xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision a8fe58ce)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2000
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (weigand@de.ibm.com)
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *
8  *  Derived from "include/asm-i386/pgtable.h"
9  */
10 
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13 
14 /*
15  * The Linux memory management assumes a three-level page table setup.
16  * For s390 64 bit we use up to four of the five levels the hardware
17  * provides (region first tables are not used).
18  *
19  * The "pgd_xxx()" functions are trivial for a folded two-level
20  * setup: the pgd is never bad, and a pmd always exists (as it's folded
21  * into the pgd entry)
22  *
23  * This file contains the functions and defines necessary to modify and use
24  * the S390 page table tree.
25  */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <asm/bug.h>
32 #include <asm/page.h>
33 
34 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
37 
38 /*
39  * The S390 doesn't have any external MMU info: the kernel page
40  * tables contain all the necessary information.
41  */
42 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
44 
45 /*
46  * ZERO_PAGE is a global shared page that is always zero; used
47  * for zero-mapped memory areas etc..
48  */
49 
50 extern unsigned long empty_zero_page;
51 extern unsigned long zero_page_mask;
52 
53 #define ZERO_PAGE(vaddr) \
54 	(virt_to_page((void *)(empty_zero_page + \
55 	 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
57 
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
60 
61 /*
62  * PMD_SHIFT determines the size of the area a second-level page
63  * table can map
64  * PGDIR_SHIFT determines what a third-level page table entry can map
65  */
66 #define PMD_SHIFT	20
67 #define PUD_SHIFT	31
68 #define PGDIR_SHIFT	42
69 
70 #define PMD_SIZE        (1UL << PMD_SHIFT)
71 #define PMD_MASK        (~(PMD_SIZE-1))
72 #define PUD_SIZE	(1UL << PUD_SHIFT)
73 #define PUD_MASK	(~(PUD_SIZE-1))
74 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
76 
77 /*
78  * entries per page directory level: the S390 is two-level, so
79  * we don't really have any PMD directory physically.
80  * for S390 segment-table entries are combined to one PGD
81  * that leads to 1024 pte per pgd
82  */
83 #define PTRS_PER_PTE	256
84 #define PTRS_PER_PMD	2048
85 #define PTRS_PER_PUD	2048
86 #define PTRS_PER_PGD	2048
87 
88 #define FIRST_USER_ADDRESS  0UL
89 
90 #define pte_ERROR(e) \
91 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98 
99 #ifndef __ASSEMBLY__
100 /*
101  * The vmalloc and module area will always be on the topmost area of the
102  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104  * modules will reside. That makes sure that inter module branches always
105  * happen without trampolines and in addition the placement within a 2GB frame
106  * is branch prediction unit friendly.
107  */
108 extern unsigned long VMALLOC_START;
109 extern unsigned long VMALLOC_END;
110 extern struct page *vmemmap;
111 
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
113 
114 extern unsigned long MODULES_VADDR;
115 extern unsigned long MODULES_END;
116 #define MODULES_VADDR	MODULES_VADDR
117 #define MODULES_END	MODULES_END
118 #define MODULES_LEN	(1UL << 31)
119 
120 static inline int is_module_addr(void *addr)
121 {
122 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 	if (addr < (void *)MODULES_VADDR)
124 		return 0;
125 	if (addr > (void *)MODULES_END)
126 		return 0;
127 	return 1;
128 }
129 
130 /*
131  * A 64 bit pagetable entry of S390 has following format:
132  * |			 PFRA			      |0IPC|  OS  |
133  * 0000000000111111111122222222223333333333444444444455555555556666
134  * 0123456789012345678901234567890123456789012345678901234567890123
135  *
136  * I Page-Invalid Bit:    Page is not available for address-translation
137  * P Page-Protection Bit: Store access not possible for page
138  * C Change-bit override: HW is not required to set change bit
139  *
140  * A 64 bit segmenttable entry of S390 has following format:
141  * |        P-table origin                              |      TT
142  * 0000000000111111111122222222223333333333444444444455555555556666
143  * 0123456789012345678901234567890123456789012345678901234567890123
144  *
145  * I Segment-Invalid Bit:    Segment is not available for address-translation
146  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
147  * P Page-Protection Bit: Store access not possible for page
148  * TT Type 00
149  *
150  * A 64 bit region table entry of S390 has following format:
151  * |        S-table origin                             |   TF  TTTL
152  * 0000000000111111111122222222223333333333444444444455555555556666
153  * 0123456789012345678901234567890123456789012345678901234567890123
154  *
155  * I Segment-Invalid Bit:    Segment is not available for address-translation
156  * TT Type 01
157  * TF
158  * TL Table length
159  *
160  * The 64 bit regiontable origin of S390 has following format:
161  * |      region table origon                          |       DTTL
162  * 0000000000111111111122222222223333333333444444444455555555556666
163  * 0123456789012345678901234567890123456789012345678901234567890123
164  *
165  * X Space-Switch event:
166  * G Segment-Invalid Bit:
167  * P Private-Space Bit:
168  * S Storage-Alteration:
169  * R Real space
170  * TL Table-Length:
171  *
172  * A storage key has the following format:
173  * | ACC |F|R|C|0|
174  *  0   3 4 5 6 7
175  * ACC: access key
176  * F  : fetch protection bit
177  * R  : referenced bit
178  * C  : changed bit
179  */
180 
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
183 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
184 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
185 
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
188 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
189 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
190 #define _PAGE_READ	0x010		/* SW pte read bit */
191 #define _PAGE_WRITE	0x020		/* SW pte write bit */
192 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
193 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
195 
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201 
202 /* Set of bits not changed in pte_modify */
203 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
205 
206 /*
207  * handle_pte_fault uses pte_present and pte_none to find out the pte type
208  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209  * distinguish present from not-present ptes. It is changed only with the page
210  * table lock held.
211  *
212  * The following table gives the different possible bit combinations for
213  * the pte hardware and software bits in the last 12 bits of a pte
214  * (. unassigned bit, x don't care, t swap type):
215  *
216  *				842100000000
217  *				000084210000
218  *				000000008421
219  *				.IR.uswrdy.p
220  * empty			.10.00000000
221  * swap				.11..ttttt.0
222  * prot-none, clean, old	.11.xx0000.1
223  * prot-none, clean, young	.11.xx0001.1
224  * prot-none, dirty, old	.10.xx0010.1
225  * prot-none, dirty, young	.10.xx0011.1
226  * read-only, clean, old	.11.xx0100.1
227  * read-only, clean, young	.01.xx0101.1
228  * read-only, dirty, old	.11.xx0110.1
229  * read-only, dirty, young	.01.xx0111.1
230  * read-write, clean, old	.11.xx1100.1
231  * read-write, clean, young	.01.xx1101.1
232  * read-write, dirty, old	.10.xx1110.1
233  * read-write, dirty, young	.00.xx1111.1
234  * HW-bits: R read-only, I invalid
235  * SW-bits: p present, y young, d dirty, r read, w write, s special,
236  *	    u unused, l large
237  *
238  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
239  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
241  */
242 
243 /* Bits in the segment/region table address-space-control-element */
244 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
245 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
246 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
247 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
248 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
249 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
250 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
251 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
252 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
253 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
254 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
255 
256 /* Bits in the region table entry */
257 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
258 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
259 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
260 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
261 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
262 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
263 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
264 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
265 
266 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
272 
273 #define _REGION3_ENTRY_LARGE	0x400	/* RTTE-format control, large page  */
274 #define _REGION3_ENTRY_RO	0x200	/* page protection bit		    */
275 
276 /* Bits in the segment table entry */
277 #define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
278 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
280 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
281 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
282 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
283 
284 #define _SEGMENT_ENTRY		(0)
285 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
286 
287 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
289 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
290 #define _SEGMENT_ENTRY_READ	0x0002	/* SW segment read bit */
291 #define _SEGMENT_ENTRY_WRITE	0x0001	/* SW segment write bit */
292 
293 #ifdef CONFIG_MEM_SOFT_DIRTY
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295 #else
296 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
297 #endif
298 
299 /*
300  * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
301  *				dy..R...I...wr
302  * prot-none, clean, old	00..1...1...00
303  * prot-none, clean, young	01..1...1...00
304  * prot-none, dirty, old	10..1...1...00
305  * prot-none, dirty, young	11..1...1...00
306  * read-only, clean, old	00..1...1...01
307  * read-only, clean, young	01..1...0...01
308  * read-only, dirty, old	10..1...1...01
309  * read-only, dirty, young	11..1...0...01
310  * read-write, clean, old	00..1...1...11
311  * read-write, clean, young	01..1...0...11
312  * read-write, dirty, old	10..0...1...11
313  * read-write, dirty, young	11..0...0...11
314  * The segment table origin is used to distinguish empty (origin==0) from
315  * read-write, old segment table entries (origin!=0)
316  * HW-bits: R read-only, I invalid
317  * SW-bits: y young, d dirty, r read, w write
318  */
319 
320 /* Page status table bits for virtualization */
321 #define PGSTE_ACC_BITS	0xf000000000000000UL
322 #define PGSTE_FP_BIT	0x0800000000000000UL
323 #define PGSTE_PCL_BIT	0x0080000000000000UL
324 #define PGSTE_HR_BIT	0x0040000000000000UL
325 #define PGSTE_HC_BIT	0x0020000000000000UL
326 #define PGSTE_GR_BIT	0x0004000000000000UL
327 #define PGSTE_GC_BIT	0x0002000000000000UL
328 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
329 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
330 
331 /* Guest Page State used for virtualization */
332 #define _PGSTE_GPS_ZERO		0x0000000080000000UL
333 #define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
334 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
335 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
336 
337 /*
338  * A user page table pointer has the space-switch-event bit, the
339  * private-space-control bit and the storage-alteration-event-control
340  * bit set. A kernel page table pointer doesn't need them.
341  */
342 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
343 				 _ASCE_ALT_EVENT)
344 
345 /*
346  * Page protection definitions.
347  */
348 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID)
349 #define PAGE_READ	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
350 				 _PAGE_INVALID | _PAGE_PROTECT)
351 #define PAGE_WRITE	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
352 				 _PAGE_INVALID | _PAGE_PROTECT)
353 
354 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 				 _PAGE_YOUNG | _PAGE_DIRTY)
356 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
357 				 _PAGE_YOUNG | _PAGE_DIRTY)
358 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
359 				 _PAGE_PROTECT)
360 
361 /*
362  * On s390 the page table entry has an invalid bit and a read-only bit.
363  * Read permission implies execute permission and write permission
364  * implies read permission.
365  */
366          /*xwr*/
367 #define __P000	PAGE_NONE
368 #define __P001	PAGE_READ
369 #define __P010	PAGE_READ
370 #define __P011	PAGE_READ
371 #define __P100	PAGE_READ
372 #define __P101	PAGE_READ
373 #define __P110	PAGE_READ
374 #define __P111	PAGE_READ
375 
376 #define __S000	PAGE_NONE
377 #define __S001	PAGE_READ
378 #define __S010	PAGE_WRITE
379 #define __S011	PAGE_WRITE
380 #define __S100	PAGE_READ
381 #define __S101	PAGE_READ
382 #define __S110	PAGE_WRITE
383 #define __S111	PAGE_WRITE
384 
385 /*
386  * Segment entry (large page) protection definitions.
387  */
388 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
389 				 _SEGMENT_ENTRY_PROTECT)
390 #define SEGMENT_READ	__pgprot(_SEGMENT_ENTRY_PROTECT | \
391 				 _SEGMENT_ENTRY_READ)
392 #define SEGMENT_WRITE	__pgprot(_SEGMENT_ENTRY_READ | \
393 				 _SEGMENT_ENTRY_WRITE)
394 
395 static inline int mm_has_pgste(struct mm_struct *mm)
396 {
397 #ifdef CONFIG_PGSTE
398 	if (unlikely(mm->context.has_pgste))
399 		return 1;
400 #endif
401 	return 0;
402 }
403 
404 static inline int mm_alloc_pgste(struct mm_struct *mm)
405 {
406 #ifdef CONFIG_PGSTE
407 	if (unlikely(mm->context.alloc_pgste))
408 		return 1;
409 #endif
410 	return 0;
411 }
412 
413 /*
414  * In the case that a guest uses storage keys
415  * faults should no longer be backed by zero pages
416  */
417 #define mm_forbids_zeropage mm_use_skey
418 static inline int mm_use_skey(struct mm_struct *mm)
419 {
420 #ifdef CONFIG_PGSTE
421 	if (mm->context.use_skey)
422 		return 1;
423 #endif
424 	return 0;
425 }
426 
427 /*
428  * pgd/pmd/pte query functions
429  */
430 static inline int pgd_present(pgd_t pgd)
431 {
432 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
433 		return 1;
434 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
435 }
436 
437 static inline int pgd_none(pgd_t pgd)
438 {
439 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
440 		return 0;
441 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
442 }
443 
444 static inline int pgd_bad(pgd_t pgd)
445 {
446 	/*
447 	 * With dynamic page table levels the pgd can be a region table
448 	 * entry or a segment table entry. Check for the bit that are
449 	 * invalid for either table entry.
450 	 */
451 	unsigned long mask =
452 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
453 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
454 	return (pgd_val(pgd) & mask) != 0;
455 }
456 
457 static inline int pud_present(pud_t pud)
458 {
459 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
460 		return 1;
461 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
462 }
463 
464 static inline int pud_none(pud_t pud)
465 {
466 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
467 		return 0;
468 	return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
469 }
470 
471 static inline int pud_large(pud_t pud)
472 {
473 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
474 		return 0;
475 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
476 }
477 
478 static inline int pud_bad(pud_t pud)
479 {
480 	/*
481 	 * With dynamic page table levels the pud can be a region table
482 	 * entry or a segment table entry. Check for the bit that are
483 	 * invalid for either table entry.
484 	 */
485 	unsigned long mask =
486 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
487 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
488 	return (pud_val(pud) & mask) != 0;
489 }
490 
491 static inline int pmd_present(pmd_t pmd)
492 {
493 	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
494 }
495 
496 static inline int pmd_none(pmd_t pmd)
497 {
498 	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
499 }
500 
501 static inline int pmd_large(pmd_t pmd)
502 {
503 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
504 }
505 
506 static inline unsigned long pmd_pfn(pmd_t pmd)
507 {
508 	unsigned long origin_mask;
509 
510 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
511 	if (pmd_large(pmd))
512 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
513 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
514 }
515 
516 static inline int pmd_bad(pmd_t pmd)
517 {
518 	if (pmd_large(pmd))
519 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
520 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
521 }
522 
523 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
524 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
525 				 unsigned long address, pmd_t *pmdp,
526 				 pmd_t entry, int dirty);
527 
528 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
529 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
530 				  unsigned long address, pmd_t *pmdp);
531 
532 #define __HAVE_ARCH_PMD_WRITE
533 static inline int pmd_write(pmd_t pmd)
534 {
535 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
536 }
537 
538 static inline int pmd_dirty(pmd_t pmd)
539 {
540 	int dirty = 1;
541 	if (pmd_large(pmd))
542 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
543 	return dirty;
544 }
545 
546 static inline int pmd_young(pmd_t pmd)
547 {
548 	int young = 1;
549 	if (pmd_large(pmd))
550 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
551 	return young;
552 }
553 
554 static inline int pte_present(pte_t pte)
555 {
556 	/* Bit pattern: (pte & 0x001) == 0x001 */
557 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
558 }
559 
560 static inline int pte_none(pte_t pte)
561 {
562 	/* Bit pattern: pte == 0x400 */
563 	return pte_val(pte) == _PAGE_INVALID;
564 }
565 
566 static inline int pte_swap(pte_t pte)
567 {
568 	/* Bit pattern: (pte & 0x201) == 0x200 */
569 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
570 		== _PAGE_PROTECT;
571 }
572 
573 static inline int pte_special(pte_t pte)
574 {
575 	return (pte_val(pte) & _PAGE_SPECIAL);
576 }
577 
578 #define __HAVE_ARCH_PTE_SAME
579 static inline int pte_same(pte_t a, pte_t b)
580 {
581 	return pte_val(a) == pte_val(b);
582 }
583 
584 #ifdef CONFIG_NUMA_BALANCING
585 static inline int pte_protnone(pte_t pte)
586 {
587 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
588 }
589 
590 static inline int pmd_protnone(pmd_t pmd)
591 {
592 	/* pmd_large(pmd) implies pmd_present(pmd) */
593 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
594 }
595 #endif
596 
597 static inline int pte_soft_dirty(pte_t pte)
598 {
599 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
600 }
601 #define pte_swp_soft_dirty pte_soft_dirty
602 
603 static inline pte_t pte_mksoft_dirty(pte_t pte)
604 {
605 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
606 	return pte;
607 }
608 #define pte_swp_mksoft_dirty pte_mksoft_dirty
609 
610 static inline pte_t pte_clear_soft_dirty(pte_t pte)
611 {
612 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
613 	return pte;
614 }
615 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
616 
617 static inline int pmd_soft_dirty(pmd_t pmd)
618 {
619 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
620 }
621 
622 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
623 {
624 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
625 	return pmd;
626 }
627 
628 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
629 {
630 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
631 	return pmd;
632 }
633 
634 static inline pgste_t pgste_get_lock(pte_t *ptep)
635 {
636 	unsigned long new = 0;
637 #ifdef CONFIG_PGSTE
638 	unsigned long old;
639 
640 	preempt_disable();
641 	asm(
642 		"	lg	%0,%2\n"
643 		"0:	lgr	%1,%0\n"
644 		"	nihh	%0,0xff7f\n"	/* clear PCL bit in old */
645 		"	oihh	%1,0x0080\n"	/* set PCL bit in new */
646 		"	csg	%0,%1,%2\n"
647 		"	jl	0b\n"
648 		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
649 		: "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
650 #endif
651 	return __pgste(new);
652 }
653 
654 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
655 {
656 #ifdef CONFIG_PGSTE
657 	asm(
658 		"	nihh	%1,0xff7f\n"	/* clear PCL bit */
659 		"	stg	%1,%0\n"
660 		: "=Q" (ptep[PTRS_PER_PTE])
661 		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
662 		: "cc", "memory");
663 	preempt_enable();
664 #endif
665 }
666 
667 static inline pgste_t pgste_get(pte_t *ptep)
668 {
669 	unsigned long pgste = 0;
670 #ifdef CONFIG_PGSTE
671 	pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
672 #endif
673 	return __pgste(pgste);
674 }
675 
676 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
677 {
678 #ifdef CONFIG_PGSTE
679 	*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
680 #endif
681 }
682 
683 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
684 				       struct mm_struct *mm)
685 {
686 #ifdef CONFIG_PGSTE
687 	unsigned long address, bits, skey;
688 
689 	if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
690 		return pgste;
691 	address = pte_val(*ptep) & PAGE_MASK;
692 	skey = (unsigned long) page_get_storage_key(address);
693 	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
694 	/* Transfer page changed & referenced bit to guest bits in pgste */
695 	pgste_val(pgste) |= bits << 48;		/* GR bit & GC bit */
696 	/* Copy page access key and fetch protection bit to pgste */
697 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
698 	pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
699 #endif
700 	return pgste;
701 
702 }
703 
704 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
705 				 struct mm_struct *mm)
706 {
707 #ifdef CONFIG_PGSTE
708 	unsigned long address;
709 	unsigned long nkey;
710 
711 	if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
712 		return;
713 	VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
714 	address = pte_val(entry) & PAGE_MASK;
715 	/*
716 	 * Set page access key and fetch protection bit from pgste.
717 	 * The guest C/R information is still in the PGSTE, set real
718 	 * key C/R to 0.
719 	 */
720 	nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
721 	nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
722 	page_set_storage_key(address, nkey, 0);
723 #endif
724 }
725 
726 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
727 {
728 	if ((pte_val(entry) & _PAGE_PRESENT) &&
729 	    (pte_val(entry) & _PAGE_WRITE) &&
730 	    !(pte_val(entry) & _PAGE_INVALID)) {
731 		if (!MACHINE_HAS_ESOP) {
732 			/*
733 			 * Without enhanced suppression-on-protection force
734 			 * the dirty bit on for all writable ptes.
735 			 */
736 			pte_val(entry) |= _PAGE_DIRTY;
737 			pte_val(entry) &= ~_PAGE_PROTECT;
738 		}
739 		if (!(pte_val(entry) & _PAGE_PROTECT))
740 			/* This pte allows write access, set user-dirty */
741 			pgste_val(pgste) |= PGSTE_UC_BIT;
742 	}
743 	*ptep = entry;
744 	return pgste;
745 }
746 
747 /**
748  * struct gmap_struct - guest address space
749  * @crst_list: list of all crst tables used in the guest address space
750  * @mm: pointer to the parent mm_struct
751  * @guest_to_host: radix tree with guest to host address translation
752  * @host_to_guest: radix tree with pointer to segment table entries
753  * @guest_table_lock: spinlock to protect all entries in the guest page table
754  * @table: pointer to the page directory
755  * @asce: address space control element for gmap page table
756  * @pfault_enabled: defines if pfaults are applicable for the guest
757  */
758 struct gmap {
759 	struct list_head list;
760 	struct list_head crst_list;
761 	struct mm_struct *mm;
762 	struct radix_tree_root guest_to_host;
763 	struct radix_tree_root host_to_guest;
764 	spinlock_t guest_table_lock;
765 	unsigned long *table;
766 	unsigned long asce;
767 	unsigned long asce_end;
768 	void *private;
769 	bool pfault_enabled;
770 };
771 
772 /**
773  * struct gmap_notifier - notify function block for page invalidation
774  * @notifier_call: address of callback function
775  */
776 struct gmap_notifier {
777 	struct list_head list;
778 	void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
779 };
780 
781 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
782 void gmap_free(struct gmap *gmap);
783 void gmap_enable(struct gmap *gmap);
784 void gmap_disable(struct gmap *gmap);
785 int gmap_map_segment(struct gmap *gmap, unsigned long from,
786 		     unsigned long to, unsigned long len);
787 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
788 unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
789 unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
790 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
791 int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
792 void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
793 void __gmap_zap(struct gmap *, unsigned long gaddr);
794 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
795 
796 
797 void gmap_register_ipte_notifier(struct gmap_notifier *);
798 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
799 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
800 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
801 
802 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
803 					unsigned long addr,
804 					pte_t *ptep, pgste_t pgste)
805 {
806 #ifdef CONFIG_PGSTE
807 	if (pgste_val(pgste) & PGSTE_IN_BIT) {
808 		pgste_val(pgste) &= ~PGSTE_IN_BIT;
809 		gmap_do_ipte_notify(mm, addr, ptep);
810 	}
811 #endif
812 	return pgste;
813 }
814 
815 /*
816  * Certain architectures need to do special things when PTEs
817  * within a page table are directly modified.  Thus, the following
818  * hook is made available.
819  */
820 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
821 			      pte_t *ptep, pte_t entry)
822 {
823 	pgste_t pgste;
824 
825 	if (mm_has_pgste(mm)) {
826 		pgste = pgste_get_lock(ptep);
827 		pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
828 		pgste_set_key(ptep, pgste, entry, mm);
829 		pgste = pgste_set_pte(ptep, pgste, entry);
830 		pgste_set_unlock(ptep, pgste);
831 	} else {
832 		*ptep = entry;
833 	}
834 }
835 
836 /*
837  * query functions pte_write/pte_dirty/pte_young only work if
838  * pte_present() is true. Undefined behaviour if not..
839  */
840 static inline int pte_write(pte_t pte)
841 {
842 	return (pte_val(pte) & _PAGE_WRITE) != 0;
843 }
844 
845 static inline int pte_dirty(pte_t pte)
846 {
847 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
848 }
849 
850 static inline int pte_young(pte_t pte)
851 {
852 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
853 }
854 
855 #define __HAVE_ARCH_PTE_UNUSED
856 static inline int pte_unused(pte_t pte)
857 {
858 	return pte_val(pte) & _PAGE_UNUSED;
859 }
860 
861 /*
862  * pgd/pmd/pte modification functions
863  */
864 
865 static inline void pgd_clear(pgd_t *pgd)
866 {
867 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
868 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
869 }
870 
871 static inline void pud_clear(pud_t *pud)
872 {
873 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
874 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
875 }
876 
877 static inline void pmd_clear(pmd_t *pmdp)
878 {
879 	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
880 }
881 
882 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
883 {
884 	pte_val(*ptep) = _PAGE_INVALID;
885 }
886 
887 /*
888  * The following pte modification functions only work if
889  * pte_present() is true. Undefined behaviour if not..
890  */
891 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
892 {
893 	pte_val(pte) &= _PAGE_CHG_MASK;
894 	pte_val(pte) |= pgprot_val(newprot);
895 	/*
896 	 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
897 	 * invalid bit set, clear it again for readable, young pages
898 	 */
899 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
900 		pte_val(pte) &= ~_PAGE_INVALID;
901 	/*
902 	 * newprot for PAGE_READ and PAGE_WRITE has the page protection
903 	 * bit set, clear it again for writable, dirty pages
904 	 */
905 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
906 		pte_val(pte) &= ~_PAGE_PROTECT;
907 	return pte;
908 }
909 
910 static inline pte_t pte_wrprotect(pte_t pte)
911 {
912 	pte_val(pte) &= ~_PAGE_WRITE;
913 	pte_val(pte) |= _PAGE_PROTECT;
914 	return pte;
915 }
916 
917 static inline pte_t pte_mkwrite(pte_t pte)
918 {
919 	pte_val(pte) |= _PAGE_WRITE;
920 	if (pte_val(pte) & _PAGE_DIRTY)
921 		pte_val(pte) &= ~_PAGE_PROTECT;
922 	return pte;
923 }
924 
925 static inline pte_t pte_mkclean(pte_t pte)
926 {
927 	pte_val(pte) &= ~_PAGE_DIRTY;
928 	pte_val(pte) |= _PAGE_PROTECT;
929 	return pte;
930 }
931 
932 static inline pte_t pte_mkdirty(pte_t pte)
933 {
934 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
935 	if (pte_val(pte) & _PAGE_WRITE)
936 		pte_val(pte) &= ~_PAGE_PROTECT;
937 	return pte;
938 }
939 
940 static inline pte_t pte_mkold(pte_t pte)
941 {
942 	pte_val(pte) &= ~_PAGE_YOUNG;
943 	pte_val(pte) |= _PAGE_INVALID;
944 	return pte;
945 }
946 
947 static inline pte_t pte_mkyoung(pte_t pte)
948 {
949 	pte_val(pte) |= _PAGE_YOUNG;
950 	if (pte_val(pte) & _PAGE_READ)
951 		pte_val(pte) &= ~_PAGE_INVALID;
952 	return pte;
953 }
954 
955 static inline pte_t pte_mkspecial(pte_t pte)
956 {
957 	pte_val(pte) |= _PAGE_SPECIAL;
958 	return pte;
959 }
960 
961 #ifdef CONFIG_HUGETLB_PAGE
962 static inline pte_t pte_mkhuge(pte_t pte)
963 {
964 	pte_val(pte) |= _PAGE_LARGE;
965 	return pte;
966 }
967 #endif
968 
969 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
970 {
971 	unsigned long pto = (unsigned long) ptep;
972 
973 	/* Invalidation + global TLB flush for the pte */
974 	asm volatile(
975 		"	ipte	%2,%3"
976 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
977 }
978 
979 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
980 {
981 	unsigned long pto = (unsigned long) ptep;
982 
983 	/* Invalidation + local TLB flush for the pte */
984 	asm volatile(
985 		"	.insn rrf,0xb2210000,%2,%3,0,1"
986 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
987 }
988 
989 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
990 {
991 	unsigned long pto = (unsigned long) ptep;
992 
993 	/* Invalidate a range of ptes + global TLB flush of the ptes */
994 	do {
995 		asm volatile(
996 			"	.insn rrf,0xb2210000,%2,%0,%1,0"
997 			: "+a" (address), "+a" (nr) : "a" (pto) : "memory");
998 	} while (nr != 255);
999 }
1000 
1001 static inline void ptep_flush_direct(struct mm_struct *mm,
1002 				     unsigned long address, pte_t *ptep)
1003 {
1004 	int active, count;
1005 
1006 	if (pte_val(*ptep) & _PAGE_INVALID)
1007 		return;
1008 	active = (mm == current->active_mm) ? 1 : 0;
1009 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1010 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1011 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1012 		__ptep_ipte_local(address, ptep);
1013 	else
1014 		__ptep_ipte(address, ptep);
1015 	atomic_sub(0x10000, &mm->context.attach_count);
1016 }
1017 
1018 static inline void ptep_flush_lazy(struct mm_struct *mm,
1019 				   unsigned long address, pte_t *ptep)
1020 {
1021 	int active, count;
1022 
1023 	if (pte_val(*ptep) & _PAGE_INVALID)
1024 		return;
1025 	active = (mm == current->active_mm) ? 1 : 0;
1026 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1027 	if ((count & 0xffff) <= active) {
1028 		pte_val(*ptep) |= _PAGE_INVALID;
1029 		mm->context.flush_mm = 1;
1030 	} else
1031 		__ptep_ipte(address, ptep);
1032 	atomic_sub(0x10000, &mm->context.attach_count);
1033 }
1034 
1035 /*
1036  * Get (and clear) the user dirty bit for a pte.
1037  */
1038 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1039 						 unsigned long addr,
1040 						 pte_t *ptep)
1041 {
1042 	pgste_t pgste;
1043 	pte_t pte;
1044 	int dirty;
1045 
1046 	if (!mm_has_pgste(mm))
1047 		return 0;
1048 	pgste = pgste_get_lock(ptep);
1049 	dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1050 	pgste_val(pgste) &= ~PGSTE_UC_BIT;
1051 	pte = *ptep;
1052 	if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1053 		pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1054 		__ptep_ipte(addr, ptep);
1055 		if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1056 			pte_val(pte) |= _PAGE_PROTECT;
1057 		else
1058 			pte_val(pte) |= _PAGE_INVALID;
1059 		*ptep = pte;
1060 	}
1061 	pgste_set_unlock(ptep, pgste);
1062 	return dirty;
1063 }
1064 
1065 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1066 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1067 					    unsigned long addr, pte_t *ptep)
1068 {
1069 	pgste_t pgste;
1070 	pte_t pte, oldpte;
1071 	int young;
1072 
1073 	if (mm_has_pgste(vma->vm_mm)) {
1074 		pgste = pgste_get_lock(ptep);
1075 		pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1076 	}
1077 
1078 	oldpte = pte = *ptep;
1079 	ptep_flush_direct(vma->vm_mm, addr, ptep);
1080 	young = pte_young(pte);
1081 	pte = pte_mkold(pte);
1082 
1083 	if (mm_has_pgste(vma->vm_mm)) {
1084 		pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1085 		pgste = pgste_set_pte(ptep, pgste, pte);
1086 		pgste_set_unlock(ptep, pgste);
1087 	} else
1088 		*ptep = pte;
1089 
1090 	return young;
1091 }
1092 
1093 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1094 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1095 					 unsigned long address, pte_t *ptep)
1096 {
1097 	return ptep_test_and_clear_young(vma, address, ptep);
1098 }
1099 
1100 /*
1101  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1102  * both clear the TLB for the unmapped pte. The reason is that
1103  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1104  * to modify an active pte. The sequence is
1105  *   1) ptep_get_and_clear
1106  *   2) set_pte_at
1107  *   3) flush_tlb_range
1108  * On s390 the tlb needs to get flushed with the modification of the pte
1109  * if the pte is active. The only way how this can be implemented is to
1110  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1111  * is a nop.
1112  */
1113 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1114 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1115 				       unsigned long address, pte_t *ptep)
1116 {
1117 	pgste_t pgste;
1118 	pte_t pte;
1119 
1120 	if (mm_has_pgste(mm)) {
1121 		pgste = pgste_get_lock(ptep);
1122 		pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1123 	}
1124 
1125 	pte = *ptep;
1126 	ptep_flush_lazy(mm, address, ptep);
1127 	pte_val(*ptep) = _PAGE_INVALID;
1128 
1129 	if (mm_has_pgste(mm)) {
1130 		pgste = pgste_update_all(&pte, pgste, mm);
1131 		pgste_set_unlock(ptep, pgste);
1132 	}
1133 	return pte;
1134 }
1135 
1136 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1137 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1138 					   unsigned long address,
1139 					   pte_t *ptep)
1140 {
1141 	pgste_t pgste;
1142 	pte_t pte;
1143 
1144 	if (mm_has_pgste(mm)) {
1145 		pgste = pgste_get_lock(ptep);
1146 		pgste_ipte_notify(mm, address, ptep, pgste);
1147 	}
1148 
1149 	pte = *ptep;
1150 	ptep_flush_lazy(mm, address, ptep);
1151 
1152 	if (mm_has_pgste(mm)) {
1153 		pgste = pgste_update_all(&pte, pgste, mm);
1154 		pgste_set(ptep, pgste);
1155 	}
1156 	return pte;
1157 }
1158 
1159 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1160 					   unsigned long address,
1161 					   pte_t *ptep, pte_t pte)
1162 {
1163 	pgste_t pgste;
1164 
1165 	if (mm_has_pgste(mm)) {
1166 		pgste = pgste_get(ptep);
1167 		pgste_set_key(ptep, pgste, pte, mm);
1168 		pgste = pgste_set_pte(ptep, pgste, pte);
1169 		pgste_set_unlock(ptep, pgste);
1170 	} else
1171 		*ptep = pte;
1172 }
1173 
1174 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1175 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1176 				     unsigned long address, pte_t *ptep)
1177 {
1178 	pgste_t pgste;
1179 	pte_t pte;
1180 
1181 	if (mm_has_pgste(vma->vm_mm)) {
1182 		pgste = pgste_get_lock(ptep);
1183 		pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1184 	}
1185 
1186 	pte = *ptep;
1187 	ptep_flush_direct(vma->vm_mm, address, ptep);
1188 	pte_val(*ptep) = _PAGE_INVALID;
1189 
1190 	if (mm_has_pgste(vma->vm_mm)) {
1191 		if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1192 		    _PGSTE_GPS_USAGE_UNUSED)
1193 			pte_val(pte) |= _PAGE_UNUSED;
1194 		pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1195 		pgste_set_unlock(ptep, pgste);
1196 	}
1197 	return pte;
1198 }
1199 
1200 /*
1201  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1202  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1203  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1204  * cannot be accessed while the batched unmap is running. In this case
1205  * full==1 and a simple pte_clear is enough. See tlb.h.
1206  */
1207 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1208 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1209 					    unsigned long address,
1210 					    pte_t *ptep, int full)
1211 {
1212 	pgste_t pgste;
1213 	pte_t pte;
1214 
1215 	if (!full && mm_has_pgste(mm)) {
1216 		pgste = pgste_get_lock(ptep);
1217 		pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1218 	}
1219 
1220 	pte = *ptep;
1221 	if (!full)
1222 		ptep_flush_lazy(mm, address, ptep);
1223 	pte_val(*ptep) = _PAGE_INVALID;
1224 
1225 	if (!full && mm_has_pgste(mm)) {
1226 		pgste = pgste_update_all(&pte, pgste, mm);
1227 		pgste_set_unlock(ptep, pgste);
1228 	}
1229 	return pte;
1230 }
1231 
1232 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1233 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1234 				       unsigned long address, pte_t *ptep)
1235 {
1236 	pgste_t pgste;
1237 	pte_t pte = *ptep;
1238 
1239 	if (pte_write(pte)) {
1240 		if (mm_has_pgste(mm)) {
1241 			pgste = pgste_get_lock(ptep);
1242 			pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1243 		}
1244 
1245 		ptep_flush_lazy(mm, address, ptep);
1246 		pte = pte_wrprotect(pte);
1247 
1248 		if (mm_has_pgste(mm)) {
1249 			pgste = pgste_set_pte(ptep, pgste, pte);
1250 			pgste_set_unlock(ptep, pgste);
1251 		} else
1252 			*ptep = pte;
1253 	}
1254 	return pte;
1255 }
1256 
1257 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1258 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1259 					unsigned long address, pte_t *ptep,
1260 					pte_t entry, int dirty)
1261 {
1262 	pgste_t pgste;
1263 	pte_t oldpte;
1264 
1265 	oldpte = *ptep;
1266 	if (pte_same(oldpte, entry))
1267 		return 0;
1268 	if (mm_has_pgste(vma->vm_mm)) {
1269 		pgste = pgste_get_lock(ptep);
1270 		pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1271 	}
1272 
1273 	ptep_flush_direct(vma->vm_mm, address, ptep);
1274 
1275 	if (mm_has_pgste(vma->vm_mm)) {
1276 		if (pte_val(oldpte) & _PAGE_INVALID)
1277 			pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1278 		pgste = pgste_set_pte(ptep, pgste, entry);
1279 		pgste_set_unlock(ptep, pgste);
1280 	} else
1281 		*ptep = entry;
1282 	return 1;
1283 }
1284 
1285 /*
1286  * Conversion functions: convert a page and protection to a page entry,
1287  * and a page entry and page directory to the page they refer to.
1288  */
1289 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1290 {
1291 	pte_t __pte;
1292 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1293 	return pte_mkyoung(__pte);
1294 }
1295 
1296 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1297 {
1298 	unsigned long physpage = page_to_phys(page);
1299 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1300 
1301 	if (pte_write(__pte) && PageDirty(page))
1302 		__pte = pte_mkdirty(__pte);
1303 	return __pte;
1304 }
1305 
1306 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1307 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1308 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1309 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1310 
1311 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1312 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1313 
1314 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1315 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1316 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1317 
1318 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1319 {
1320 	pud_t *pud = (pud_t *) pgd;
1321 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1322 		pud = (pud_t *) pgd_deref(*pgd);
1323 	return pud  + pud_index(address);
1324 }
1325 
1326 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1327 {
1328 	pmd_t *pmd = (pmd_t *) pud;
1329 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1330 		pmd = (pmd_t *) pud_deref(*pud);
1331 	return pmd + pmd_index(address);
1332 }
1333 
1334 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1335 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1336 #define pte_page(x) pfn_to_page(pte_pfn(x))
1337 
1338 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1339 
1340 /* Find an entry in the lowest level page table.. */
1341 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1342 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1343 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1344 #define pte_unmap(pte) do { } while (0)
1345 
1346 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1347 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1348 {
1349 	/*
1350 	 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1351 	 * Convert to segment table entry format.
1352 	 */
1353 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1354 		return pgprot_val(SEGMENT_NONE);
1355 	if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1356 		return pgprot_val(SEGMENT_READ);
1357 	return pgprot_val(SEGMENT_WRITE);
1358 }
1359 
1360 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1361 {
1362 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1363 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1364 	return pmd;
1365 }
1366 
1367 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1368 {
1369 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1370 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1371 		return pmd;
1372 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1373 	return pmd;
1374 }
1375 
1376 static inline pmd_t pmd_mkclean(pmd_t pmd)
1377 {
1378 	if (pmd_large(pmd)) {
1379 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1380 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1381 	}
1382 	return pmd;
1383 }
1384 
1385 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1386 {
1387 	if (pmd_large(pmd)) {
1388 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1389 				_SEGMENT_ENTRY_SOFT_DIRTY;
1390 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1391 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1392 	}
1393 	return pmd;
1394 }
1395 
1396 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1397 {
1398 	if (pmd_large(pmd)) {
1399 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1400 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1401 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1402 	}
1403 	return pmd;
1404 }
1405 
1406 static inline pmd_t pmd_mkold(pmd_t pmd)
1407 {
1408 	if (pmd_large(pmd)) {
1409 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1410 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1411 	}
1412 	return pmd;
1413 }
1414 
1415 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1416 {
1417 	if (pmd_large(pmd)) {
1418 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1419 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1420 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1421 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1422 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1423 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1424 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1425 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1426 		return pmd;
1427 	}
1428 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1429 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1430 	return pmd;
1431 }
1432 
1433 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1434 {
1435 	pmd_t __pmd;
1436 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1437 	return __pmd;
1438 }
1439 
1440 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1441 
1442 static inline void __pmdp_csp(pmd_t *pmdp)
1443 {
1444 	register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1445 	register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1446 					       _SEGMENT_ENTRY_INVALID;
1447 	register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1448 
1449 	asm volatile(
1450 		"	csp %1,%3"
1451 		: "=m" (*pmdp)
1452 		: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1453 }
1454 
1455 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1456 {
1457 	unsigned long sto;
1458 
1459 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1460 	asm volatile(
1461 		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1462 		: "=m" (*pmdp)
1463 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1464 		: "cc" );
1465 }
1466 
1467 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1468 {
1469 	unsigned long sto;
1470 
1471 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1472 	asm volatile(
1473 		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1474 		: "=m" (*pmdp)
1475 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1476 		: "cc" );
1477 }
1478 
1479 static inline void pmdp_flush_direct(struct mm_struct *mm,
1480 				     unsigned long address, pmd_t *pmdp)
1481 {
1482 	int active, count;
1483 
1484 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1485 		return;
1486 	if (!MACHINE_HAS_IDTE) {
1487 		__pmdp_csp(pmdp);
1488 		return;
1489 	}
1490 	active = (mm == current->active_mm) ? 1 : 0;
1491 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1492 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1493 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1494 		__pmdp_idte_local(address, pmdp);
1495 	else
1496 		__pmdp_idte(address, pmdp);
1497 	atomic_sub(0x10000, &mm->context.attach_count);
1498 }
1499 
1500 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1501 				   unsigned long address, pmd_t *pmdp)
1502 {
1503 	int active, count;
1504 
1505 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1506 		return;
1507 	active = (mm == current->active_mm) ? 1 : 0;
1508 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1509 	if ((count & 0xffff) <= active) {
1510 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1511 		mm->context.flush_mm = 1;
1512 	} else if (MACHINE_HAS_IDTE)
1513 		__pmdp_idte(address, pmdp);
1514 	else
1515 		__pmdp_csp(pmdp);
1516 	atomic_sub(0x10000, &mm->context.attach_count);
1517 }
1518 
1519 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1520 
1521 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1522 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1523 				       pgtable_t pgtable);
1524 
1525 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1526 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1527 
1528 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1529 			      pmd_t *pmdp, pmd_t entry)
1530 {
1531 	*pmdp = entry;
1532 }
1533 
1534 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1535 {
1536 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1537 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1538 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1539 	return pmd;
1540 }
1541 
1542 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1543 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1544 					    unsigned long address, pmd_t *pmdp)
1545 {
1546 	pmd_t pmd;
1547 
1548 	pmd = *pmdp;
1549 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1550 	*pmdp = pmd_mkold(pmd);
1551 	return pmd_young(pmd);
1552 }
1553 
1554 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1555 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1556 					    unsigned long address, pmd_t *pmdp)
1557 {
1558 	pmd_t pmd = *pmdp;
1559 
1560 	pmdp_flush_direct(mm, address, pmdp);
1561 	pmd_clear(pmdp);
1562 	return pmd;
1563 }
1564 
1565 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1566 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1567 						 unsigned long address,
1568 						 pmd_t *pmdp, int full)
1569 {
1570 	pmd_t pmd = *pmdp;
1571 
1572 	if (!full)
1573 		pmdp_flush_lazy(mm, address, pmdp);
1574 	pmd_clear(pmdp);
1575 	return pmd;
1576 }
1577 
1578 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1579 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1580 					  unsigned long address, pmd_t *pmdp)
1581 {
1582 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1583 }
1584 
1585 #define __HAVE_ARCH_PMDP_INVALIDATE
1586 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1587 				   unsigned long address, pmd_t *pmdp)
1588 {
1589 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1590 }
1591 
1592 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1593 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1594 				      unsigned long address, pmd_t *pmdp)
1595 {
1596 	pmd_t pmd = *pmdp;
1597 
1598 	if (pmd_write(pmd)) {
1599 		pmdp_flush_direct(mm, address, pmdp);
1600 		set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1601 	}
1602 }
1603 
1604 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1605 					unsigned long address,
1606 					pmd_t *pmdp)
1607 {
1608 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1609 }
1610 #define pmdp_collapse_flush pmdp_collapse_flush
1611 
1612 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1613 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1614 
1615 static inline int pmd_trans_huge(pmd_t pmd)
1616 {
1617 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1618 }
1619 
1620 static inline int has_transparent_hugepage(void)
1621 {
1622 	return MACHINE_HAS_HPAGE ? 1 : 0;
1623 }
1624 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1625 
1626 /*
1627  * 64 bit swap entry format:
1628  * A page-table entry has some bits we have to treat in a special way.
1629  * Bits 52 and bit 55 have to be zero, otherwise a specification
1630  * exception will occur instead of a page translation exception. The
1631  * specification exception has the bad habit not to store necessary
1632  * information in the lowcore.
1633  * Bits 54 and 63 are used to indicate the page type.
1634  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1635  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1636  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1637  * for the offset.
1638  * |			  offset			|01100|type |00|
1639  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1640  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1641  */
1642 
1643 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1644 #define __SWP_OFFSET_SHIFT	12
1645 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1646 #define __SWP_TYPE_SHIFT	2
1647 
1648 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1649 {
1650 	pte_t pte;
1651 
1652 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1653 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1654 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1655 	return pte;
1656 }
1657 
1658 static inline unsigned long __swp_type(swp_entry_t entry)
1659 {
1660 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1661 }
1662 
1663 static inline unsigned long __swp_offset(swp_entry_t entry)
1664 {
1665 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1666 }
1667 
1668 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1669 {
1670 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1671 }
1672 
1673 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1674 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1675 
1676 #endif /* !__ASSEMBLY__ */
1677 
1678 #define kern_addr_valid(addr)   (1)
1679 
1680 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1681 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1682 extern int s390_enable_sie(void);
1683 extern int s390_enable_skey(void);
1684 extern void s390_reset_cmma(struct mm_struct *mm);
1685 
1686 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1687 #define HAVE_ARCH_UNMAPPED_AREA
1688 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1689 
1690 /*
1691  * No page table caches to initialise
1692  */
1693 static inline void pgtable_cache_init(void) { }
1694 static inline void check_pgt_cache(void) { }
1695 
1696 #include <asm-generic/pgtable.h>
1697 
1698 #endif /* _S390_PAGE_H */
1699