1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12 #ifndef _ASM_S390_PGTABLE_H 13 #define _ASM_S390_PGTABLE_H 14 15 #include <linux/sched.h> 16 #include <linux/mm_types.h> 17 #include <linux/page-flags.h> 18 #include <linux/radix-tree.h> 19 #include <linux/atomic.h> 20 #include <asm/bug.h> 21 #include <asm/page.h> 22 23 extern pgd_t swapper_pg_dir[]; 24 extern void paging_init(void); 25 26 enum { 27 PG_DIRECT_MAP_4K = 0, 28 PG_DIRECT_MAP_1M, 29 PG_DIRECT_MAP_2G, 30 PG_DIRECT_MAP_MAX 31 }; 32 33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; 34 35 static inline void update_page_count(int level, long count) 36 { 37 if (IS_ENABLED(CONFIG_PROC_FS)) 38 atomic_long_add(count, &direct_pages_count[level]); 39 } 40 41 struct seq_file; 42 void arch_report_meminfo(struct seq_file *m); 43 44 /* 45 * The S390 doesn't have any external MMU info: the kernel page 46 * tables contain all the necessary information. 47 */ 48 #define update_mmu_cache(vma, address, ptep) do { } while (0) 49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 50 51 /* 52 * ZERO_PAGE is a global shared page that is always zero; used 53 * for zero-mapped memory areas etc.. 54 */ 55 56 extern unsigned long empty_zero_page; 57 extern unsigned long zero_page_mask; 58 59 #define ZERO_PAGE(vaddr) \ 60 (virt_to_page((void *)(empty_zero_page + \ 61 (((unsigned long)(vaddr)) &zero_page_mask)))) 62 #define __HAVE_COLOR_ZERO_PAGE 63 64 /* TODO: s390 cannot support io_remap_pfn_range... */ 65 66 #define FIRST_USER_ADDRESS 0UL 67 68 #define pte_ERROR(e) \ 69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 70 #define pmd_ERROR(e) \ 71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 72 #define pud_ERROR(e) \ 73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 74 #define p4d_ERROR(e) \ 75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e)) 76 #define pgd_ERROR(e) \ 77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 78 79 /* 80 * The vmalloc and module area will always be on the topmost area of the 81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. 82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 83 * modules will reside. That makes sure that inter module branches always 84 * happen without trampolines and in addition the placement within a 2GB frame 85 * is branch prediction unit friendly. 86 */ 87 extern unsigned long VMALLOC_START; 88 extern unsigned long VMALLOC_END; 89 extern struct page *vmemmap; 90 91 #define VMEM_MAX_PHYS ((unsigned long) vmemmap) 92 93 extern unsigned long MODULES_VADDR; 94 extern unsigned long MODULES_END; 95 #define MODULES_VADDR MODULES_VADDR 96 #define MODULES_END MODULES_END 97 #define MODULES_LEN (1UL << 31) 98 99 static inline int is_module_addr(void *addr) 100 { 101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 102 if (addr < (void *)MODULES_VADDR) 103 return 0; 104 if (addr > (void *)MODULES_END) 105 return 0; 106 return 1; 107 } 108 109 /* 110 * A 64 bit pagetable entry of S390 has following format: 111 * | PFRA |0IPC| OS | 112 * 0000000000111111111122222222223333333333444444444455555555556666 113 * 0123456789012345678901234567890123456789012345678901234567890123 114 * 115 * I Page-Invalid Bit: Page is not available for address-translation 116 * P Page-Protection Bit: Store access not possible for page 117 * C Change-bit override: HW is not required to set change bit 118 * 119 * A 64 bit segmenttable entry of S390 has following format: 120 * | P-table origin | TT 121 * 0000000000111111111122222222223333333333444444444455555555556666 122 * 0123456789012345678901234567890123456789012345678901234567890123 123 * 124 * I Segment-Invalid Bit: Segment is not available for address-translation 125 * C Common-Segment Bit: Segment is not private (PoP 3-30) 126 * P Page-Protection Bit: Store access not possible for page 127 * TT Type 00 128 * 129 * A 64 bit region table entry of S390 has following format: 130 * | S-table origin | TF TTTL 131 * 0000000000111111111122222222223333333333444444444455555555556666 132 * 0123456789012345678901234567890123456789012345678901234567890123 133 * 134 * I Segment-Invalid Bit: Segment is not available for address-translation 135 * TT Type 01 136 * TF 137 * TL Table length 138 * 139 * The 64 bit regiontable origin of S390 has following format: 140 * | region table origon | DTTL 141 * 0000000000111111111122222222223333333333444444444455555555556666 142 * 0123456789012345678901234567890123456789012345678901234567890123 143 * 144 * X Space-Switch event: 145 * G Segment-Invalid Bit: 146 * P Private-Space Bit: 147 * S Storage-Alteration: 148 * R Real space 149 * TL Table-Length: 150 * 151 * A storage key has the following format: 152 * | ACC |F|R|C|0| 153 * 0 3 4 5 6 7 154 * ACC: access key 155 * F : fetch protection bit 156 * R : referenced bit 157 * C : changed bit 158 */ 159 160 /* Hardware bits in the page table entry */ 161 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 162 #define _PAGE_PROTECT 0x200 /* HW read-only bit */ 163 #define _PAGE_INVALID 0x400 /* HW invalid bit */ 164 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 165 166 /* Software bits in the page table entry */ 167 #define _PAGE_PRESENT 0x001 /* SW pte present bit */ 168 #define _PAGE_YOUNG 0x004 /* SW pte young bit */ 169 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 170 #define _PAGE_READ 0x010 /* SW pte read bit */ 171 #define _PAGE_WRITE 0x020 /* SW pte write bit */ 172 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 173 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 174 175 #ifdef CONFIG_MEM_SOFT_DIRTY 176 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 177 #else 178 #define _PAGE_SOFT_DIRTY 0x000 179 #endif 180 181 /* Set of bits not changed in pte_modify */ 182 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 183 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 184 185 /* 186 * handle_pte_fault uses pte_present and pte_none to find out the pte type 187 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 188 * distinguish present from not-present ptes. It is changed only with the page 189 * table lock held. 190 * 191 * The following table gives the different possible bit combinations for 192 * the pte hardware and software bits in the last 12 bits of a pte 193 * (. unassigned bit, x don't care, t swap type): 194 * 195 * 842100000000 196 * 000084210000 197 * 000000008421 198 * .IR.uswrdy.p 199 * empty .10.00000000 200 * swap .11..ttttt.0 201 * prot-none, clean, old .11.xx0000.1 202 * prot-none, clean, young .11.xx0001.1 203 * prot-none, dirty, old .11.xx0010.1 204 * prot-none, dirty, young .11.xx0011.1 205 * read-only, clean, old .11.xx0100.1 206 * read-only, clean, young .01.xx0101.1 207 * read-only, dirty, old .11.xx0110.1 208 * read-only, dirty, young .01.xx0111.1 209 * read-write, clean, old .11.xx1100.1 210 * read-write, clean, young .01.xx1101.1 211 * read-write, dirty, old .10.xx1110.1 212 * read-write, dirty, young .00.xx1111.1 213 * HW-bits: R read-only, I invalid 214 * SW-bits: p present, y young, d dirty, r read, w write, s special, 215 * u unused, l large 216 * 217 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 218 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 219 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 220 */ 221 222 /* Bits in the segment/region table address-space-control-element */ 223 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 224 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 225 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 226 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 227 #define _ASCE_REAL_SPACE 0x20 /* real space control */ 228 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 229 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 230 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 231 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 232 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 233 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 234 235 /* Bits in the region table entry */ 236 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 237 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 238 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 239 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 240 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 241 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 242 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 243 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 244 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 245 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 246 247 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 248 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 249 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 250 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 251 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 252 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 253 254 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 255 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 256 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 257 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 258 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 259 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 260 261 #ifdef CONFIG_MEM_SOFT_DIRTY 262 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 263 #else 264 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 265 #endif 266 267 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 268 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL 269 270 /* Bits in the segment table entry */ 271 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 272 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL 273 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 274 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 275 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 276 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 277 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 278 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 279 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 280 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 281 282 #define _SEGMENT_ENTRY (0) 283 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 284 285 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 286 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 287 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 288 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 289 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 290 291 #ifdef CONFIG_MEM_SOFT_DIRTY 292 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 293 #else 294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 295 #endif 296 297 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 298 #define _PAGE_ENTRIES 256 /* number of page table entries */ 299 300 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 301 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 302 303 #define _REGION1_SHIFT 53 304 #define _REGION2_SHIFT 42 305 #define _REGION3_SHIFT 31 306 #define _SEGMENT_SHIFT 20 307 308 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 309 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 310 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 311 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 312 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 313 314 #define _REGION1_SIZE (1UL << _REGION1_SHIFT) 315 #define _REGION2_SIZE (1UL << _REGION2_SHIFT) 316 #define _REGION3_SIZE (1UL << _REGION3_SHIFT) 317 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 318 319 #define _REGION1_MASK (~(_REGION1_SIZE - 1)) 320 #define _REGION2_MASK (~(_REGION2_SIZE - 1)) 321 #define _REGION3_MASK (~(_REGION3_SIZE - 1)) 322 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 323 324 #define PMD_SHIFT _SEGMENT_SHIFT 325 #define PUD_SHIFT _REGION3_SHIFT 326 #define P4D_SHIFT _REGION2_SHIFT 327 #define PGDIR_SHIFT _REGION1_SHIFT 328 329 #define PMD_SIZE _SEGMENT_SIZE 330 #define PUD_SIZE _REGION3_SIZE 331 #define P4D_SIZE _REGION2_SIZE 332 #define PGDIR_SIZE _REGION1_SIZE 333 334 #define PMD_MASK _SEGMENT_MASK 335 #define PUD_MASK _REGION3_MASK 336 #define P4D_MASK _REGION2_MASK 337 #define PGDIR_MASK _REGION1_MASK 338 339 #define PTRS_PER_PTE _PAGE_ENTRIES 340 #define PTRS_PER_PMD _CRST_ENTRIES 341 #define PTRS_PER_PUD _CRST_ENTRIES 342 #define PTRS_PER_P4D _CRST_ENTRIES 343 #define PTRS_PER_PGD _CRST_ENTRIES 344 345 #define MAX_PTRS_PER_P4D PTRS_PER_P4D 346 347 /* 348 * Segment table and region3 table entry encoding 349 * (R = read-only, I = invalid, y = young bit): 350 * dy..R...I...wr 351 * prot-none, clean, old 00..1...1...00 352 * prot-none, clean, young 01..1...1...00 353 * prot-none, dirty, old 10..1...1...00 354 * prot-none, dirty, young 11..1...1...00 355 * read-only, clean, old 00..1...1...01 356 * read-only, clean, young 01..1...0...01 357 * read-only, dirty, old 10..1...1...01 358 * read-only, dirty, young 11..1...0...01 359 * read-write, clean, old 00..1...1...11 360 * read-write, clean, young 01..1...0...11 361 * read-write, dirty, old 10..0...1...11 362 * read-write, dirty, young 11..0...0...11 363 * The segment table origin is used to distinguish empty (origin==0) from 364 * read-write, old segment table entries (origin!=0) 365 * HW-bits: R read-only, I invalid 366 * SW-bits: y young, d dirty, r read, w write 367 */ 368 369 /* Page status table bits for virtualization */ 370 #define PGSTE_ACC_BITS 0xf000000000000000UL 371 #define PGSTE_FP_BIT 0x0800000000000000UL 372 #define PGSTE_PCL_BIT 0x0080000000000000UL 373 #define PGSTE_HR_BIT 0x0040000000000000UL 374 #define PGSTE_HC_BIT 0x0020000000000000UL 375 #define PGSTE_GR_BIT 0x0004000000000000UL 376 #define PGSTE_GC_BIT 0x0002000000000000UL 377 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 378 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 379 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 380 381 /* Guest Page State used for virtualization */ 382 #define _PGSTE_GPS_ZERO 0x0000000080000000UL 383 #define _PGSTE_GPS_NODAT 0x0000000040000000UL 384 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 385 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 386 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 387 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 388 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 389 390 /* 391 * A user page table pointer has the space-switch-event bit, the 392 * private-space-control bit and the storage-alteration-event-control 393 * bit set. A kernel page table pointer doesn't need them. 394 */ 395 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 396 _ASCE_ALT_EVENT) 397 398 /* 399 * Page protection definitions. 400 */ 401 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 402 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 403 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 404 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 405 _PAGE_INVALID | _PAGE_PROTECT) 406 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 407 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 408 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 409 _PAGE_INVALID | _PAGE_PROTECT) 410 411 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 412 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 413 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 414 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 415 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 416 _PAGE_PROTECT | _PAGE_NOEXEC) 417 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 418 _PAGE_YOUNG | _PAGE_DIRTY) 419 420 /* 421 * On s390 the page table entry has an invalid bit and a read-only bit. 422 * Read permission implies execute permission and write permission 423 * implies read permission. 424 */ 425 /*xwr*/ 426 #define __P000 PAGE_NONE 427 #define __P001 PAGE_RO 428 #define __P010 PAGE_RO 429 #define __P011 PAGE_RO 430 #define __P100 PAGE_RX 431 #define __P101 PAGE_RX 432 #define __P110 PAGE_RX 433 #define __P111 PAGE_RX 434 435 #define __S000 PAGE_NONE 436 #define __S001 PAGE_RO 437 #define __S010 PAGE_RW 438 #define __S011 PAGE_RW 439 #define __S100 PAGE_RX 440 #define __S101 PAGE_RX 441 #define __S110 PAGE_RWX 442 #define __S111 PAGE_RWX 443 444 /* 445 * Segment entry (large page) protection definitions. 446 */ 447 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 448 _SEGMENT_ENTRY_PROTECT) 449 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 450 _SEGMENT_ENTRY_READ | \ 451 _SEGMENT_ENTRY_NOEXEC) 452 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 453 _SEGMENT_ENTRY_READ) 454 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 455 _SEGMENT_ENTRY_WRITE | \ 456 _SEGMENT_ENTRY_NOEXEC) 457 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 458 _SEGMENT_ENTRY_WRITE) 459 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 460 _SEGMENT_ENTRY_LARGE | \ 461 _SEGMENT_ENTRY_READ | \ 462 _SEGMENT_ENTRY_WRITE | \ 463 _SEGMENT_ENTRY_YOUNG | \ 464 _SEGMENT_ENTRY_DIRTY | \ 465 _SEGMENT_ENTRY_NOEXEC) 466 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 467 _SEGMENT_ENTRY_LARGE | \ 468 _SEGMENT_ENTRY_READ | \ 469 _SEGMENT_ENTRY_YOUNG | \ 470 _SEGMENT_ENTRY_PROTECT | \ 471 _SEGMENT_ENTRY_NOEXEC) 472 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 473 _SEGMENT_ENTRY_LARGE | \ 474 _SEGMENT_ENTRY_READ | \ 475 _SEGMENT_ENTRY_WRITE | \ 476 _SEGMENT_ENTRY_YOUNG | \ 477 _SEGMENT_ENTRY_DIRTY) 478 479 /* 480 * Region3 entry (large page) protection definitions. 481 */ 482 483 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 484 _REGION3_ENTRY_LARGE | \ 485 _REGION3_ENTRY_READ | \ 486 _REGION3_ENTRY_WRITE | \ 487 _REGION3_ENTRY_YOUNG | \ 488 _REGION3_ENTRY_DIRTY | \ 489 _REGION_ENTRY_NOEXEC) 490 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 491 _REGION3_ENTRY_LARGE | \ 492 _REGION3_ENTRY_READ | \ 493 _REGION3_ENTRY_YOUNG | \ 494 _REGION_ENTRY_PROTECT | \ 495 _REGION_ENTRY_NOEXEC) 496 497 static inline bool mm_p4d_folded(struct mm_struct *mm) 498 { 499 return mm->context.asce_limit <= _REGION1_SIZE; 500 } 501 #define mm_p4d_folded(mm) mm_p4d_folded(mm) 502 503 static inline bool mm_pud_folded(struct mm_struct *mm) 504 { 505 return mm->context.asce_limit <= _REGION2_SIZE; 506 } 507 #define mm_pud_folded(mm) mm_pud_folded(mm) 508 509 static inline bool mm_pmd_folded(struct mm_struct *mm) 510 { 511 return mm->context.asce_limit <= _REGION3_SIZE; 512 } 513 #define mm_pmd_folded(mm) mm_pmd_folded(mm) 514 515 static inline int mm_has_pgste(struct mm_struct *mm) 516 { 517 #ifdef CONFIG_PGSTE 518 if (unlikely(mm->context.has_pgste)) 519 return 1; 520 #endif 521 return 0; 522 } 523 524 static inline int mm_alloc_pgste(struct mm_struct *mm) 525 { 526 #ifdef CONFIG_PGSTE 527 if (unlikely(mm->context.alloc_pgste)) 528 return 1; 529 #endif 530 return 0; 531 } 532 533 /* 534 * In the case that a guest uses storage keys 535 * faults should no longer be backed by zero pages 536 */ 537 #define mm_forbids_zeropage mm_has_pgste 538 static inline int mm_uses_skeys(struct mm_struct *mm) 539 { 540 #ifdef CONFIG_PGSTE 541 if (mm->context.uses_skeys) 542 return 1; 543 #endif 544 return 0; 545 } 546 547 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 548 { 549 register unsigned long reg2 asm("2") = old; 550 register unsigned long reg3 asm("3") = new; 551 unsigned long address = (unsigned long)ptr | 1; 552 553 asm volatile( 554 " csp %0,%3" 555 : "+d" (reg2), "+m" (*ptr) 556 : "d" (reg3), "d" (address) 557 : "cc"); 558 } 559 560 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 561 { 562 register unsigned long reg2 asm("2") = old; 563 register unsigned long reg3 asm("3") = new; 564 unsigned long address = (unsigned long)ptr | 1; 565 566 asm volatile( 567 " .insn rre,0xb98a0000,%0,%3" 568 : "+d" (reg2), "+m" (*ptr) 569 : "d" (reg3), "d" (address) 570 : "cc"); 571 } 572 573 #define CRDTE_DTT_PAGE 0x00UL 574 #define CRDTE_DTT_SEGMENT 0x10UL 575 #define CRDTE_DTT_REGION3 0x14UL 576 #define CRDTE_DTT_REGION2 0x18UL 577 #define CRDTE_DTT_REGION1 0x1cUL 578 579 static inline void crdte(unsigned long old, unsigned long new, 580 unsigned long table, unsigned long dtt, 581 unsigned long address, unsigned long asce) 582 { 583 register unsigned long reg2 asm("2") = old; 584 register unsigned long reg3 asm("3") = new; 585 register unsigned long reg4 asm("4") = table | dtt; 586 register unsigned long reg5 asm("5") = address; 587 588 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0" 589 : "+d" (reg2) 590 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce) 591 : "memory", "cc"); 592 } 593 594 /* 595 * pgd/p4d/pud/pmd/pte query functions 596 */ 597 static inline int pgd_folded(pgd_t pgd) 598 { 599 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 600 } 601 602 static inline int pgd_present(pgd_t pgd) 603 { 604 if (pgd_folded(pgd)) 605 return 1; 606 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 607 } 608 609 static inline int pgd_none(pgd_t pgd) 610 { 611 if (pgd_folded(pgd)) 612 return 0; 613 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 614 } 615 616 static inline int pgd_bad(pgd_t pgd) 617 { 618 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 619 return 0; 620 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 621 } 622 623 static inline unsigned long pgd_pfn(pgd_t pgd) 624 { 625 unsigned long origin_mask; 626 627 origin_mask = _REGION_ENTRY_ORIGIN; 628 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 629 } 630 631 static inline int p4d_folded(p4d_t p4d) 632 { 633 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 634 } 635 636 static inline int p4d_present(p4d_t p4d) 637 { 638 if (p4d_folded(p4d)) 639 return 1; 640 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 641 } 642 643 static inline int p4d_none(p4d_t p4d) 644 { 645 if (p4d_folded(p4d)) 646 return 0; 647 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 648 } 649 650 static inline unsigned long p4d_pfn(p4d_t p4d) 651 { 652 unsigned long origin_mask; 653 654 origin_mask = _REGION_ENTRY_ORIGIN; 655 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 656 } 657 658 static inline int pud_folded(pud_t pud) 659 { 660 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 661 } 662 663 static inline int pud_present(pud_t pud) 664 { 665 if (pud_folded(pud)) 666 return 1; 667 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 668 } 669 670 static inline int pud_none(pud_t pud) 671 { 672 if (pud_folded(pud)) 673 return 0; 674 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 675 } 676 677 static inline int pud_large(pud_t pud) 678 { 679 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 680 return 0; 681 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 682 } 683 684 static inline unsigned long pud_pfn(pud_t pud) 685 { 686 unsigned long origin_mask; 687 688 origin_mask = _REGION_ENTRY_ORIGIN; 689 if (pud_large(pud)) 690 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 691 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT; 692 } 693 694 static inline int pmd_large(pmd_t pmd) 695 { 696 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 697 } 698 699 static inline int pmd_bad(pmd_t pmd) 700 { 701 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0) 702 return 1; 703 if (pmd_large(pmd)) 704 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; 705 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 706 } 707 708 static inline int pud_bad(pud_t pud) 709 { 710 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 711 712 if (type > _REGION_ENTRY_TYPE_R3) 713 return 1; 714 if (type < _REGION_ENTRY_TYPE_R3) 715 return 0; 716 if (pud_large(pud)) 717 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0; 718 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 719 } 720 721 static inline int p4d_bad(p4d_t p4d) 722 { 723 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 724 725 if (type > _REGION_ENTRY_TYPE_R2) 726 return 1; 727 if (type < _REGION_ENTRY_TYPE_R2) 728 return 0; 729 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 730 } 731 732 static inline int pmd_present(pmd_t pmd) 733 { 734 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 735 } 736 737 static inline int pmd_none(pmd_t pmd) 738 { 739 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 740 } 741 742 static inline unsigned long pmd_pfn(pmd_t pmd) 743 { 744 unsigned long origin_mask; 745 746 origin_mask = _SEGMENT_ENTRY_ORIGIN; 747 if (pmd_large(pmd)) 748 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 749 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; 750 } 751 752 #define pmd_write pmd_write 753 static inline int pmd_write(pmd_t pmd) 754 { 755 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 756 } 757 758 static inline int pmd_dirty(pmd_t pmd) 759 { 760 int dirty = 1; 761 if (pmd_large(pmd)) 762 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 763 return dirty; 764 } 765 766 static inline int pmd_young(pmd_t pmd) 767 { 768 int young = 1; 769 if (pmd_large(pmd)) 770 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 771 return young; 772 } 773 774 static inline int pte_present(pte_t pte) 775 { 776 /* Bit pattern: (pte & 0x001) == 0x001 */ 777 return (pte_val(pte) & _PAGE_PRESENT) != 0; 778 } 779 780 static inline int pte_none(pte_t pte) 781 { 782 /* Bit pattern: pte == 0x400 */ 783 return pte_val(pte) == _PAGE_INVALID; 784 } 785 786 static inline int pte_swap(pte_t pte) 787 { 788 /* Bit pattern: (pte & 0x201) == 0x200 */ 789 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 790 == _PAGE_PROTECT; 791 } 792 793 static inline int pte_special(pte_t pte) 794 { 795 return (pte_val(pte) & _PAGE_SPECIAL); 796 } 797 798 #define __HAVE_ARCH_PTE_SAME 799 static inline int pte_same(pte_t a, pte_t b) 800 { 801 return pte_val(a) == pte_val(b); 802 } 803 804 #ifdef CONFIG_NUMA_BALANCING 805 static inline int pte_protnone(pte_t pte) 806 { 807 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 808 } 809 810 static inline int pmd_protnone(pmd_t pmd) 811 { 812 /* pmd_large(pmd) implies pmd_present(pmd) */ 813 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 814 } 815 #endif 816 817 static inline int pte_soft_dirty(pte_t pte) 818 { 819 return pte_val(pte) & _PAGE_SOFT_DIRTY; 820 } 821 #define pte_swp_soft_dirty pte_soft_dirty 822 823 static inline pte_t pte_mksoft_dirty(pte_t pte) 824 { 825 pte_val(pte) |= _PAGE_SOFT_DIRTY; 826 return pte; 827 } 828 #define pte_swp_mksoft_dirty pte_mksoft_dirty 829 830 static inline pte_t pte_clear_soft_dirty(pte_t pte) 831 { 832 pte_val(pte) &= ~_PAGE_SOFT_DIRTY; 833 return pte; 834 } 835 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty 836 837 static inline int pmd_soft_dirty(pmd_t pmd) 838 { 839 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 840 } 841 842 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 843 { 844 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; 845 return pmd; 846 } 847 848 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 849 { 850 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; 851 return pmd; 852 } 853 854 /* 855 * query functions pte_write/pte_dirty/pte_young only work if 856 * pte_present() is true. Undefined behaviour if not.. 857 */ 858 static inline int pte_write(pte_t pte) 859 { 860 return (pte_val(pte) & _PAGE_WRITE) != 0; 861 } 862 863 static inline int pte_dirty(pte_t pte) 864 { 865 return (pte_val(pte) & _PAGE_DIRTY) != 0; 866 } 867 868 static inline int pte_young(pte_t pte) 869 { 870 return (pte_val(pte) & _PAGE_YOUNG) != 0; 871 } 872 873 #define __HAVE_ARCH_PTE_UNUSED 874 static inline int pte_unused(pte_t pte) 875 { 876 return pte_val(pte) & _PAGE_UNUSED; 877 } 878 879 /* 880 * pgd/pmd/pte modification functions 881 */ 882 883 static inline void pgd_clear(pgd_t *pgd) 884 { 885 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 886 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY; 887 } 888 889 static inline void p4d_clear(p4d_t *p4d) 890 { 891 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 892 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY; 893 } 894 895 static inline void pud_clear(pud_t *pud) 896 { 897 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 898 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 899 } 900 901 static inline void pmd_clear(pmd_t *pmdp) 902 { 903 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY; 904 } 905 906 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 907 { 908 pte_val(*ptep) = _PAGE_INVALID; 909 } 910 911 /* 912 * The following pte modification functions only work if 913 * pte_present() is true. Undefined behaviour if not.. 914 */ 915 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 916 { 917 pte_val(pte) &= _PAGE_CHG_MASK; 918 pte_val(pte) |= pgprot_val(newprot); 919 /* 920 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 921 * has the invalid bit set, clear it again for readable, young pages 922 */ 923 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 924 pte_val(pte) &= ~_PAGE_INVALID; 925 /* 926 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 927 * protection bit set, clear it again for writable, dirty pages 928 */ 929 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 930 pte_val(pte) &= ~_PAGE_PROTECT; 931 return pte; 932 } 933 934 static inline pte_t pte_wrprotect(pte_t pte) 935 { 936 pte_val(pte) &= ~_PAGE_WRITE; 937 pte_val(pte) |= _PAGE_PROTECT; 938 return pte; 939 } 940 941 static inline pte_t pte_mkwrite(pte_t pte) 942 { 943 pte_val(pte) |= _PAGE_WRITE; 944 if (pte_val(pte) & _PAGE_DIRTY) 945 pte_val(pte) &= ~_PAGE_PROTECT; 946 return pte; 947 } 948 949 static inline pte_t pte_mkclean(pte_t pte) 950 { 951 pte_val(pte) &= ~_PAGE_DIRTY; 952 pte_val(pte) |= _PAGE_PROTECT; 953 return pte; 954 } 955 956 static inline pte_t pte_mkdirty(pte_t pte) 957 { 958 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; 959 if (pte_val(pte) & _PAGE_WRITE) 960 pte_val(pte) &= ~_PAGE_PROTECT; 961 return pte; 962 } 963 964 static inline pte_t pte_mkold(pte_t pte) 965 { 966 pte_val(pte) &= ~_PAGE_YOUNG; 967 pte_val(pte) |= _PAGE_INVALID; 968 return pte; 969 } 970 971 static inline pte_t pte_mkyoung(pte_t pte) 972 { 973 pte_val(pte) |= _PAGE_YOUNG; 974 if (pte_val(pte) & _PAGE_READ) 975 pte_val(pte) &= ~_PAGE_INVALID; 976 return pte; 977 } 978 979 static inline pte_t pte_mkspecial(pte_t pte) 980 { 981 pte_val(pte) |= _PAGE_SPECIAL; 982 return pte; 983 } 984 985 #ifdef CONFIG_HUGETLB_PAGE 986 static inline pte_t pte_mkhuge(pte_t pte) 987 { 988 pte_val(pte) |= _PAGE_LARGE; 989 return pte; 990 } 991 #endif 992 993 #define IPTE_GLOBAL 0 994 #define IPTE_LOCAL 1 995 996 #define IPTE_NODAT 0x400 997 #define IPTE_GUEST_ASCE 0x800 998 999 static inline void __ptep_ipte(unsigned long address, pte_t *ptep, 1000 unsigned long opt, unsigned long asce, 1001 int local) 1002 { 1003 unsigned long pto = (unsigned long) ptep; 1004 1005 if (__builtin_constant_p(opt) && opt == 0) { 1006 /* Invalidation + TLB flush for the pte */ 1007 asm volatile( 1008 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]" 1009 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1010 [m4] "i" (local)); 1011 return; 1012 } 1013 1014 /* Invalidate ptes with options + TLB flush of the ptes */ 1015 opt = opt | (asce & _ASCE_ORIGIN); 1016 asm volatile( 1017 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1018 : [r2] "+a" (address), [r3] "+a" (opt) 1019 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1020 } 1021 1022 static inline void __ptep_ipte_range(unsigned long address, int nr, 1023 pte_t *ptep, int local) 1024 { 1025 unsigned long pto = (unsigned long) ptep; 1026 1027 /* Invalidate a range of ptes + TLB flush of the ptes */ 1028 do { 1029 asm volatile( 1030 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]" 1031 : [r2] "+a" (address), [r3] "+a" (nr) 1032 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1033 } while (nr != 255); 1034 } 1035 1036 /* 1037 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1038 * both clear the TLB for the unmapped pte. The reason is that 1039 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1040 * to modify an active pte. The sequence is 1041 * 1) ptep_get_and_clear 1042 * 2) set_pte_at 1043 * 3) flush_tlb_range 1044 * On s390 the tlb needs to get flushed with the modification of the pte 1045 * if the pte is active. The only way how this can be implemented is to 1046 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1047 * is a nop. 1048 */ 1049 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1050 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1051 1052 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1053 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1054 unsigned long addr, pte_t *ptep) 1055 { 1056 pte_t pte = *ptep; 1057 1058 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1059 return pte_young(pte); 1060 } 1061 1062 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1063 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1064 unsigned long address, pte_t *ptep) 1065 { 1066 return ptep_test_and_clear_young(vma, address, ptep); 1067 } 1068 1069 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1070 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1071 unsigned long addr, pte_t *ptep) 1072 { 1073 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1074 } 1075 1076 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1077 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1078 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1079 pte_t *, pte_t, pte_t); 1080 1081 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1082 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1083 unsigned long addr, pte_t *ptep) 1084 { 1085 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1086 } 1087 1088 /* 1089 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1090 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1091 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1092 * cannot be accessed while the batched unmap is running. In this case 1093 * full==1 and a simple pte_clear is enough. See tlb.h. 1094 */ 1095 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1096 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1097 unsigned long addr, 1098 pte_t *ptep, int full) 1099 { 1100 if (full) { 1101 pte_t pte = *ptep; 1102 *ptep = __pte(_PAGE_INVALID); 1103 return pte; 1104 } 1105 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1106 } 1107 1108 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1109 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1110 unsigned long addr, pte_t *ptep) 1111 { 1112 pte_t pte = *ptep; 1113 1114 if (pte_write(pte)) 1115 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1116 } 1117 1118 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1119 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1120 unsigned long addr, pte_t *ptep, 1121 pte_t entry, int dirty) 1122 { 1123 if (pte_same(*ptep, entry)) 1124 return 0; 1125 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1126 return 1; 1127 } 1128 1129 /* 1130 * Additional functions to handle KVM guest page tables 1131 */ 1132 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1133 pte_t *ptep, pte_t entry); 1134 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1135 void ptep_notify(struct mm_struct *mm, unsigned long addr, 1136 pte_t *ptep, unsigned long bits); 1137 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1138 pte_t *ptep, int prot, unsigned long bit); 1139 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1140 pte_t *ptep , int reset); 1141 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1142 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1143 pte_t *sptep, pte_t *tptep, pte_t pte); 1144 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1145 1146 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1147 pte_t *ptep); 1148 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1149 unsigned char key, bool nq); 1150 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1151 unsigned char key, unsigned char *oldkey, 1152 bool nq, bool mr, bool mc); 1153 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1154 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1155 unsigned char *key); 1156 1157 int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1158 unsigned long bits, unsigned long value); 1159 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1160 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1161 unsigned long *oldpte, unsigned long *oldpgste); 1162 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1163 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1164 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1165 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1166 1167 /* 1168 * Certain architectures need to do special things when PTEs 1169 * within a page table are directly modified. Thus, the following 1170 * hook is made available. 1171 */ 1172 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1173 pte_t *ptep, pte_t entry) 1174 { 1175 if (!MACHINE_HAS_NX) 1176 pte_val(entry) &= ~_PAGE_NOEXEC; 1177 if (pte_present(entry)) 1178 pte_val(entry) &= ~_PAGE_UNUSED; 1179 if (mm_has_pgste(mm)) 1180 ptep_set_pte_at(mm, addr, ptep, entry); 1181 else 1182 *ptep = entry; 1183 } 1184 1185 /* 1186 * Conversion functions: convert a page and protection to a page entry, 1187 * and a page entry and page directory to the page they refer to. 1188 */ 1189 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1190 { 1191 pte_t __pte; 1192 pte_val(__pte) = physpage + pgprot_val(pgprot); 1193 return pte_mkyoung(__pte); 1194 } 1195 1196 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1197 { 1198 unsigned long physpage = page_to_phys(page); 1199 pte_t __pte = mk_pte_phys(physpage, pgprot); 1200 1201 if (pte_write(__pte) && PageDirty(page)) 1202 __pte = pte_mkdirty(__pte); 1203 return __pte; 1204 } 1205 1206 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1207 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1208 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1209 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1210 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1211 1212 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1213 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1214 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN) 1215 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1216 1217 /* 1218 * The pgd_offset function *always* adds the index for the top-level 1219 * region/segment table. This is done to get a sequence like the 1220 * following to work: 1221 * pgdp = pgd_offset(current->mm, addr); 1222 * pgd = READ_ONCE(*pgdp); 1223 * p4dp = p4d_offset(&pgd, addr); 1224 * ... 1225 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1226 * only add an index if they dereferenced the pointer. 1227 */ 1228 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1229 { 1230 unsigned long rste; 1231 unsigned int shift; 1232 1233 /* Get the first entry of the top level table */ 1234 rste = pgd_val(*pgd); 1235 /* Pick up the shift from the table type of the first entry */ 1236 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1237 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1238 } 1239 1240 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1241 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 1242 1243 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address) 1244 { 1245 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1246 return (p4d_t *) pgd_deref(*pgd) + p4d_index(address); 1247 return (p4d_t *) pgd; 1248 } 1249 1250 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 1251 { 1252 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1253 return (pud_t *) p4d_deref(*p4d) + pud_index(address); 1254 return (pud_t *) p4d; 1255 } 1256 1257 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1258 { 1259 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1260 return (pmd_t *) pud_deref(*pud) + pmd_index(address); 1261 return (pmd_t *) pud; 1262 } 1263 1264 static inline pte_t *pte_offset(pmd_t *pmd, unsigned long address) 1265 { 1266 return (pte_t *) pmd_deref(*pmd) + pte_index(address); 1267 } 1268 1269 #define pte_offset_kernel(pmd, address) pte_offset(pmd, address) 1270 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1271 #define pte_unmap(pte) do { } while (0) 1272 1273 static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1274 { 1275 return end <= current->mm->context.asce_limit; 1276 } 1277 #define gup_fast_permitted gup_fast_permitted 1278 1279 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1280 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1281 #define pte_page(x) pfn_to_page(pte_pfn(x)) 1282 1283 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1284 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1285 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1286 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1287 1288 static inline pmd_t pmd_wrprotect(pmd_t pmd) 1289 { 1290 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; 1291 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1292 return pmd; 1293 } 1294 1295 static inline pmd_t pmd_mkwrite(pmd_t pmd) 1296 { 1297 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; 1298 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1299 return pmd; 1300 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1301 return pmd; 1302 } 1303 1304 static inline pmd_t pmd_mkclean(pmd_t pmd) 1305 { 1306 if (pmd_large(pmd)) { 1307 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; 1308 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1309 } 1310 return pmd; 1311 } 1312 1313 static inline pmd_t pmd_mkdirty(pmd_t pmd) 1314 { 1315 if (pmd_large(pmd)) { 1316 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | 1317 _SEGMENT_ENTRY_SOFT_DIRTY; 1318 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1319 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1320 } 1321 return pmd; 1322 } 1323 1324 static inline pud_t pud_wrprotect(pud_t pud) 1325 { 1326 pud_val(pud) &= ~_REGION3_ENTRY_WRITE; 1327 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1328 return pud; 1329 } 1330 1331 static inline pud_t pud_mkwrite(pud_t pud) 1332 { 1333 pud_val(pud) |= _REGION3_ENTRY_WRITE; 1334 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY)) 1335 return pud; 1336 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1337 return pud; 1338 } 1339 1340 static inline pud_t pud_mkclean(pud_t pud) 1341 { 1342 if (pud_large(pud)) { 1343 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY; 1344 pud_val(pud) |= _REGION_ENTRY_PROTECT; 1345 } 1346 return pud; 1347 } 1348 1349 static inline pud_t pud_mkdirty(pud_t pud) 1350 { 1351 if (pud_large(pud)) { 1352 pud_val(pud) |= _REGION3_ENTRY_DIRTY | 1353 _REGION3_ENTRY_SOFT_DIRTY; 1354 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1355 pud_val(pud) &= ~_REGION_ENTRY_PROTECT; 1356 } 1357 return pud; 1358 } 1359 1360 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1361 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1362 { 1363 /* 1364 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1365 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1366 */ 1367 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1368 return pgprot_val(SEGMENT_NONE); 1369 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1370 return pgprot_val(SEGMENT_RO); 1371 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1372 return pgprot_val(SEGMENT_RX); 1373 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1374 return pgprot_val(SEGMENT_RW); 1375 return pgprot_val(SEGMENT_RWX); 1376 } 1377 1378 static inline pmd_t pmd_mkyoung(pmd_t pmd) 1379 { 1380 if (pmd_large(pmd)) { 1381 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1382 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1383 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1384 } 1385 return pmd; 1386 } 1387 1388 static inline pmd_t pmd_mkold(pmd_t pmd) 1389 { 1390 if (pmd_large(pmd)) { 1391 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1392 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1393 } 1394 return pmd; 1395 } 1396 1397 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1398 { 1399 if (pmd_large(pmd)) { 1400 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | 1401 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | 1402 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY; 1403 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1404 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1405 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1406 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1407 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1408 return pmd; 1409 } 1410 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN; 1411 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1412 return pmd; 1413 } 1414 1415 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1416 { 1417 pmd_t __pmd; 1418 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1419 return __pmd; 1420 } 1421 1422 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1423 1424 static inline void __pmdp_csp(pmd_t *pmdp) 1425 { 1426 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1427 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1428 } 1429 1430 #define IDTE_GLOBAL 0 1431 #define IDTE_LOCAL 1 1432 1433 #define IDTE_PTOA 0x0800 1434 #define IDTE_NODAT 0x1000 1435 #define IDTE_GUEST_ASCE 0x2000 1436 1437 static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1438 unsigned long opt, unsigned long asce, 1439 int local) 1440 { 1441 unsigned long sto; 1442 1443 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t); 1444 if (__builtin_constant_p(opt) && opt == 0) { 1445 /* flush without guest asce */ 1446 asm volatile( 1447 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1448 : "+m" (*pmdp) 1449 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1450 [m4] "i" (local) 1451 : "cc" ); 1452 } else { 1453 /* flush with guest asce */ 1454 asm volatile( 1455 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1456 : "+m" (*pmdp) 1457 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1458 [r3] "a" (asce), [m4] "i" (local) 1459 : "cc" ); 1460 } 1461 } 1462 1463 static inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1464 unsigned long opt, unsigned long asce, 1465 int local) 1466 { 1467 unsigned long r3o; 1468 1469 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t); 1470 r3o |= _ASCE_TYPE_REGION3; 1471 if (__builtin_constant_p(opt) && opt == 0) { 1472 /* flush without guest asce */ 1473 asm volatile( 1474 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]" 1475 : "+m" (*pudp) 1476 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1477 [m4] "i" (local) 1478 : "cc"); 1479 } else { 1480 /* flush with guest asce */ 1481 asm volatile( 1482 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]" 1483 : "+m" (*pudp) 1484 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1485 [r3] "a" (asce), [m4] "i" (local) 1486 : "cc" ); 1487 } 1488 } 1489 1490 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1491 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1492 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1493 1494 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1495 1496 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1497 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1498 pgtable_t pgtable); 1499 1500 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1501 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1502 1503 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1504 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1505 unsigned long addr, pmd_t *pmdp, 1506 pmd_t entry, int dirty) 1507 { 1508 VM_BUG_ON(addr & ~HPAGE_MASK); 1509 1510 entry = pmd_mkyoung(entry); 1511 if (dirty) 1512 entry = pmd_mkdirty(entry); 1513 if (pmd_val(*pmdp) == pmd_val(entry)) 1514 return 0; 1515 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1516 return 1; 1517 } 1518 1519 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1520 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1521 unsigned long addr, pmd_t *pmdp) 1522 { 1523 pmd_t pmd = *pmdp; 1524 1525 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1526 return pmd_young(pmd); 1527 } 1528 1529 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1530 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1531 unsigned long addr, pmd_t *pmdp) 1532 { 1533 VM_BUG_ON(addr & ~HPAGE_MASK); 1534 return pmdp_test_and_clear_young(vma, addr, pmdp); 1535 } 1536 1537 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1538 pmd_t *pmdp, pmd_t entry) 1539 { 1540 if (!MACHINE_HAS_NX) 1541 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC; 1542 *pmdp = entry; 1543 } 1544 1545 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1546 { 1547 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1548 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1549 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1550 return pmd; 1551 } 1552 1553 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1554 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1555 unsigned long addr, pmd_t *pmdp) 1556 { 1557 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1558 } 1559 1560 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1561 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 1562 unsigned long addr, 1563 pmd_t *pmdp, int full) 1564 { 1565 if (full) { 1566 pmd_t pmd = *pmdp; 1567 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY); 1568 return pmd; 1569 } 1570 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1571 } 1572 1573 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1574 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1575 unsigned long addr, pmd_t *pmdp) 1576 { 1577 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1578 } 1579 1580 #define __HAVE_ARCH_PMDP_INVALIDATE 1581 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1582 unsigned long addr, pmd_t *pmdp) 1583 { 1584 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1585 1586 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1587 } 1588 1589 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1590 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1591 unsigned long addr, pmd_t *pmdp) 1592 { 1593 pmd_t pmd = *pmdp; 1594 1595 if (pmd_write(pmd)) 1596 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1597 } 1598 1599 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1600 unsigned long address, 1601 pmd_t *pmdp) 1602 { 1603 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1604 } 1605 #define pmdp_collapse_flush pmdp_collapse_flush 1606 1607 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1608 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1609 1610 static inline int pmd_trans_huge(pmd_t pmd) 1611 { 1612 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1613 } 1614 1615 #define has_transparent_hugepage has_transparent_hugepage 1616 static inline int has_transparent_hugepage(void) 1617 { 1618 return MACHINE_HAS_EDAT1 ? 1 : 0; 1619 } 1620 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1621 1622 /* 1623 * 64 bit swap entry format: 1624 * A page-table entry has some bits we have to treat in a special way. 1625 * Bits 52 and bit 55 have to be zero, otherwise a specification 1626 * exception will occur instead of a page translation exception. The 1627 * specification exception has the bad habit not to store necessary 1628 * information in the lowcore. 1629 * Bits 54 and 63 are used to indicate the page type. 1630 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1631 * This leaves the bits 0-51 and bits 56-62 to store type and offset. 1632 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 1633 * for the offset. 1634 * | offset |01100|type |00| 1635 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1636 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1637 */ 1638 1639 #define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1640 #define __SWP_OFFSET_SHIFT 12 1641 #define __SWP_TYPE_MASK ((1UL << 5) - 1) 1642 #define __SWP_TYPE_SHIFT 2 1643 1644 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1645 { 1646 pte_t pte; 1647 1648 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; 1649 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1650 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1651 return pte; 1652 } 1653 1654 static inline unsigned long __swp_type(swp_entry_t entry) 1655 { 1656 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1657 } 1658 1659 static inline unsigned long __swp_offset(swp_entry_t entry) 1660 { 1661 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1662 } 1663 1664 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1665 { 1666 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1667 } 1668 1669 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1670 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1671 1672 #define kern_addr_valid(addr) (1) 1673 1674 extern int vmem_add_mapping(unsigned long start, unsigned long size); 1675 extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1676 extern int s390_enable_sie(void); 1677 extern int s390_enable_skey(void); 1678 extern void s390_reset_cmma(struct mm_struct *mm); 1679 1680 /* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1681 #define HAVE_ARCH_UNMAPPED_AREA 1682 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1683 1684 /* 1685 * No page table caches to initialise 1686 */ 1687 static inline void pgtable_cache_init(void) { } 1688 static inline void check_pgt_cache(void) { } 1689 1690 #include <asm-generic/pgtable.h> 1691 1692 #endif /* _S390_PAGE_H */ 1693