xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision a99237af)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
25 
26 enum {
27 	PG_DIRECT_MAP_4K = 0,
28 	PG_DIRECT_MAP_1M,
29 	PG_DIRECT_MAP_2G,
30 	PG_DIRECT_MAP_MAX
31 };
32 
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34 
35 static inline void update_page_count(int level, long count)
36 {
37 	if (IS_ENABLED(CONFIG_PROC_FS))
38 		atomic_long_add(count, &direct_pages_count[level]);
39 }
40 
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
43 
44 /*
45  * The S390 doesn't have any external MMU info: the kernel page
46  * tables contain all the necessary information.
47  */
48 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50 
51 /*
52  * ZERO_PAGE is a global shared page that is always zero; used
53  * for zero-mapped memory areas etc..
54  */
55 
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
58 
59 #define ZERO_PAGE(vaddr) \
60 	(virt_to_page((void *)(empty_zero_page + \
61 	 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
63 
64 /* TODO: s390 cannot support io_remap_pfn_range... */
65 
66 #define FIRST_USER_ADDRESS  0UL
67 
68 #define pte_ERROR(e) \
69 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 	printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78 
79 /*
80  * The vmalloc and module area will always be on the topmost area of the
81  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83  * modules will reside. That makes sure that inter module branches always
84  * happen without trampolines and in addition the placement within a 2GB frame
85  * is branch prediction unit friendly.
86  */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 extern struct page *vmemmap;
90 
91 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
92 
93 extern unsigned long MODULES_VADDR;
94 extern unsigned long MODULES_END;
95 #define MODULES_VADDR	MODULES_VADDR
96 #define MODULES_END	MODULES_END
97 #define MODULES_LEN	(1UL << 31)
98 
99 static inline int is_module_addr(void *addr)
100 {
101 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 	if (addr < (void *)MODULES_VADDR)
103 		return 0;
104 	if (addr > (void *)MODULES_END)
105 		return 0;
106 	return 1;
107 }
108 
109 /*
110  * A 64 bit pagetable entry of S390 has following format:
111  * |			 PFRA			      |0IPC|  OS  |
112  * 0000000000111111111122222222223333333333444444444455555555556666
113  * 0123456789012345678901234567890123456789012345678901234567890123
114  *
115  * I Page-Invalid Bit:    Page is not available for address-translation
116  * P Page-Protection Bit: Store access not possible for page
117  * C Change-bit override: HW is not required to set change bit
118  *
119  * A 64 bit segmenttable entry of S390 has following format:
120  * |        P-table origin                              |      TT
121  * 0000000000111111111122222222223333333333444444444455555555556666
122  * 0123456789012345678901234567890123456789012345678901234567890123
123  *
124  * I Segment-Invalid Bit:    Segment is not available for address-translation
125  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
126  * P Page-Protection Bit: Store access not possible for page
127  * TT Type 00
128  *
129  * A 64 bit region table entry of S390 has following format:
130  * |        S-table origin                             |   TF  TTTL
131  * 0000000000111111111122222222223333333333444444444455555555556666
132  * 0123456789012345678901234567890123456789012345678901234567890123
133  *
134  * I Segment-Invalid Bit:    Segment is not available for address-translation
135  * TT Type 01
136  * TF
137  * TL Table length
138  *
139  * The 64 bit regiontable origin of S390 has following format:
140  * |      region table origon                          |       DTTL
141  * 0000000000111111111122222222223333333333444444444455555555556666
142  * 0123456789012345678901234567890123456789012345678901234567890123
143  *
144  * X Space-Switch event:
145  * G Segment-Invalid Bit:
146  * P Private-Space Bit:
147  * S Storage-Alteration:
148  * R Real space
149  * TL Table-Length:
150  *
151  * A storage key has the following format:
152  * | ACC |F|R|C|0|
153  *  0   3 4 5 6 7
154  * ACC: access key
155  * F  : fetch protection bit
156  * R  : referenced bit
157  * C  : changed bit
158  */
159 
160 /* Hardware bits in the page table entry */
161 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
162 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
163 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
164 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
165 
166 /* Software bits in the page table entry */
167 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
168 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
169 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
170 #define _PAGE_READ	0x010		/* SW pte read bit */
171 #define _PAGE_WRITE	0x020		/* SW pte write bit */
172 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
173 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
174 
175 #ifdef CONFIG_MEM_SOFT_DIRTY
176 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
177 #else
178 #define _PAGE_SOFT_DIRTY 0x000
179 #endif
180 
181 /* Set of bits not changed in pte_modify */
182 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
183 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
184 
185 /*
186  * handle_pte_fault uses pte_present and pte_none to find out the pte type
187  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
188  * distinguish present from not-present ptes. It is changed only with the page
189  * table lock held.
190  *
191  * The following table gives the different possible bit combinations for
192  * the pte hardware and software bits in the last 12 bits of a pte
193  * (. unassigned bit, x don't care, t swap type):
194  *
195  *				842100000000
196  *				000084210000
197  *				000000008421
198  *				.IR.uswrdy.p
199  * empty			.10.00000000
200  * swap				.11..ttttt.0
201  * prot-none, clean, old	.11.xx0000.1
202  * prot-none, clean, young	.11.xx0001.1
203  * prot-none, dirty, old	.11.xx0010.1
204  * prot-none, dirty, young	.11.xx0011.1
205  * read-only, clean, old	.11.xx0100.1
206  * read-only, clean, young	.01.xx0101.1
207  * read-only, dirty, old	.11.xx0110.1
208  * read-only, dirty, young	.01.xx0111.1
209  * read-write, clean, old	.11.xx1100.1
210  * read-write, clean, young	.01.xx1101.1
211  * read-write, dirty, old	.10.xx1110.1
212  * read-write, dirty, young	.00.xx1111.1
213  * HW-bits: R read-only, I invalid
214  * SW-bits: p present, y young, d dirty, r read, w write, s special,
215  *	    u unused, l large
216  *
217  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
218  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
219  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
220  */
221 
222 /* Bits in the segment/region table address-space-control-element */
223 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
224 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
225 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
226 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
227 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
228 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
229 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
230 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
231 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
232 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
233 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
234 
235 /* Bits in the region table entry */
236 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
237 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
238 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
239 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
240 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
241 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
242 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
243 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
244 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
245 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
246 
247 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
248 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
249 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
250 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
251 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
252 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
253 
254 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
255 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
256 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
257 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
258 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
259 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
260 
261 #ifdef CONFIG_MEM_SOFT_DIRTY
262 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
263 #else
264 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
265 #endif
266 
267 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
268 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
269 
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
272 #define _SEGMENT_ENTRY_BITS_LARGE		0xfffffffffff0ff33UL
273 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
275 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
276 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
277 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
278 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
279 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
280 
281 #define _SEGMENT_ENTRY		(0)
282 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
283 
284 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
285 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
286 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
287 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
288 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
289 
290 #ifdef CONFIG_MEM_SOFT_DIRTY
291 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
292 #else
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
294 #endif
295 
296 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
297 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
298 
299 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
300 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
301 
302 #define _REGION1_SHIFT	53
303 #define _REGION2_SHIFT	42
304 #define _REGION3_SHIFT	31
305 #define _SEGMENT_SHIFT	20
306 
307 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
308 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
309 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
310 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
311 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
312 
313 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
314 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
315 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
316 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
317 
318 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
319 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
320 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
321 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
322 
323 #define PMD_SHIFT	_SEGMENT_SHIFT
324 #define PUD_SHIFT	_REGION3_SHIFT
325 #define P4D_SHIFT	_REGION2_SHIFT
326 #define PGDIR_SHIFT	_REGION1_SHIFT
327 
328 #define PMD_SIZE	_SEGMENT_SIZE
329 #define PUD_SIZE	_REGION3_SIZE
330 #define P4D_SIZE	_REGION2_SIZE
331 #define PGDIR_SIZE	_REGION1_SIZE
332 
333 #define PMD_MASK	_SEGMENT_MASK
334 #define PUD_MASK	_REGION3_MASK
335 #define P4D_MASK	_REGION2_MASK
336 #define PGDIR_MASK	_REGION1_MASK
337 
338 #define PTRS_PER_PTE	_PAGE_ENTRIES
339 #define PTRS_PER_PMD	_CRST_ENTRIES
340 #define PTRS_PER_PUD	_CRST_ENTRIES
341 #define PTRS_PER_P4D	_CRST_ENTRIES
342 #define PTRS_PER_PGD	_CRST_ENTRIES
343 
344 /*
345  * Segment table and region3 table entry encoding
346  * (R = read-only, I = invalid, y = young bit):
347  *				dy..R...I...wr
348  * prot-none, clean, old	00..1...1...00
349  * prot-none, clean, young	01..1...1...00
350  * prot-none, dirty, old	10..1...1...00
351  * prot-none, dirty, young	11..1...1...00
352  * read-only, clean, old	00..1...1...01
353  * read-only, clean, young	01..1...0...01
354  * read-only, dirty, old	10..1...1...01
355  * read-only, dirty, young	11..1...0...01
356  * read-write, clean, old	00..1...1...11
357  * read-write, clean, young	01..1...0...11
358  * read-write, dirty, old	10..0...1...11
359  * read-write, dirty, young	11..0...0...11
360  * The segment table origin is used to distinguish empty (origin==0) from
361  * read-write, old segment table entries (origin!=0)
362  * HW-bits: R read-only, I invalid
363  * SW-bits: y young, d dirty, r read, w write
364  */
365 
366 /* Page status table bits for virtualization */
367 #define PGSTE_ACC_BITS	0xf000000000000000UL
368 #define PGSTE_FP_BIT	0x0800000000000000UL
369 #define PGSTE_PCL_BIT	0x0080000000000000UL
370 #define PGSTE_HR_BIT	0x0040000000000000UL
371 #define PGSTE_HC_BIT	0x0020000000000000UL
372 #define PGSTE_GR_BIT	0x0004000000000000UL
373 #define PGSTE_GC_BIT	0x0002000000000000UL
374 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
375 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
376 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
377 
378 /* Guest Page State used for virtualization */
379 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
380 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
381 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
382 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
383 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
384 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
385 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
386 
387 /*
388  * A user page table pointer has the space-switch-event bit, the
389  * private-space-control bit and the storage-alteration-event-control
390  * bit set. A kernel page table pointer doesn't need them.
391  */
392 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
393 				 _ASCE_ALT_EVENT)
394 
395 /*
396  * Page protection definitions.
397  */
398 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
399 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
400 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 				 _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
404 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 				 _PAGE_INVALID | _PAGE_PROTECT)
407 
408 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
410 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
413 				 _PAGE_PROTECT | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 				  _PAGE_YOUNG |	_PAGE_DIRTY)
416 
417 /*
418  * On s390 the page table entry has an invalid bit and a read-only bit.
419  * Read permission implies execute permission and write permission
420  * implies read permission.
421  */
422          /*xwr*/
423 #define __P000	PAGE_NONE
424 #define __P001	PAGE_RO
425 #define __P010	PAGE_RO
426 #define __P011	PAGE_RO
427 #define __P100	PAGE_RX
428 #define __P101	PAGE_RX
429 #define __P110	PAGE_RX
430 #define __P111	PAGE_RX
431 
432 #define __S000	PAGE_NONE
433 #define __S001	PAGE_RO
434 #define __S010	PAGE_RW
435 #define __S011	PAGE_RW
436 #define __S100	PAGE_RX
437 #define __S101	PAGE_RX
438 #define __S110	PAGE_RWX
439 #define __S111	PAGE_RWX
440 
441 /*
442  * Segment entry (large page) protection definitions.
443  */
444 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
445 				 _SEGMENT_ENTRY_PROTECT)
446 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
447 				 _SEGMENT_ENTRY_READ | \
448 				 _SEGMENT_ENTRY_NOEXEC)
449 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
450 				 _SEGMENT_ENTRY_READ)
451 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
452 				 _SEGMENT_ENTRY_WRITE | \
453 				 _SEGMENT_ENTRY_NOEXEC)
454 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
455 				 _SEGMENT_ENTRY_WRITE)
456 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
457 				 _SEGMENT_ENTRY_LARGE |	\
458 				 _SEGMENT_ENTRY_READ |	\
459 				 _SEGMENT_ENTRY_WRITE | \
460 				 _SEGMENT_ENTRY_YOUNG | \
461 				 _SEGMENT_ENTRY_DIRTY | \
462 				 _SEGMENT_ENTRY_NOEXEC)
463 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
464 				 _SEGMENT_ENTRY_LARGE |	\
465 				 _SEGMENT_ENTRY_READ |	\
466 				 _SEGMENT_ENTRY_YOUNG |	\
467 				 _SEGMENT_ENTRY_PROTECT | \
468 				 _SEGMENT_ENTRY_NOEXEC)
469 
470 /*
471  * Region3 entry (large page) protection definitions.
472  */
473 
474 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
475 				 _REGION3_ENTRY_LARGE |	 \
476 				 _REGION3_ENTRY_READ |	 \
477 				 _REGION3_ENTRY_WRITE |	 \
478 				 _REGION3_ENTRY_YOUNG |	 \
479 				 _REGION3_ENTRY_DIRTY | \
480 				 _REGION_ENTRY_NOEXEC)
481 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
482 				   _REGION3_ENTRY_LARGE |  \
483 				   _REGION3_ENTRY_READ |   \
484 				   _REGION3_ENTRY_YOUNG |  \
485 				   _REGION_ENTRY_PROTECT | \
486 				   _REGION_ENTRY_NOEXEC)
487 
488 static inline int mm_has_pgste(struct mm_struct *mm)
489 {
490 #ifdef CONFIG_PGSTE
491 	if (unlikely(mm->context.has_pgste))
492 		return 1;
493 #endif
494 	return 0;
495 }
496 
497 static inline int mm_alloc_pgste(struct mm_struct *mm)
498 {
499 #ifdef CONFIG_PGSTE
500 	if (unlikely(mm->context.alloc_pgste))
501 		return 1;
502 #endif
503 	return 0;
504 }
505 
506 /*
507  * In the case that a guest uses storage keys
508  * faults should no longer be backed by zero pages
509  */
510 #define mm_forbids_zeropage mm_has_pgste
511 static inline int mm_uses_skeys(struct mm_struct *mm)
512 {
513 #ifdef CONFIG_PGSTE
514 	if (mm->context.uses_skeys)
515 		return 1;
516 #endif
517 	return 0;
518 }
519 
520 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
521 {
522 	register unsigned long reg2 asm("2") = old;
523 	register unsigned long reg3 asm("3") = new;
524 	unsigned long address = (unsigned long)ptr | 1;
525 
526 	asm volatile(
527 		"	csp	%0,%3"
528 		: "+d" (reg2), "+m" (*ptr)
529 		: "d" (reg3), "d" (address)
530 		: "cc");
531 }
532 
533 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
534 {
535 	register unsigned long reg2 asm("2") = old;
536 	register unsigned long reg3 asm("3") = new;
537 	unsigned long address = (unsigned long)ptr | 1;
538 
539 	asm volatile(
540 		"	.insn	rre,0xb98a0000,%0,%3"
541 		: "+d" (reg2), "+m" (*ptr)
542 		: "d" (reg3), "d" (address)
543 		: "cc");
544 }
545 
546 #define CRDTE_DTT_PAGE		0x00UL
547 #define CRDTE_DTT_SEGMENT	0x10UL
548 #define CRDTE_DTT_REGION3	0x14UL
549 #define CRDTE_DTT_REGION2	0x18UL
550 #define CRDTE_DTT_REGION1	0x1cUL
551 
552 static inline void crdte(unsigned long old, unsigned long new,
553 			 unsigned long table, unsigned long dtt,
554 			 unsigned long address, unsigned long asce)
555 {
556 	register unsigned long reg2 asm("2") = old;
557 	register unsigned long reg3 asm("3") = new;
558 	register unsigned long reg4 asm("4") = table | dtt;
559 	register unsigned long reg5 asm("5") = address;
560 
561 	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
562 		     : "+d" (reg2)
563 		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
564 		     : "memory", "cc");
565 }
566 
567 /*
568  * pgd/p4d/pud/pmd/pte query functions
569  */
570 static inline int pgd_folded(pgd_t pgd)
571 {
572 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
573 }
574 
575 static inline int pgd_present(pgd_t pgd)
576 {
577 	if (pgd_folded(pgd))
578 		return 1;
579 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
580 }
581 
582 static inline int pgd_none(pgd_t pgd)
583 {
584 	if (pgd_folded(pgd))
585 		return 0;
586 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
587 }
588 
589 static inline int pgd_bad(pgd_t pgd)
590 {
591 	/*
592 	 * With dynamic page table levels the pgd can be a region table
593 	 * entry or a segment table entry. Check for the bit that are
594 	 * invalid for either table entry.
595 	 */
596 	unsigned long mask =
597 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
598 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
599 	return (pgd_val(pgd) & mask) != 0;
600 }
601 
602 static inline int p4d_folded(p4d_t p4d)
603 {
604 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
605 }
606 
607 static inline int p4d_present(p4d_t p4d)
608 {
609 	if (p4d_folded(p4d))
610 		return 1;
611 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
612 }
613 
614 static inline int p4d_none(p4d_t p4d)
615 {
616 	if (p4d_folded(p4d))
617 		return 0;
618 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
619 }
620 
621 static inline unsigned long p4d_pfn(p4d_t p4d)
622 {
623 	unsigned long origin_mask;
624 
625 	origin_mask = _REGION_ENTRY_ORIGIN;
626 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
627 }
628 
629 static inline int pud_folded(pud_t pud)
630 {
631 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
632 }
633 
634 static inline int pud_present(pud_t pud)
635 {
636 	if (pud_folded(pud))
637 		return 1;
638 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
639 }
640 
641 static inline int pud_none(pud_t pud)
642 {
643 	if (pud_folded(pud))
644 		return 0;
645 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
646 }
647 
648 static inline int pud_large(pud_t pud)
649 {
650 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
651 		return 0;
652 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
653 }
654 
655 static inline unsigned long pud_pfn(pud_t pud)
656 {
657 	unsigned long origin_mask;
658 
659 	origin_mask = _REGION_ENTRY_ORIGIN;
660 	if (pud_large(pud))
661 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
662 	return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
663 }
664 
665 static inline int pmd_large(pmd_t pmd)
666 {
667 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
668 }
669 
670 static inline int pmd_bad(pmd_t pmd)
671 {
672 	if (pmd_large(pmd))
673 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
674 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
675 }
676 
677 static inline int pud_bad(pud_t pud)
678 {
679 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
680 		return pmd_bad(__pmd(pud_val(pud)));
681 	if (pud_large(pud))
682 		return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
683 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
684 }
685 
686 static inline int p4d_bad(p4d_t p4d)
687 {
688 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
689 		return pud_bad(__pud(p4d_val(p4d)));
690 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
691 }
692 
693 static inline int pmd_present(pmd_t pmd)
694 {
695 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
696 }
697 
698 static inline int pmd_none(pmd_t pmd)
699 {
700 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
701 }
702 
703 static inline unsigned long pmd_pfn(pmd_t pmd)
704 {
705 	unsigned long origin_mask;
706 
707 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
708 	if (pmd_large(pmd))
709 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
710 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
711 }
712 
713 #define pmd_write pmd_write
714 static inline int pmd_write(pmd_t pmd)
715 {
716 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
717 }
718 
719 static inline int pmd_dirty(pmd_t pmd)
720 {
721 	int dirty = 1;
722 	if (pmd_large(pmd))
723 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
724 	return dirty;
725 }
726 
727 static inline int pmd_young(pmd_t pmd)
728 {
729 	int young = 1;
730 	if (pmd_large(pmd))
731 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
732 	return young;
733 }
734 
735 static inline int pte_present(pte_t pte)
736 {
737 	/* Bit pattern: (pte & 0x001) == 0x001 */
738 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
739 }
740 
741 static inline int pte_none(pte_t pte)
742 {
743 	/* Bit pattern: pte == 0x400 */
744 	return pte_val(pte) == _PAGE_INVALID;
745 }
746 
747 static inline int pte_swap(pte_t pte)
748 {
749 	/* Bit pattern: (pte & 0x201) == 0x200 */
750 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
751 		== _PAGE_PROTECT;
752 }
753 
754 static inline int pte_special(pte_t pte)
755 {
756 	return (pte_val(pte) & _PAGE_SPECIAL);
757 }
758 
759 #define __HAVE_ARCH_PTE_SAME
760 static inline int pte_same(pte_t a, pte_t b)
761 {
762 	return pte_val(a) == pte_val(b);
763 }
764 
765 #ifdef CONFIG_NUMA_BALANCING
766 static inline int pte_protnone(pte_t pte)
767 {
768 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
769 }
770 
771 static inline int pmd_protnone(pmd_t pmd)
772 {
773 	/* pmd_large(pmd) implies pmd_present(pmd) */
774 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
775 }
776 #endif
777 
778 static inline int pte_soft_dirty(pte_t pte)
779 {
780 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
781 }
782 #define pte_swp_soft_dirty pte_soft_dirty
783 
784 static inline pte_t pte_mksoft_dirty(pte_t pte)
785 {
786 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
787 	return pte;
788 }
789 #define pte_swp_mksoft_dirty pte_mksoft_dirty
790 
791 static inline pte_t pte_clear_soft_dirty(pte_t pte)
792 {
793 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
794 	return pte;
795 }
796 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
797 
798 static inline int pmd_soft_dirty(pmd_t pmd)
799 {
800 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
801 }
802 
803 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
804 {
805 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
806 	return pmd;
807 }
808 
809 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
810 {
811 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
812 	return pmd;
813 }
814 
815 /*
816  * query functions pte_write/pte_dirty/pte_young only work if
817  * pte_present() is true. Undefined behaviour if not..
818  */
819 static inline int pte_write(pte_t pte)
820 {
821 	return (pte_val(pte) & _PAGE_WRITE) != 0;
822 }
823 
824 static inline int pte_dirty(pte_t pte)
825 {
826 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
827 }
828 
829 static inline int pte_young(pte_t pte)
830 {
831 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
832 }
833 
834 #define __HAVE_ARCH_PTE_UNUSED
835 static inline int pte_unused(pte_t pte)
836 {
837 	return pte_val(pte) & _PAGE_UNUSED;
838 }
839 
840 /*
841  * pgd/pmd/pte modification functions
842  */
843 
844 static inline void pgd_clear(pgd_t *pgd)
845 {
846 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
847 		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
848 }
849 
850 static inline void p4d_clear(p4d_t *p4d)
851 {
852 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
853 		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
854 }
855 
856 static inline void pud_clear(pud_t *pud)
857 {
858 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
859 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
860 }
861 
862 static inline void pmd_clear(pmd_t *pmdp)
863 {
864 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
865 }
866 
867 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
868 {
869 	pte_val(*ptep) = _PAGE_INVALID;
870 }
871 
872 /*
873  * The following pte modification functions only work if
874  * pte_present() is true. Undefined behaviour if not..
875  */
876 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
877 {
878 	pte_val(pte) &= _PAGE_CHG_MASK;
879 	pte_val(pte) |= pgprot_val(newprot);
880 	/*
881 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
882 	 * has the invalid bit set, clear it again for readable, young pages
883 	 */
884 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
885 		pte_val(pte) &= ~_PAGE_INVALID;
886 	/*
887 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
888 	 * protection bit set, clear it again for writable, dirty pages
889 	 */
890 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
891 		pte_val(pte) &= ~_PAGE_PROTECT;
892 	return pte;
893 }
894 
895 static inline pte_t pte_wrprotect(pte_t pte)
896 {
897 	pte_val(pte) &= ~_PAGE_WRITE;
898 	pte_val(pte) |= _PAGE_PROTECT;
899 	return pte;
900 }
901 
902 static inline pte_t pte_mkwrite(pte_t pte)
903 {
904 	pte_val(pte) |= _PAGE_WRITE;
905 	if (pte_val(pte) & _PAGE_DIRTY)
906 		pte_val(pte) &= ~_PAGE_PROTECT;
907 	return pte;
908 }
909 
910 static inline pte_t pte_mkclean(pte_t pte)
911 {
912 	pte_val(pte) &= ~_PAGE_DIRTY;
913 	pte_val(pte) |= _PAGE_PROTECT;
914 	return pte;
915 }
916 
917 static inline pte_t pte_mkdirty(pte_t pte)
918 {
919 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
920 	if (pte_val(pte) & _PAGE_WRITE)
921 		pte_val(pte) &= ~_PAGE_PROTECT;
922 	return pte;
923 }
924 
925 static inline pte_t pte_mkold(pte_t pte)
926 {
927 	pte_val(pte) &= ~_PAGE_YOUNG;
928 	pte_val(pte) |= _PAGE_INVALID;
929 	return pte;
930 }
931 
932 static inline pte_t pte_mkyoung(pte_t pte)
933 {
934 	pte_val(pte) |= _PAGE_YOUNG;
935 	if (pte_val(pte) & _PAGE_READ)
936 		pte_val(pte) &= ~_PAGE_INVALID;
937 	return pte;
938 }
939 
940 static inline pte_t pte_mkspecial(pte_t pte)
941 {
942 	pte_val(pte) |= _PAGE_SPECIAL;
943 	return pte;
944 }
945 
946 #ifdef CONFIG_HUGETLB_PAGE
947 static inline pte_t pte_mkhuge(pte_t pte)
948 {
949 	pte_val(pte) |= _PAGE_LARGE;
950 	return pte;
951 }
952 #endif
953 
954 #define IPTE_GLOBAL	0
955 #define	IPTE_LOCAL	1
956 
957 #define IPTE_NODAT	0x400
958 #define IPTE_GUEST_ASCE	0x800
959 
960 static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
961 			       unsigned long opt, unsigned long asce,
962 			       int local)
963 {
964 	unsigned long pto = (unsigned long) ptep;
965 
966 	if (__builtin_constant_p(opt) && opt == 0) {
967 		/* Invalidation + TLB flush for the pte */
968 		asm volatile(
969 			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
970 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
971 			  [m4] "i" (local));
972 		return;
973 	}
974 
975 	/* Invalidate ptes with options + TLB flush of the ptes */
976 	opt = opt | (asce & _ASCE_ORIGIN);
977 	asm volatile(
978 		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
979 		: [r2] "+a" (address), [r3] "+a" (opt)
980 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
981 }
982 
983 static inline void __ptep_ipte_range(unsigned long address, int nr,
984 				     pte_t *ptep, int local)
985 {
986 	unsigned long pto = (unsigned long) ptep;
987 
988 	/* Invalidate a range of ptes + TLB flush of the ptes */
989 	do {
990 		asm volatile(
991 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
992 			: [r2] "+a" (address), [r3] "+a" (nr)
993 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
994 	} while (nr != 255);
995 }
996 
997 /*
998  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
999  * both clear the TLB for the unmapped pte. The reason is that
1000  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1001  * to modify an active pte. The sequence is
1002  *   1) ptep_get_and_clear
1003  *   2) set_pte_at
1004  *   3) flush_tlb_range
1005  * On s390 the tlb needs to get flushed with the modification of the pte
1006  * if the pte is active. The only way how this can be implemented is to
1007  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1008  * is a nop.
1009  */
1010 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1011 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1012 
1013 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1014 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1015 					    unsigned long addr, pte_t *ptep)
1016 {
1017 	pte_t pte = *ptep;
1018 
1019 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1020 	return pte_young(pte);
1021 }
1022 
1023 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1024 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1025 					 unsigned long address, pte_t *ptep)
1026 {
1027 	return ptep_test_and_clear_young(vma, address, ptep);
1028 }
1029 
1030 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1031 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1032 				       unsigned long addr, pte_t *ptep)
1033 {
1034 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1035 }
1036 
1037 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1038 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1039 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1040 
1041 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1042 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1043 				     unsigned long addr, pte_t *ptep)
1044 {
1045 	return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1046 }
1047 
1048 /*
1049  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1050  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1051  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1052  * cannot be accessed while the batched unmap is running. In this case
1053  * full==1 and a simple pte_clear is enough. See tlb.h.
1054  */
1055 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1056 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1057 					    unsigned long addr,
1058 					    pte_t *ptep, int full)
1059 {
1060 	if (full) {
1061 		pte_t pte = *ptep;
1062 		*ptep = __pte(_PAGE_INVALID);
1063 		return pte;
1064 	}
1065 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1066 }
1067 
1068 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1069 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1070 				      unsigned long addr, pte_t *ptep)
1071 {
1072 	pte_t pte = *ptep;
1073 
1074 	if (pte_write(pte))
1075 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1076 }
1077 
1078 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1079 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1080 					unsigned long addr, pte_t *ptep,
1081 					pte_t entry, int dirty)
1082 {
1083 	if (pte_same(*ptep, entry))
1084 		return 0;
1085 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1086 	return 1;
1087 }
1088 
1089 /*
1090  * Additional functions to handle KVM guest page tables
1091  */
1092 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1093 		     pte_t *ptep, pte_t entry);
1094 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1095 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1096 		 pte_t *ptep, unsigned long bits);
1097 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1098 		    pte_t *ptep, int prot, unsigned long bit);
1099 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1100 		     pte_t *ptep , int reset);
1101 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1102 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1103 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1104 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1105 
1106 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1107 			    pte_t *ptep);
1108 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1109 			  unsigned char key, bool nq);
1110 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1111 			       unsigned char key, unsigned char *oldkey,
1112 			       bool nq, bool mr, bool mc);
1113 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1114 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1115 			  unsigned char *key);
1116 
1117 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1118 				unsigned long bits, unsigned long value);
1119 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1120 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1121 			unsigned long *oldpte, unsigned long *oldpgste);
1122 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1123 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1124 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1125 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1126 
1127 /*
1128  * Certain architectures need to do special things when PTEs
1129  * within a page table are directly modified.  Thus, the following
1130  * hook is made available.
1131  */
1132 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1133 			      pte_t *ptep, pte_t entry)
1134 {
1135 	if (!MACHINE_HAS_NX)
1136 		pte_val(entry) &= ~_PAGE_NOEXEC;
1137 	if (pte_present(entry))
1138 		pte_val(entry) &= ~_PAGE_UNUSED;
1139 	if (mm_has_pgste(mm))
1140 		ptep_set_pte_at(mm, addr, ptep, entry);
1141 	else
1142 		*ptep = entry;
1143 }
1144 
1145 /*
1146  * Conversion functions: convert a page and protection to a page entry,
1147  * and a page entry and page directory to the page they refer to.
1148  */
1149 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1150 {
1151 	pte_t __pte;
1152 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1153 	return pte_mkyoung(__pte);
1154 }
1155 
1156 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1157 {
1158 	unsigned long physpage = page_to_phys(page);
1159 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1160 
1161 	if (pte_write(__pte) && PageDirty(page))
1162 		__pte = pte_mkdirty(__pte);
1163 	return __pte;
1164 }
1165 
1166 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1167 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1168 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1169 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1170 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1171 
1172 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1173 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1174 
1175 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1176 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1177 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1178 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1179 
1180 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1181 {
1182 	p4d_t *p4d = (p4d_t *) pgd;
1183 
1184 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1185 		p4d = (p4d_t *) pgd_deref(*pgd);
1186 	return p4d + p4d_index(address);
1187 }
1188 
1189 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1190 {
1191 	pud_t *pud = (pud_t *) p4d;
1192 
1193 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1194 		pud = (pud_t *) p4d_deref(*p4d);
1195 	return pud + pud_index(address);
1196 }
1197 
1198 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1199 {
1200 	pmd_t *pmd = (pmd_t *) pud;
1201 
1202 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1203 		pmd = (pmd_t *) pud_deref(*pud);
1204 	return pmd + pmd_index(address);
1205 }
1206 
1207 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1208 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1209 #define pte_page(x) pfn_to_page(pte_pfn(x))
1210 
1211 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1212 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1213 #define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1214 
1215 /* Find an entry in the lowest level page table.. */
1216 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1217 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1218 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1219 #define pte_unmap(pte) do { } while (0)
1220 
1221 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1222 {
1223 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1224 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1225 	return pmd;
1226 }
1227 
1228 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1229 {
1230 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1231 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1232 		return pmd;
1233 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1234 	return pmd;
1235 }
1236 
1237 static inline pmd_t pmd_mkclean(pmd_t pmd)
1238 {
1239 	if (pmd_large(pmd)) {
1240 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1241 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1242 	}
1243 	return pmd;
1244 }
1245 
1246 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1247 {
1248 	if (pmd_large(pmd)) {
1249 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1250 				_SEGMENT_ENTRY_SOFT_DIRTY;
1251 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1252 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1253 	}
1254 	return pmd;
1255 }
1256 
1257 static inline pud_t pud_wrprotect(pud_t pud)
1258 {
1259 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1260 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1261 	return pud;
1262 }
1263 
1264 static inline pud_t pud_mkwrite(pud_t pud)
1265 {
1266 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1267 	if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1268 		return pud;
1269 	pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1270 	return pud;
1271 }
1272 
1273 static inline pud_t pud_mkclean(pud_t pud)
1274 {
1275 	if (pud_large(pud)) {
1276 		pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1277 		pud_val(pud) |= _REGION_ENTRY_PROTECT;
1278 	}
1279 	return pud;
1280 }
1281 
1282 static inline pud_t pud_mkdirty(pud_t pud)
1283 {
1284 	if (pud_large(pud)) {
1285 		pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1286 				_REGION3_ENTRY_SOFT_DIRTY;
1287 		if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1288 			pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1289 	}
1290 	return pud;
1291 }
1292 
1293 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1294 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1295 {
1296 	/*
1297 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1298 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1299 	 */
1300 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1301 		return pgprot_val(SEGMENT_NONE);
1302 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1303 		return pgprot_val(SEGMENT_RO);
1304 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1305 		return pgprot_val(SEGMENT_RX);
1306 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1307 		return pgprot_val(SEGMENT_RW);
1308 	return pgprot_val(SEGMENT_RWX);
1309 }
1310 
1311 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1312 {
1313 	if (pmd_large(pmd)) {
1314 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1315 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1316 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1317 	}
1318 	return pmd;
1319 }
1320 
1321 static inline pmd_t pmd_mkold(pmd_t pmd)
1322 {
1323 	if (pmd_large(pmd)) {
1324 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1325 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1326 	}
1327 	return pmd;
1328 }
1329 
1330 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1331 {
1332 	if (pmd_large(pmd)) {
1333 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1334 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1335 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1336 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1337 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1338 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1339 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1340 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1341 		return pmd;
1342 	}
1343 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1344 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1345 	return pmd;
1346 }
1347 
1348 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1349 {
1350 	pmd_t __pmd;
1351 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1352 	return __pmd;
1353 }
1354 
1355 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1356 
1357 static inline void __pmdp_csp(pmd_t *pmdp)
1358 {
1359 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1360 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1361 }
1362 
1363 #define IDTE_GLOBAL	0
1364 #define IDTE_LOCAL	1
1365 
1366 #define IDTE_PTOA	0x0800
1367 #define IDTE_NODAT	0x1000
1368 #define IDTE_GUEST_ASCE	0x2000
1369 
1370 static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1371 			       unsigned long opt, unsigned long asce,
1372 			       int local)
1373 {
1374 	unsigned long sto;
1375 
1376 	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1377 	if (__builtin_constant_p(opt) && opt == 0) {
1378 		/* flush without guest asce */
1379 		asm volatile(
1380 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1381 			: "+m" (*pmdp)
1382 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1383 			  [m4] "i" (local)
1384 			: "cc" );
1385 	} else {
1386 		/* flush with guest asce */
1387 		asm volatile(
1388 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1389 			: "+m" (*pmdp)
1390 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1391 			  [r3] "a" (asce), [m4] "i" (local)
1392 			: "cc" );
1393 	}
1394 }
1395 
1396 static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1397 			       unsigned long opt, unsigned long asce,
1398 			       int local)
1399 {
1400 	unsigned long r3o;
1401 
1402 	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1403 	r3o |= _ASCE_TYPE_REGION3;
1404 	if (__builtin_constant_p(opt) && opt == 0) {
1405 		/* flush without guest asce */
1406 		asm volatile(
1407 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1408 			: "+m" (*pudp)
1409 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1410 			  [m4] "i" (local)
1411 			: "cc");
1412 	} else {
1413 		/* flush with guest asce */
1414 		asm volatile(
1415 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1416 			: "+m" (*pudp)
1417 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1418 			  [r3] "a" (asce), [m4] "i" (local)
1419 			: "cc" );
1420 	}
1421 }
1422 
1423 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1424 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1425 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1426 
1427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1428 
1429 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1430 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1431 				pgtable_t pgtable);
1432 
1433 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1434 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1435 
1436 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1437 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1438 					unsigned long addr, pmd_t *pmdp,
1439 					pmd_t entry, int dirty)
1440 {
1441 	VM_BUG_ON(addr & ~HPAGE_MASK);
1442 
1443 	entry = pmd_mkyoung(entry);
1444 	if (dirty)
1445 		entry = pmd_mkdirty(entry);
1446 	if (pmd_val(*pmdp) == pmd_val(entry))
1447 		return 0;
1448 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1449 	return 1;
1450 }
1451 
1452 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1453 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1454 					    unsigned long addr, pmd_t *pmdp)
1455 {
1456 	pmd_t pmd = *pmdp;
1457 
1458 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1459 	return pmd_young(pmd);
1460 }
1461 
1462 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1463 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1464 					 unsigned long addr, pmd_t *pmdp)
1465 {
1466 	VM_BUG_ON(addr & ~HPAGE_MASK);
1467 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1468 }
1469 
1470 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1471 			      pmd_t *pmdp, pmd_t entry)
1472 {
1473 	if (!MACHINE_HAS_NX)
1474 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1475 	*pmdp = entry;
1476 }
1477 
1478 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1479 {
1480 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1481 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1482 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1483 	return pmd;
1484 }
1485 
1486 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1487 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1488 					    unsigned long addr, pmd_t *pmdp)
1489 {
1490 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1491 }
1492 
1493 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1494 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1495 						 unsigned long addr,
1496 						 pmd_t *pmdp, int full)
1497 {
1498 	if (full) {
1499 		pmd_t pmd = *pmdp;
1500 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1501 		return pmd;
1502 	}
1503 	return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1504 }
1505 
1506 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1507 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1508 					  unsigned long addr, pmd_t *pmdp)
1509 {
1510 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1511 }
1512 
1513 #define __HAVE_ARCH_PMDP_INVALIDATE
1514 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1515 				   unsigned long addr, pmd_t *pmdp)
1516 {
1517 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1518 
1519 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1520 }
1521 
1522 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1523 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1524 				      unsigned long addr, pmd_t *pmdp)
1525 {
1526 	pmd_t pmd = *pmdp;
1527 
1528 	if (pmd_write(pmd))
1529 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1530 }
1531 
1532 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1533 					unsigned long address,
1534 					pmd_t *pmdp)
1535 {
1536 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1537 }
1538 #define pmdp_collapse_flush pmdp_collapse_flush
1539 
1540 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1541 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1542 
1543 static inline int pmd_trans_huge(pmd_t pmd)
1544 {
1545 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1546 }
1547 
1548 #define has_transparent_hugepage has_transparent_hugepage
1549 static inline int has_transparent_hugepage(void)
1550 {
1551 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1552 }
1553 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1554 
1555 /*
1556  * 64 bit swap entry format:
1557  * A page-table entry has some bits we have to treat in a special way.
1558  * Bits 52 and bit 55 have to be zero, otherwise a specification
1559  * exception will occur instead of a page translation exception. The
1560  * specification exception has the bad habit not to store necessary
1561  * information in the lowcore.
1562  * Bits 54 and 63 are used to indicate the page type.
1563  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1564  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1565  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1566  * for the offset.
1567  * |			  offset			|01100|type |00|
1568  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1569  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1570  */
1571 
1572 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1573 #define __SWP_OFFSET_SHIFT	12
1574 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1575 #define __SWP_TYPE_SHIFT	2
1576 
1577 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1578 {
1579 	pte_t pte;
1580 
1581 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1582 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1583 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1584 	return pte;
1585 }
1586 
1587 static inline unsigned long __swp_type(swp_entry_t entry)
1588 {
1589 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1590 }
1591 
1592 static inline unsigned long __swp_offset(swp_entry_t entry)
1593 {
1594 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1595 }
1596 
1597 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1598 {
1599 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1600 }
1601 
1602 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1603 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1604 
1605 #define kern_addr_valid(addr)   (1)
1606 
1607 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1608 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1609 extern int s390_enable_sie(void);
1610 extern int s390_enable_skey(void);
1611 extern void s390_reset_cmma(struct mm_struct *mm);
1612 
1613 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1614 #define HAVE_ARCH_UNMAPPED_AREA
1615 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1616 
1617 /*
1618  * No page table caches to initialise
1619  */
1620 static inline void pgtable_cache_init(void) { }
1621 static inline void check_pgt_cache(void) { }
1622 
1623 #include <asm-generic/pgtable.h>
1624 
1625 #endif /* _S390_PAGE_H */
1626