  * S Storage-Alteration:
206  * R Real space
207  * TL Table-Length:
208  *
209  * A storage key has the following format:
210  * | ACC |F|R|C|0|
211  *  0   3 4 5 6 7
212  * ACC: access key
213  * F  : fetch protection bit
214  * R  : referenced bit
215  * C  : changed bit
216  */
217 
218 /* Hardware bits in the page table entry */
219 #define _PAGE_CO	0x100		/* HW Change-bit override */
220 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
221 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
222 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
223 
224 /* Software bits in the page table entry */
225 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
226 #define _PAGE_TYPE	0x002		/* SW pte type bit */
227 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
228 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
229 #define _PAGE_READ	0x010		/* SW pte read bit */
230 #define _PAGE_WRITE	0x020		/* SW pte write bit */
231 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
232 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
233 #define __HAVE_ARCH_PTE_SPECIAL
234 
235 /* Set of bits not changed in pte_modify */
236 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
237 				 _PAGE_DIRTY | _PAGE_YOUNG)
238 
239 /*
240  * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
241  * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
242  * is used to distinguish present from not-present ptes. It is changed only
243  * with the page table lock held.
244  *
245  * The following table gives the different possible bit combinations for
246  * the pte hardware and software bits in the last 12 bits of a pte:
247  *
248  *				842100000000
249  *				000084210000
250  *				000000008421
251  *				.IR...wrdytp
252  * empty			.10...000000
253  * swap				.10...xxxx10
254  * file				.11...xxxxx0
255  * prot-none, clean, old	.11...000001
256  * prot-none, clean, young	.11...000101
257  * prot-none, dirty, old	.10...001001
258  * prot-none, dirty, young	.10...001101
259  * read-only, clean, old	.11...010001
260  * read-only, clean, young	.01...010101
261  * read-only, dirty, old	.11...011001
262  * read-only, dirty, young	.01...011101
263  * read-write, clean, old	.11...110001
264  * read-write, clean, young	.01...110101
265  * read-write, dirty, old	.10...111001
266  * read-write, dirty, young	.00...111101
267  *
268  * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
269  * pte_none    is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
270  * pte_file    is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
271  * pte_swap    is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
272  */
273 
274 #ifndef CONFIG_64BIT
275 
276 /* Bits in the segment table address-space-control-element */
277 #define _ASCE_SPACE_SWITCH	0x80000000UL	/* space switch event	    */
278 #define _ASCE_ORIGIN_MASK	0x7ffff000UL	/* segment table origin	    */
279 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
280 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
281 #define _ASCE_TABLE_LENGTH	0x7f	/* 128 x 64 entries = 8k	    */
282 
283 /* Bits in the segment table entry */
284 #define _SEGMENT_ENTRY_BITS	0x7fffffffUL	/* Valid segment table bits */
285 #define _SEGMENT_ENTRY_ORIGIN	0x7fffffc0UL	/* page table origin	    */
286 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
287 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
288 #define _SEGMENT_ENTRY_COMMON	0x10	/* common segment bit		    */
289 #define _SEGMENT_ENTRY_PTL	0x0f	/* page table length		    */
290 #define _SEGMENT_ENTRY_NONE	_SEGMENT_ENTRY_PROTECT
291 
292 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PTL)
293 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
294 
295 /*
296  * Segment table entry encoding (I = invalid, R = read-only bit):
297  *		..R...I.....
298  * prot-none	..1...1.....
299  * read-only	..1...0.....
300  * read-write	..0...0.....
301  * empty	..0...1.....
302  */
303 
304 /* Page status table bits for virtualization */
305 #define PGSTE_ACC_BITS	0xf0000000UL
306 #define PGSTE_FP_BIT	0x08000000UL
307 #define PGSTE_PCL_BIT	0x00800000UL
308 #define PGSTE_HR_BIT	0x00400000UL
309 #define PGSTE_HC_BIT	0x00200000UL
310 #define PGSTE_GR_BIT	0x00040000UL
311 #define PGSTE_GC_BIT	0x00020000UL
312 #define PGSTE_UC_BIT	0x00008000UL	/* user dirty (migration) */
313 #define PGSTE_IN_BIT	0x00004000UL	/* IPTE notify bit */
314 
315 #else /* CONFIG_64BIT */
316 
317 /* Bits in the segment/region table address-space-control-element */
318 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
319 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
320 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
321 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
322 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
323 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
324 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
325 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
326 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
327 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
328 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
329 
330 /* Bits in the region table entry */
331 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
332 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
333 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
334 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
335 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
336 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
337 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
338 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
339 
340 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
341 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
342 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
343 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
344 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
345 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
346 
347 #define _REGION3_ENTRY_LARGE	0x400	/* RTTE-format control, large page  */
348 #define _REGION3_ENTRY_RO	0x200	/* page protection bit		    */
349 #define _REGION3_ENTRY_CO	0x100	/* change-recording override	    */
350 
351 /* Bits in the segment table entry */
352 #define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
353 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff1ff33UL
354 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
355 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
356 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
357 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
358 
359 #define _SEGMENT_ENTRY		(0)
360 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
361 
362 #define _SEGMENT_ENTRY_LARGE	0x400	/* STE-format control, large page   */
363 #define _SEGMENT_ENTRY_CO	0x100	/* change-recording override   */
364 #define _SEGMENT_ENTRY_SPLIT	0x001	/* THP splitting bit */
365 #define _SEGMENT_ENTRY_YOUNG	0x002	/* SW segment young bit */
366 #define _SEGMENT_ENTRY_NONE	_SEGMENT_ENTRY_YOUNG
367 
368 /*
369  * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
370  *			..R...I...y.
371  * prot-none, old	..0...1...1.
372  * prot-none, young	..1...1...1.
373  * read-only, old	..1...1...0.
374  * read-only, young	..1...0...1.
375  * read-write, old	..0...1...0.
376  * read-write, young	..0...0...1.
377  * The segment table origin is used to distinguish empty (origin==0) from
378  * read-write, old segment table entries (origin!=0)
379  */
380 
381 #define _SEGMENT_ENTRY_SPLIT_BIT 0	/* THP splitting bit number */
382 
383 /* Set of bits not changed in pmd_modify */
384 #define _SEGMENT_CHG_MASK	(_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
385 				 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
386 
387 /* Page status table bits for virtualization */
388 #define PGSTE_ACC_BITS	0xf000000000000000UL
389 #define PGSTE_FP_BIT	0x0800000000000000UL
390 #define PGSTE_PCL_BIT	0x0080000000000000UL
391 #define PGSTE_HR_BIT	0x0040000000000000UL
392 #define PGSTE_HC_BIT	0x0020000000000000UL
393 #define PGSTE_GR_BIT	0x0004000000000000UL
394 #define PGSTE_GC_BIT	0x0002000000000000UL
395 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
396 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
397 
398 #endif /* CONFIG_64BIT */
399 
400 /* Guest Page State used for virtualization */
401 #define _PGSTE_GPS_ZERO		0x0000000080000000UL
402 #define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
403 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
404 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
405 
406 /*
407  * A user page table pointer has the space-switch-event bit, the
408  * private-space-control bit and the storage-alteration-event-control
409  * bit set. A kernel page table pointer doesn't need them.
410  */
411 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
412 				 _ASCE_ALT_EVENT)
413 
414 /*
415  * Page protection definitions.
416  */
417 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID)
418 #define PAGE_READ	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
419 				 _PAGE_INVALID | _PAGE_PROTECT)
420 #define PAGE_WRITE	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
421 				 _PAGE_INVALID | _PAGE_PROTECT)
422 
423 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
424 				 _PAGE_YOUNG | _PAGE_DIRTY)
425 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
426 				 _PAGE_YOUNG | _PAGE_DIRTY)
427 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
428 				 _PAGE_PROTECT)
429 
430 /*
431  * On s390 the page table entry has an invalid bit and a read-only bit.
432  * Read permission implies execute permission and write permission
433  * implies read permission.
434  */
435          /*xwr*/
436 #define __P000	PAGE_NONE
437 #define __P001	PAGE_READ
438 #define __P010	PAGE_READ
439 #define __P011	PAGE_READ
440 #define __P100	PAGE_READ
441 #define __P101	PAGE_READ
442 #define __P110	PAGE_READ
443 #define __P111	PAGE_READ
444 
445 #define __S000	PAGE_NONE
446 #define __S001	PAGE_READ
447 #define __S010	PAGE_WRITE
448 #define __S011	PAGE_WRITE
449 #define __S100	PAGE_READ
450 #define __S101	PAGE_READ
451 #define __S110	PAGE_WRITE
452 #define __S111	PAGE_WRITE
453 
454 /*
455  * Segment entry (large page) protection definitions.
456  */
457 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
458 				 _SEGMENT_ENTRY_NONE)
459 #define SEGMENT_READ	__pgprot(_SEGMENT_ENTRY_INVALID | \
460 				 _SEGMENT_ENTRY_PROTECT)
461 #define SEGMENT_WRITE	__pgprot(_SEGMENT_ENTRY_INVALID)
462 
463 static inline int mm_has_pgste(struct mm_struct *mm)
464 {
465 #ifdef CONFIG_PGSTE
466 	if (unlikely(mm->context.has_pgste))
467 		return 1;
468 #endif
469 	return 0;
470 }
471 
472 static inline int mm_use_skey(struct mm_struct *mm)
473 {
474 #ifdef CONFIG_PGSTE
475 	if (mm->context.use_skey)
476 		return 1;
477 #endif
478 	return 0;
479 }
480 
481 /*
482  * pgd/pmd/pte query functions
483  */
484 #ifndef CONFIG_64BIT
485 
486 static inline int pgd_present(pgd_t pgd) { return 1; }
487 static inline int pgd_none(pgd_t pgd)    { return 0; }
488 static inline int pgd_bad(pgd_t pgd)     { return 0; }
489 
490 static inline int pud_present(pud_t pud) { return 1; }
491 static inline int pud_none(pud_t pud)	 { return 0; }
492 static inline int pud_large(pud_t pud)	 { return 0; }
493 static inline int pud_bad(pud_t pud)	 { return 0; }
494 
495 #else /* CONFIG_64BIT */
496 
497 static inline int pgd_present(pgd_t pgd)
498 {
499 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
500 		return 1;
501 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
502 }
503 
504 static inline int pgd_none(pgd_t pgd)
505 {
506 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
507 		return 0;
508 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
509 }
510 
511 static inline int pgd_bad(pgd_t pgd)
512 {
513 	/*
514 	 * With dynamic page table levels the pgd can be a region table
515 	 * entry or a segment table entry. Check for the bit that are
516 	 * invalid for either table entry.
517 	 */
518 	unsigned long mask =
519 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
520 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
521 	return (pgd_val(pgd) & mask) != 0;
522 }
523 
524 static inline int pud_present(pud_t pud)
525 {
526 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
527 		return 1;
528 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
529 }
530 
531 static inline int pud_none(pud_t pud)
532 {
533 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
534 		return 0;
535 	return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
536 }
537 
538 static inline int pud_large(pud_t pud)
539 {
540 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
541 		return 0;
542 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
543 }
544 
545 static inline int pud_bad(pud_t pud)
546 {
547 	/*
548 	 * With dynamic page table levels the pud can be a region table
549 	 * entry or a segment table entry. Check for the bit that are
550 	 * invalid for either table entry.
551 	 */
552 	unsigned long mask =
553 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
554 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
555 	return (pud_val(pud) & mask) != 0;
556 }
557 
558 #endif /* CONFIG_64BIT */
559 
560 static inline int pmd_present(pmd_t pmd)
561 {
562 	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
563 }
564 
565 static inline int pmd_none(pmd_t pmd)
566 {
567 	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
568 }
569 
570 static inline int pmd_large(pmd_t pmd)
571 {
572 #ifdef CONFIG_64BIT
573 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
574 #else
575 	return 0;
576 #endif
577 }
578 
579 static inline int pmd_prot_none(pmd_t pmd)
580 {
581 	return (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID) &&
582 		(pmd_val(pmd) & _SEGMENT_ENTRY_NONE);
583 }
584 
585 static inline int pmd_bad(pmd_t pmd)
586 {
587 #ifdef CONFIG_64BIT
588 	if (pmd_large(pmd))
589 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
590 #endif
591 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
592 }
593 
594 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
595 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
596 				 unsigned long addr, pmd_t *pmdp);
597 
598 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
599 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
600 				 unsigned long address, pmd_t *pmdp,
601 				 pmd_t entry, int dirty);
602 
603 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
604 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
605 				  unsigned long address, pmd_t *pmdp);
606 
607 #define __HAVE_ARCH_PMD_WRITE
608 static inline int pmd_write(pmd_t pmd)
609 {
610 	if (pmd_prot_none(pmd))
611 		return 0;
612 	return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0;
613 }
614 
615 static inline int pmd_young(pmd_t pmd)
616 {
617 	int young = 0;
618 #ifdef CONFIG_64BIT
619 	if (pmd_prot_none(pmd))
620 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) != 0;
621 	else
622 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
623 #endif
624 	return young;
625 }
626 
627 static inline int pte_present(pte_t pte)
628 {
629 	/* Bit pattern: (pte & 0x001) == 0x001 */
630 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
631 }
632 
633 static inline int pte_none(pte_t pte)
634 {
635 	/* Bit pattern: pte == 0x400 */
636 	return pte_val(pte) == _PAGE_INVALID;
637 }
638 
639 static inline int pte_swap(pte_t pte)
640 {
641 	/* Bit pattern: (pte & 0x603) == 0x402 */
642 	return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
643 				_PAGE_TYPE | _PAGE_PRESENT))
644 		== (_PAGE_INVALID | _PAGE_TYPE);
645 }
646 
647 static inline int pte_file(pte_t pte)
648 {
649 	/* Bit pattern: (pte & 0x601) == 0x600 */
650 	return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
651 		== (_PAGE_INVALID | _PAGE_PROTECT);
652 }
653 
654 static inline int pte_special(pte_t pte)
655 {
656 	return (pte_val(pte) & _PAGE_SPECIAL);
657 }
658 
659 #define __HAVE_ARCH_PTE_SAME
660 static inline int pte_same(pte_t a, pte_t b)
661 {
662 	return pte_val(a) == pte_val(b);
663 }
664 
665 static inline pgste_t pgste_get_lock(pte_t *ptep)
666 {
667 	unsigned long new = 0;
668 #ifdef CONFIG_PGSTE
669 	unsigned long old;
670 
671 	preempt_disable();
672 	asm(
673 		"	lg	%0,%2\n"
674 		"0:	lgr	%1,%0\n"
675 		"	nihh	%0,0xff7f\n"	/* clear PCL bit in old */
676 		"	oihh	%1,0x0080\n"	/* set PCL bit in new */
677 		"	csg	%0,%1,%2\n"
678 		"	jl	0b\n"
679 		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
680 		: "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
681 #endif
682 	return __pgste(new);
683 }
684 
685 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
686 {
687 #ifdef CONFIG_PGSTE
688 	asm(
689 		"	nihh	%1,0xff7f\n"	/* clear PCL bit */
690 		"	stg	%1,%0\n"
691 		: "=Q" (ptep[PTRS_PER_PTE])
692 		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
693 		: "cc", "memory");
694 	preempt_enable();
695 #endif
696 }
697 
698 static inline pgste_t pgste_get(pte_t *ptep)
699 {
700 	unsigned long pgste = 0;
701 #ifdef CONFIG_PGSTE
702 	pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
703 #endif
704 	return __pgste(pgste);
705 }
706 
707 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
708 {
709 #ifdef CONFIG_PGSTE
710 	*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
711 #endif
712 }
713 
714 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
715 				       struct mm_struct *mm)
716 {
717 #ifdef CONFIG_PGSTE
718 	unsigned long address, bits, skey;
719 
720 	if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
721 		return pgste;
722 	address = pte_val(*ptep) & PAGE_MASK;
723 	skey = (unsigned long) page_get_storage_key(address);
724 	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
725 	/* Transfer page changed & referenced bit to guest bits in pgste */
726 	pgste_val(pgste) |= bits << 48;		/* GR bit & GC bit */
727 	/* Copy page access key and fetch protection bit to pgste */
728 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
729 	pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
730 #endif
731 	return pgste;
732 
733 }
734 
735 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
736 				 struct mm_struct *mm)
737 {
738 #ifdef CONFIG_PGSTE
739 	unsigned long address;
740 	unsigned long nkey;
741 
742 	if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
743 		return;
744 	VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
745 	address = pte_val(entry) & PAGE_MASK;
746 	/*
747 	 * Set page access key and fetch protection bit from pgste.
748 	 * The guest C/R information is still in the PGSTE, set real
749 	 * key C/R to 0.
750 	 */
751 	nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
752 	nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
753 	page_set_storage_key(address, nkey, 0);
754 #endif
755 }
756 
757 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
758 {
759 	if ((pte_val(entry) & _PAGE_PRESENT) &&
760 	    (pte_val(entry) & _PAGE_WRITE) &&
761 	    !(pte_val(entry) & _PAGE_INVALID)) {
762 		if (!MACHINE_HAS_ESOP) {
763 			/*
764 			 * Without enhanced suppression-on-protection force
765 			 * the dirty bit on for all writable ptes.
766 			 */
767 			pte_val(entry) |= _PAGE_DIRTY;
768 			pte_val(entry) &= ~_PAGE_PROTECT;
769 		}
770 		if (!(pte_val(entry) & _PAGE_PROTECT))
771 			/* This pte allows write access, set user-dirty */
772 			pgste_val(pgste) |= PGSTE_UC_BIT;
773 	}
774 	*ptep = entry;
775 	return pgste;
776 }
777 
778 /**
779  * struct gmap_struct - guest address space
780  * @mm: pointer to the parent mm_struct
781  * @table: pointer to the page directory
782  * @asce: address space control element for gmap page table
783  * @crst_list: list of all crst tables used in the guest address space
784  * @pfault_enabled: defines if pfaults are applicable for the guest
785  */
786 struct gmap {
787 	struct list_head list;
788 	struct mm_struct *mm;
789 	unsigned long *table;
790 	unsigned long asce;
791 	void *private;
792 	struct list_head crst_list;
793 	bool pfault_enabled;
794 };
795 
796 /**
797  * struct gmap_rmap - reverse mapping for segment table entries
798  * @gmap: pointer to the gmap_struct
799  * @entry: pointer to a segment table entry
800  * @vmaddr: virtual address in the guest address space
801  */
802 struct gmap_rmap {
803 	struct list_head list;
804 	struct gmap *gmap;
805 	unsigned long *entry;
806 	unsigned long vmaddr;
807 };
808 
809 /**
810  * struct gmap_pgtable - gmap information attached to a page table
811  * @vmaddr: address of the 1MB segment in the process virtual memory
812  * @mapper: list of segment table entries mapping a page table
813  */
814 struct gmap_pgtable {
815 	unsigned long vmaddr;
816 	struct list_head mapper;
817 };
818 
819 /**
820  * struct gmap_notifier - notify function block for page invalidation
821  * @notifier_call: address of callback function
822  */
823 struct gmap_notifier {
824 	struct list_head list;
825 	void (*notifier_call)(struct gmap *gmap, unsigned long address);
826 };
827 
828 struct gmap *gmap_alloc(struct mm_struct *mm);
829 void gmap_free(struct gmap *gmap);
830 void gmap_enable(struct gmap *gmap);
831 void gmap_disable(struct gmap *gmap);
832 int gmap_map_segment(struct gmap *gmap, unsigned long from,
833 		     unsigned long to, unsigned long len);
834 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
835 unsigned long __gmap_translate(unsigned long address, struct gmap *);
836 unsigned long gmap_translate(unsigned long address, struct gmap *);
837 unsigned long __gmap_fault(unsigned long address, struct gmap *);
838 unsigned long gmap_fault(unsigned long address, struct gmap *);
839 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
840 void __gmap_zap(unsigned long address, struct gmap *);
841 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
842 
843 
844 void gmap_register_ipte_notifier(struct gmap_notifier *);
845 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
846 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
847 void gmap_do_ipte_notify(struct mm_struct *, pte_t *);
848 
849 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
850 					pte_t *ptep, pgste_t pgste)
851 {
852 #ifdef CONFIG_PGSTE
853 	if (pgste_val(pgste) & PGSTE_IN_BIT) {
854 		pgste_val(pgste) &= ~PGSTE_IN_BIT;
855 		gmap_do_ipte_notify(mm, ptep);
856 	}
857 #endif
858 	return pgste;
859 }
860 
861 /*
862  * Certain architectures need to do special things when PTEs
863  * within a page table are directly modified.  Thus, the following
864  * hook is made available.
865  */
866 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
867 			      pte_t *ptep, pte_t entry)
868 {
869 	pgste_t pgste;
870 
871 	if (mm_has_pgste(mm)) {
872 		pgste = pgste_get_lock(ptep);
873 		pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
874 		pgste_set_key(ptep, pgste, entry, mm);
875 		pgste = pgste_set_pte(ptep, pgste, entry);
876 		pgste_set_unlock(ptep, pgste);
877 	} else {
878 		if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
879 			pte_val(entry) |= _PAGE_CO;
880 		*ptep = entry;
881 	}
882 }
883 
884 /*
885  * query functions pte_write/pte_dirty/pte_young only work if
886  * pte_present() is true. Undefined behaviour if not..
887  */
888 static inline int pte_write(pte_t pte)
889 {
890 	return (pte_val(pte) & _PAGE_WRITE) != 0;
891 }
892 
893 static inline int pte_dirty(pte_t pte)
894 {
895 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
896 }
897 
898 static inline int pte_young(pte_t pte)
899 {
900 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
901 }
902 
903 #define __HAVE_ARCH_PTE_UNUSED
904 static inline int pte_unused(pte_t pte)
905 {
906 	return pte_val(pte) & _PAGE_UNUSED;
907 }
908 
909 /*
910  * pgd/pmd/pte modification functions
911  */
912 
913 static inline void pgd_clear(pgd_t *pgd)
914 {
915 #ifdef CONFIG_64BIT
916 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
917 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
918 #endif
919 }
920 
921 static inline void pud_clear(pud_t *pud)
922 {
923 #ifdef CONFIG_64BIT
924 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
925 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
926 #endif
927 }
928 
929 static inline void pmd_clear(pmd_t *pmdp)
930 {
931 	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
932 }
933 
934 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
935 {
936 	pte_val(*ptep) = _PAGE_INVALID;
937 }
938 
939 /*
940  * The following pte modification functions only work if
941  * pte_present() is true. Undefined behaviour if not..
942  */
943 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
944 {
945 	pte_val(pte) &= _PAGE_CHG_MASK;
946 	pte_val(pte) |= pgprot_val(newprot);
947 	/*
948 	 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
949 	 * invalid bit set, clear it again for readable, young pages
950 	 */
951 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
952 		pte_val(pte) &= ~_PAGE_INVALID;
953 	/*
954 	 * newprot for PAGE_READ and PAGE_WRITE has the page protection
955 	 * bit set, clear it again for writable, dirty pages
956 	 */
957 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
958 		pte_val(pte) &= ~_PAGE_PROTECT;
959 	return pte;
960 }
961 
962 static inline pte_t pte_wrprotect(pte_t pte)
963 {
964 	pte_val(pte) &= ~_PAGE_WRITE;
965 	pte_val(pte) |= _PAGE_PROTECT;
966 	return pte;
967 }
968 
969 static inline pte_t pte_mkwrite(pte_t pte)
970 {
971 	pte_val(pte) |= _PAGE_WRITE;
972 	if (pte_val(pte) & _PAGE_DIRTY)
973 		pte_val(pte) &= ~_PAGE_PROTECT;
974 	return pte;
975 }
976 
977 static inline pte_t pte_mkclean(pte_t pte)
978 {
979 	pte_val(pte) &= ~_PAGE_DIRTY;
980 	pte_val(pte) |= _PAGE_PROTECT;
981 	return pte;
982 }
983 
984 static inline pte_t pte_mkdirty(pte_t pte)
985 {
986 	pte_val(pte) |= _PAGE_DIRTY;
987 	if (pte_val(pte) & _PAGE_WRITE)
988 		pte_val(pte) &= ~_PAGE_PROTECT;
989 	return pte;
990 }
991 
992 static inline pte_t pte_mkold(pte_t pte)
993 {
994 	pte_val(pte) &= ~_PAGE_YOUNG;
995 	pte_val(pte) |= _PAGE_INVALID;
996 	return pte;
997 }
998 
999 static inline pte_t pte_mkyoung(pte_t pte)
1000 {
1001 	pte_val(pte) |= _PAGE_YOUNG;
1002 	if (pte_val(pte) & _PAGE_READ)
1003 		pte_val(pte) &= ~_PAGE_INVALID;
1004 	return pte;
1005 }
1006 
1007 static inline pte_t pte_mkspecial(pte_t pte)
1008 {
1009 	pte_val(pte) |= _PAGE_SPECIAL;
1010 	return pte;
1011 }
1012 
1013 #ifdef CONFIG_HUGETLB_PAGE
1014 static inline pte_t pte_mkhuge(pte_t pte)
1015 {
1016 	pte_val(pte) |= _PAGE_LARGE;
1017 	return pte;
1018 }
1019 #endif
1020 
1021 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1022 {
1023 	unsigned long pto = (unsigned long) ptep;
1024 
1025 #ifndef CONFIG_64BIT
1026 	/* pto in ESA mode must point to the start of the segment table */
1027 	pto &= 0x7ffffc00;
1028 #endif
1029 	/* Invalidation + global TLB flush for the pte */
1030 	asm volatile(
1031 		"	ipte	%2,%3"
1032 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1033 }
1034 
1035 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1036 {
1037 	unsigned long pto = (unsigned long) ptep;
1038 
1039 #ifndef CONFIG_64BIT
1040 	/* pto in ESA mode must point to the start of the segment table */
1041 	pto &= 0x7ffffc00;
1042 #endif
1043 	/* Invalidation + local TLB flush for the pte */
1044 	asm volatile(
1045 		"	.insn rrf,0xb2210000,%2,%3,0,1"
1046 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1047 }
1048 
1049 static inline void ptep_flush_direct(struct mm_struct *mm,
1050 				     unsigned long address, pte_t *ptep)
1051 {
1052 	int active, count;
1053 
1054 	if (pte_val(*ptep) & _PAGE_INVALID)
1055 		return;
1056 	active = (mm == current->active_mm) ? 1 : 0;
1057 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1058 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1059 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1060 		__ptep_ipte_local(address, ptep);
1061 	else
1062 		__ptep_ipte(address, ptep);
1063 	atomic_sub(0x10000, &mm->context.attach_count);
1064 }
1065 
1066 static inline void ptep_flush_lazy(struct mm_struct *mm,
1067 				   unsigned long address, pte_t *ptep)
1068 {
1069 	int active, count;
1070 
1071 	if (pte_val(*ptep) & _PAGE_INVALID)
1072 		return;
1073 	active = (mm == current->active_mm) ? 1 : 0;
1074 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1075 	if ((count & 0xffff) <= active) {
1076 		pte_val(*ptep) |= _PAGE_INVALID;
1077 		mm->context.flush_mm = 1;
1078 	} else
1079 		__ptep_ipte(address, ptep);
1080 	atomic_sub(0x10000, &mm->context.attach_count);
1081 }
1082 
1083 /*
1084  * Get (and clear) the user dirty bit for a pte.
1085  */
1086 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1087 						 unsigned long addr,
1088 						 pte_t *ptep)
1089 {
1090 	pgste_t pgste;
1091 	pte_t pte;
1092 	int dirty;
1093 
1094 	if (!mm_has_pgste(mm))
1095 		return 0;
1096 	pgste = pgste_get_lock(ptep);
1097 	dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1098 	pgste_val(pgste) &= ~PGSTE_UC_BIT;
1099 	pte = *ptep;
1100 	if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1101 		pgste = pgste_ipte_notify(mm, ptep, pgste);
1102 		__ptep_ipte(addr, ptep);
1103 		if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1104 			pte_val(pte) |= _PAGE_PROTECT;
1105 		else
1106 			pte_val(pte) |= _PAGE_INVALID;
1107 		*ptep = pte;
1108 	}
1109 	pgste_set_unlock(ptep, pgste);
1110 	return dirty;
1111 }
1112 
1113 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1114 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1115 					    unsigned long addr, pte_t *ptep)
1116 {
1117 	pgste_t pgste;
1118 	pte_t pte;
1119 	int young;
1120 
1121 	if (mm_has_pgste(vma->vm_mm)) {
1122 		pgste = pgste_get_lock(ptep);
1123 		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1124 	}
1125 
1126 	pte = *ptep;
1127 	ptep_flush_direct(vma->vm_mm, addr, ptep);
1128 	young = pte_young(pte);
1129 	pte = pte_mkold(pte);
1130 
1131 	if (mm_has_pgste(vma->vm_mm)) {
1132 		pgste = pgste_set_pte(ptep, pgste, pte);
1133 		pgste_set_unlock(ptep, pgste);
1134 	} else
1135 		*ptep = pte;
1136 
1137 	return young;
1138 }
1139 
1140 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1141 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1142 					 unsigned long address, pte_t *ptep)
1143 {
1144 	return ptep_test_and_clear_young(vma, address, ptep);
1145 }
1146 
1147 /*
1148  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1149  * both clear the TLB for the unmapped pte. The reason is that
1150  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1151  * to modify an active pte. The sequence is
1152  *   1) ptep_get_and_clear
1153  *   2) set_pte_at
1154  *   3) flush_tlb_range
1155  * On s390 the tlb needs to get flushed with the modification of the pte
1156  * if the pte is active. The only way how this can be implemented is to
1157  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1158  * is a nop.
1159  */
1160 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1161 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1162 				       unsigned long address, pte_t *ptep)
1163 {
1164 	pgste_t pgste;
1165 	pte_t pte;
1166 
1167 	if (mm_has_pgste(mm)) {
1168 		pgste = pgste_get_lock(ptep);
1169 		pgste = pgste_ipte_notify(mm, ptep, pgste);
1170 	}
1171 
1172 	pte = *ptep;
1173 	ptep_flush_lazy(mm, address, ptep);
1174 	pte_val(*ptep) = _PAGE_INVALID;
1175 
1176 	if (mm_has_pgste(mm)) {
1177 		pgste = pgste_update_all(&pte, pgste, mm);
1178 		pgste_set_unlock(ptep, pgste);
1179 	}
1180 	return pte;
1181 }
1182 
1183 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1184 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1185 					   unsigned long address,
1186 					   pte_t *ptep)
1187 {
1188 	pgste_t pgste;
1189 	pte_t pte;
1190 
1191 	if (mm_has_pgste(mm)) {
1192 		pgste = pgste_get_lock(ptep);
1193 		pgste_ipte_notify(mm, ptep, pgste);
1194 	}
1195 
1196 	pte = *ptep;
1197 	ptep_flush_lazy(mm, address, ptep);
1198 
1199 	if (mm_has_pgste(mm)) {
1200 		pgste = pgste_update_all(&pte, pgste, mm);
1201 		pgste_set(ptep, pgste);
1202 	}
1203 	return pte;
1204 }
1205 
1206 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1207 					   unsigned long address,
1208 					   pte_t *ptep, pte_t pte)
1209 {
1210 	pgste_t pgste;
1211 
1212 	if (mm_has_pgste(mm)) {
1213 		pgste = pgste_get(ptep);
1214 		pgste_set_key(ptep, pgste, pte, mm);
1215 		pgste = pgste_set_pte(ptep, pgste, pte);
1216 		pgste_set_unlock(ptep, pgste);
1217 	} else
1218 		*ptep = pte;
1219 }
1220 
1221 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1222 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1223 				     unsigned long address, pte_t *ptep)
1224 {
1225 	pgste_t pgste;
1226 	pte_t pte;
1227 
1228 	if (mm_has_pgste(vma->vm_mm)) {
1229 		pgste = pgste_get_lock(ptep);
1230 		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1231 	}
1232 
1233 	pte = *ptep;
1234 	ptep_flush_direct(vma->vm_mm, address, ptep);
1235 	pte_val(*ptep) = _PAGE_INVALID;
1236 
1237 	if (mm_has_pgste(vma->vm_mm)) {
1238 		if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1239 		    _PGSTE_GPS_USAGE_UNUSED)
1240 			pte_val(pte) |= _PAGE_UNUSED;
1241 		pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1242 		pgste_set_unlock(ptep, pgste);
1243 	}
1244 	return pte;
1245 }
1246 
1247 /*
1248  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1249  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1250  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1251  * cannot be accessed while the batched unmap is running. In this case
1252  * full==1 and a simple pte_clear is enough. See tlb.h.
1253  */
1254 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1255 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1256 					    unsigned long address,
1257 					    pte_t *ptep, int full)
1258 {
1259 	pgste_t pgste;
1260 	pte_t pte;
1261 
1262 	if (!full && mm_has_pgste(mm)) {
1263 		pgste = pgste_get_lock(ptep);
1264 		pgste = pgste_ipte_notify(mm, ptep, pgste);
1265 	}
1266 
1267 	pte = *ptep;
1268 	if (!full)
1269 		ptep_flush_lazy(mm, address, ptep);
1270 	pte_val(*ptep) = _PAGE_INVALID;
1271 
1272 	if (!full && mm_has_pgste(mm)) {
1273 		pgste = pgste_update_all(&pte, pgste, mm);
1274 		pgste_set_unlock(ptep, pgste);
1275 	}
1276 	return pte;
1277 }
1278 
1279 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1280 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1281 				       unsigned long address, pte_t *ptep)
1282 {
1283 	pgste_t pgste;
1284 	pte_t pte = *ptep;
1285 
1286 	if (pte_write(pte)) {
1287 		if (mm_has_pgste(mm)) {
1288 			pgste = pgste_get_lock(ptep);
1289 			pgste = pgste_ipte_notify(mm, ptep, pgste);
1290 		}
1291 
1292 		ptep_flush_lazy(mm, address, ptep);
1293 		pte = pte_wrprotect(pte);
1294 
1295 		if (mm_has_pgste(mm)) {
1296 			pgste = pgste_set_pte(ptep, pgste, pte);
1297 			pgste_set_unlock(ptep, pgste);
1298 		} else
1299 			*ptep = pte;
1300 	}
1301 	return pte;
1302 }
1303 
1304 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1305 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1306 					unsigned long address, pte_t *ptep,
1307 					pte_t entry, int dirty)
1308 {
1309 	pgste_t pgste;
1310 
1311 	if (pte_same(*ptep, entry))
1312 		return 0;
1313 	if (mm_has_pgste(vma->vm_mm)) {
1314 		pgste = pgste_get_lock(ptep);
1315 		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1316 	}
1317 
1318 	ptep_flush_direct(vma->vm_mm, address, ptep);
1319 
1320 	if (mm_has_pgste(vma->vm_mm)) {
1321 		pgste = pgste_set_pte(ptep, pgste, entry);
1322 		pgste_set_unlock(ptep, pgste);
1323 	} else
1324 		*ptep = entry;
1325 	return 1;
1326 }
1327 
1328 /*
1329  * Conversion functions: convert a page and protection to a page entry,
1330  * and a page entry and page directory to the page they refer to.
1331  */
1332 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1333 {
1334 	pte_t __pte;
1335 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1336 	return pte_mkyoung(__pte);
1337 }
1338 
1339 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1340 {
1341 	unsigned long physpage = page_to_phys(page);
1342 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1343 
1344 	if (pte_write(__pte) && PageDirty(page))
1345 		__pte = pte_mkdirty(__pte);
1346 	return __pte;
1347 }
1348 
1349 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1350 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1351 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1352 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1353 
1354 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1355 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1356 
1357 #ifndef CONFIG_64BIT
1358 
1359 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1360 #define pud_deref(pmd) ({ BUG(); 0UL; })
1361 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1362 
1363 #define pud_offset(pgd, address) ((pud_t *) pgd)
1364 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1365 
1366 #else /* CONFIG_64BIT */
1367 
1368 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1369 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1370 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1371 
1372 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1373 {
1374 	pud_t *pud = (pud_t *) pgd;
1375 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1376 		pud = (pud_t *) pgd_deref(*pgd);
1377 	return pud  + pud_index(address);
1378 }
1379 
1380 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1381 {
1382 	pmd_t *pmd = (pmd_t *) pud;
1383 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1384 		pmd = (pmd_t *) pud_deref(*pud);
1385 	return pmd + pmd_index(address);
1386 }
1387 
1388 #endif /* CONFIG_64BIT */
1389 
1390 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1391 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1392 #define pte_page(x) pfn_to_page(pte_pfn(x))
1393 
1394 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1395 
1396 /* Find an entry in the lowest level page table.. */
1397 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1398 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1399 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1400 #define pte_unmap(pte) do { } while (0)
1401 
1402 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1403 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1404 {
1405 	/*
1406 	 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1407 	 * Convert to segment table entry format.
1408 	 */
1409 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1410 		return pgprot_val(SEGMENT_NONE);
1411 	if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1412 		return pgprot_val(SEGMENT_READ);
1413 	return pgprot_val(SEGMENT_WRITE);
1414 }
1415 
1416 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1417 {
1418 #ifdef CONFIG_64BIT
1419 	if (pmd_prot_none(pmd)) {
1420 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1421 	} else {
1422 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1423 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1424 	}
1425 #endif
1426 	return pmd;
1427 }
1428 
1429 static inline pmd_t pmd_mkold(pmd_t pmd)
1430 {
1431 #ifdef CONFIG_64BIT
1432 	if (pmd_prot_none(pmd)) {
1433 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1434 	} else {
1435 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1436 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1437 	}
1438 #endif
1439 	return pmd;
1440 }
1441 
1442 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1443 {
1444 	int young;
1445 
1446 	young = pmd_young(pmd);
1447 	pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1448 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1449 	if (young)
1450 		pmd = pmd_mkyoung(pmd);
1451 	return pmd;
1452 }
1453 
1454 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1455 {
1456 	pmd_t __pmd;
1457 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1458 	return pmd_mkyoung(__pmd);
1459 }
1460 
1461 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1462 {
1463 	/* Do not clobber PROT_NONE segments! */
1464 	if (!pmd_prot_none(pmd))
1465 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1466 	return pmd;
1467 }
1468 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1469 
1470 static inline void __pmdp_csp(pmd_t *pmdp)
1471 {
1472 	register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1473 	register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1474 					       _SEGMENT_ENTRY_INVALID;
1475 	register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1476 
1477 	asm volatile(
1478 		"	csp %1,%3"
1479 		: "=m" (*pmdp)
1480 		: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1481 }
1482 
1483 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1484 {
1485 	unsigned long sto;
1486 
1487 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1488 	asm volatile(
1489 		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1490 		: "=m" (*pmdp)
1491 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1492 		: "cc" );
1493 }
1494 
1495 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1496 {
1497 	unsigned long sto;
1498 
1499 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1500 	asm volatile(
1501 		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1502 		: "=m" (*pmdp)
1503 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1504 		: "cc" );
1505 }
1506 
1507 static inline void pmdp_flush_direct(struct mm_struct *mm,
1508 				     unsigned long address, pmd_t *pmdp)
1509 {
1510 	int active, count;
1511 
1512 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1513 		return;
1514 	if (!MACHINE_HAS_IDTE) {
1515 		__pmdp_csp(pmdp);
1516 		return;
1517 	}
1518 	active = (mm == current->active_mm) ? 1 : 0;
1519 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1520 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1521 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1522 		__pmdp_idte_local(address, pmdp);
1523 	else
1524 		__pmdp_idte(address, pmdp);
1525 	atomic_sub(0x10000, &mm->context.attach_count);
1526 }
1527 
1528 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1529 				   unsigned long address, pmd_t *pmdp)
1530 {
1531 	int active, count;
1532 
1533 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1534 		return;
1535 	active = (mm == current->active_mm) ? 1 : 0;
1536 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1537 	if ((count & 0xffff) <= active) {
1538 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1539 		mm->context.flush_mm = 1;
1540 	} else if (MACHINE_HAS_IDTE)
1541 		__pmdp_idte(address, pmdp);
1542 	else
1543 		__pmdp_csp(pmdp);
1544 	atomic_sub(0x10000, &mm->context.attach_count);
1545 }
1546 
1547 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1548 
1549 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1550 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1551 				       pgtable_t pgtable);
1552 
1553 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1554 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1555 
1556 static inline int pmd_trans_splitting(pmd_t pmd)
1557 {
1558 	return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1559 }
1560 
1561 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1562 			      pmd_t *pmdp, pmd_t entry)
1563 {
1564 	if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1)
1565 		pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1566 	*pmdp = entry;
1567 }
1568 
1569 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1570 {
1571 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1572 	return pmd;
1573 }
1574 
1575 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1576 {
1577 	/* Do not clobber PROT_NONE segments! */
1578 	if (!pmd_prot_none(pmd))
1579 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1580 	return pmd;
1581 }
1582 
1583 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1584 {
1585 	/* No dirty bit in the segment table entry. */
1586 	return pmd;
1587 }
1588 
1589 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1590 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1591 					    unsigned long address, pmd_t *pmdp)
1592 {
1593 	pmd_t pmd;
1594 
1595 	pmd = *pmdp;
1596 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1597 	*pmdp = pmd_mkold(pmd);
1598 	return pmd_young(pmd);
1599 }
1600 
1601 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1602 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1603 				       unsigned long address, pmd_t *pmdp)
1604 {
1605 	pmd_t pmd = *pmdp;
1606 
1607 	pmdp_flush_direct(mm, address, pmdp);
1608 	pmd_clear(pmdp);
1609 	return pmd;
1610 }
1611 
1612 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1613 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1614 				     unsigned long address, pmd_t *pmdp)
1615 {
1616 	return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1617 }
1618 
1619 #define __HAVE_ARCH_PMDP_INVALIDATE
1620 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1621 				   unsigned long address, pmd_t *pmdp)
1622 {
1623 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1624 }
1625 
1626 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1627 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1628 				      unsigned long address, pmd_t *pmdp)
1629 {
1630 	pmd_t pmd = *pmdp;
1631 
1632 	if (pmd_write(pmd)) {
1633 		pmdp_flush_direct(mm, address, pmdp);
1634 		set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1635 	}
1636 }
1637 
1638 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1639 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1640 
1641 static inline int pmd_trans_huge(pmd_t pmd)
1642 {
1643 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1644 }
1645 
1646 static inline int has_transparent_hugepage(void)
1647 {
1648 	return MACHINE_HAS_HPAGE ? 1 : 0;
1649 }
1650 
1651 static inline unsigned long pmd_pfn(pmd_t pmd)
1652 {
1653 	return pmd_val(pmd) >> PAGE_SHIFT;
1654 }
1655 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1656 
1657 /*
1658  * 31 bit swap entry format:
1659  * A page-table entry has some bits we have to treat in a special way.
1660  * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1661  * exception will occur instead of a page translation exception. The
1662  * specifiation exception has the bad habit not to store necessary
1663  * information in the lowcore.
1664  * Bits 21, 22, 30 and 31 are used to indicate the page type.
1665  * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1666  * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1667  * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1668  * plus 24 for the offset.
1669  * 0|     offset        |0110|o|type |00|
1670  * 0 0000000001111111111 2222 2 22222 33
1671  * 0 1234567890123456789 0123 4 56789 01
1672  *
1673  * 64 bit swap entry format:
1674  * A page-table entry has some bits we have to treat in a special way.
1675  * Bits 52 and bit 55 have to be zero, otherwise an specification
1676  * exception will occur instead of a page translation exception. The
1677  * specifiation exception has the bad habit not to store necessary
1678  * information in the lowcore.
1679  * Bits 53, 54, 62 and 63 are used to indicate the page type.
1680  * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1681  * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1682  * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1683  * plus 56 for the offset.
1684  * |                      offset                        |0110|o|type |00|
1685  *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1686  *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1687  */
1688 #ifndef CONFIG_64BIT
1689 #define __SWP_OFFSET_MASK (~0UL >> 12)
1690 #else
1691 #define __SWP_OFFSET_MASK (~0UL >> 11)
1692 #endif
1693 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1694 {
1695 	pte_t pte;
1696 	offset &= __SWP_OFFSET_MASK;
1697 	pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1698 		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1699 	return pte;
1700 }
1701 
1702 #define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
1703 #define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
1704 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1705 
1706 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1707 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1708 
1709 #ifndef CONFIG_64BIT
1710 # define PTE_FILE_MAX_BITS	26
1711 #else /* CONFIG_64BIT */
1712 # define PTE_FILE_MAX_BITS	59
1713 #endif /* CONFIG_64BIT */
1714 
1715 #define pte_to_pgoff(__pte) \
1716 	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1717 
1718 #define pgoff_to_pte(__off) \
1719 	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1720 		   | _PAGE_INVALID | _PAGE_PROTECT })
1721 
1722 #endif /* !__ASSEMBLY__ */
1723 
1724 #define kern_addr_valid(addr)   (1)
1725 
1726 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1727 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1728 extern int s390_enable_sie(void);
1729 extern void s390_enable_skey(void);
1730 
1731 /*
1732  * No page table caches to initialise
1733  */
1734 static inline void pgtable_cache_init(void) { }
1735 static inline void check_pgt_cache(void) { }
1736 
1737 #include <asm-generic/pgtable.h>
1738 
1739 #endif /* _S390_PAGE_H */
1740