xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision a266ef69b890f099069cf51bb40572611c435a54)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24 
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
28 
29 enum {
30 	PG_DIRECT_MAP_4K = 0,
31 	PG_DIRECT_MAP_1M,
32 	PG_DIRECT_MAP_2G,
33 	PG_DIRECT_MAP_MAX
34 };
35 
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37 
38 static inline void update_page_count(int level, long count)
39 {
40 	if (IS_ENABLED(CONFIG_PROC_FS))
41 		atomic_long_add(count, &direct_pages_count[level]);
42 }
43 
44 struct seq_file;
45 void arch_report_meminfo(struct seq_file *m);
46 
47 /*
48  * The S390 doesn't have any external MMU info: the kernel page
49  * tables contain all the necessary information.
50  */
51 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93 
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95 
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR	MODULES_VADDR
99 #define MODULES_END	MODULES_END
100 #define MODULES_LEN	(1UL << 31)
101 
102 static inline int is_module_addr(void *addr)
103 {
104 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 	if (addr < (void *)MODULES_VADDR)
106 		return 0;
107 	if (addr > (void *)MODULES_END)
108 		return 0;
109 	return 1;
110 }
111 
112 /*
113  * A 64 bit pagetable entry of S390 has following format:
114  * |			 PFRA			      |0IPC|  OS  |
115  * 0000000000111111111122222222223333333333444444444455555555556666
116  * 0123456789012345678901234567890123456789012345678901234567890123
117  *
118  * I Page-Invalid Bit:    Page is not available for address-translation
119  * P Page-Protection Bit: Store access not possible for page
120  * C Change-bit override: HW is not required to set change bit
121  *
122  * A 64 bit segmenttable entry of S390 has following format:
123  * |        P-table origin                              |      TT
124  * 0000000000111111111122222222223333333333444444444455555555556666
125  * 0123456789012345678901234567890123456789012345678901234567890123
126  *
127  * I Segment-Invalid Bit:    Segment is not available for address-translation
128  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
129  * P Page-Protection Bit: Store access not possible for page
130  * TT Type 00
131  *
132  * A 64 bit region table entry of S390 has following format:
133  * |        S-table origin                             |   TF  TTTL
134  * 0000000000111111111122222222223333333333444444444455555555556666
135  * 0123456789012345678901234567890123456789012345678901234567890123
136  *
137  * I Segment-Invalid Bit:    Segment is not available for address-translation
138  * TT Type 01
139  * TF
140  * TL Table length
141  *
142  * The 64 bit regiontable origin of S390 has following format:
143  * |      region table origon                          |       DTTL
144  * 0000000000111111111122222222223333333333444444444455555555556666
145  * 0123456789012345678901234567890123456789012345678901234567890123
146  *
147  * X Space-Switch event:
148  * G Segment-Invalid Bit:
149  * P Private-Space Bit:
150  * S Storage-Alteration:
151  * R Real space
152  * TL Table-Length:
153  *
154  * A storage key has the following format:
155  * | ACC |F|R|C|0|
156  *  0   3 4 5 6 7
157  * ACC: access key
158  * F  : fetch protection bit
159  * R  : referenced bit
160  * C  : changed bit
161  */
162 
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
165 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
166 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
167 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
168 
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
171 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
172 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
173 #define _PAGE_READ	0x010		/* SW pte read bit */
174 #define _PAGE_WRITE	0x020		/* SW pte write bit */
175 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
176 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
177 
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183 
184 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
185 
186 /* Set of bits not changed in pte_modify */
187 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
188 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189 
190 /*
191  * handle_pte_fault uses pte_present and pte_none to find out the pte type
192  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
193  * distinguish present from not-present ptes. It is changed only with the page
194  * table lock held.
195  *
196  * The following table gives the different possible bit combinations for
197  * the pte hardware and software bits in the last 12 bits of a pte
198  * (. unassigned bit, x don't care, t swap type):
199  *
200  *				842100000000
201  *				000084210000
202  *				000000008421
203  *				.IR.uswrdy.p
204  * empty			.10.00000000
205  * swap				.11..ttttt.0
206  * prot-none, clean, old	.11.xx0000.1
207  * prot-none, clean, young	.11.xx0001.1
208  * prot-none, dirty, old	.11.xx0010.1
209  * prot-none, dirty, young	.11.xx0011.1
210  * read-only, clean, old	.11.xx0100.1
211  * read-only, clean, young	.01.xx0101.1
212  * read-only, dirty, old	.11.xx0110.1
213  * read-only, dirty, young	.01.xx0111.1
214  * read-write, clean, old	.11.xx1100.1
215  * read-write, clean, young	.01.xx1101.1
216  * read-write, dirty, old	.10.xx1110.1
217  * read-write, dirty, young	.00.xx1111.1
218  * HW-bits: R read-only, I invalid
219  * SW-bits: p present, y young, d dirty, r read, w write, s special,
220  *	    u unused, l large
221  *
222  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
223  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
224  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
225  */
226 
227 /* Bits in the segment/region table address-space-control-element */
228 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
229 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
230 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
231 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
232 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
233 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
234 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
235 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
236 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
237 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
238 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
239 
240 /* Bits in the region table entry */
241 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
242 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
243 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
244 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
245 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
246 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
247 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
248 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
249 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
250 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
251 
252 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
253 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
254 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
255 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
256 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
257 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
258 
259 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
260 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
261 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
262 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
263 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
264 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
265 
266 #ifdef CONFIG_MEM_SOFT_DIRTY
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
268 #else
269 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
270 #endif
271 
272 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
273 
274 /* Bits in the segment table entry */
275 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
276 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
277 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
278 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
279 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
280 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
281 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
282 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
283 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
284 
285 #define _SEGMENT_ENTRY		(0)
286 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
287 
288 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
289 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
290 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
291 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
292 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
293 
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296 #else
297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298 #endif
299 
300 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
301 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
302 
303 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
304 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
305 
306 #define _REGION1_SHIFT	53
307 #define _REGION2_SHIFT	42
308 #define _REGION3_SHIFT	31
309 #define _SEGMENT_SHIFT	20
310 
311 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
312 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
313 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
314 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
315 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
316 
317 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
318 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
319 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
320 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
321 
322 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
323 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
324 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
325 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
326 
327 #define PMD_SHIFT	_SEGMENT_SHIFT
328 #define PUD_SHIFT	_REGION3_SHIFT
329 #define P4D_SHIFT	_REGION2_SHIFT
330 #define PGDIR_SHIFT	_REGION1_SHIFT
331 
332 #define PMD_SIZE	_SEGMENT_SIZE
333 #define PUD_SIZE	_REGION3_SIZE
334 #define P4D_SIZE	_REGION2_SIZE
335 #define PGDIR_SIZE	_REGION1_SIZE
336 
337 #define PMD_MASK	_SEGMENT_MASK
338 #define PUD_MASK	_REGION3_MASK
339 #define P4D_MASK	_REGION2_MASK
340 #define PGDIR_MASK	_REGION1_MASK
341 
342 #define PTRS_PER_PTE	_PAGE_ENTRIES
343 #define PTRS_PER_PMD	_CRST_ENTRIES
344 #define PTRS_PER_PUD	_CRST_ENTRIES
345 #define PTRS_PER_P4D	_CRST_ENTRIES
346 #define PTRS_PER_PGD	_CRST_ENTRIES
347 
348 /*
349  * Segment table and region3 table entry encoding
350  * (R = read-only, I = invalid, y = young bit):
351  *				dy..R...I...wr
352  * prot-none, clean, old	00..1...1...00
353  * prot-none, clean, young	01..1...1...00
354  * prot-none, dirty, old	10..1...1...00
355  * prot-none, dirty, young	11..1...1...00
356  * read-only, clean, old	00..1...1...01
357  * read-only, clean, young	01..1...0...01
358  * read-only, dirty, old	10..1...1...01
359  * read-only, dirty, young	11..1...0...01
360  * read-write, clean, old	00..1...1...11
361  * read-write, clean, young	01..1...0...11
362  * read-write, dirty, old	10..0...1...11
363  * read-write, dirty, young	11..0...0...11
364  * The segment table origin is used to distinguish empty (origin==0) from
365  * read-write, old segment table entries (origin!=0)
366  * HW-bits: R read-only, I invalid
367  * SW-bits: y young, d dirty, r read, w write
368  */
369 
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS	0xf000000000000000UL
372 #define PGSTE_FP_BIT	0x0800000000000000UL
373 #define PGSTE_PCL_BIT	0x0080000000000000UL
374 #define PGSTE_HR_BIT	0x0040000000000000UL
375 #define PGSTE_HC_BIT	0x0020000000000000UL
376 #define PGSTE_GR_BIT	0x0004000000000000UL
377 #define PGSTE_GC_BIT	0x0002000000000000UL
378 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
379 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
380 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
381 
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
390 
391 /*
392  * A user page table pointer has the space-switch-event bit, the
393  * private-space-control bit and the storage-alteration-event-control
394  * bit set. A kernel page table pointer doesn't need them.
395  */
396 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 				 _ASCE_ALT_EVENT)
398 
399 /*
400  * Page protection definitions.
401  */
402 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 				 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 				 _PAGE_INVALID | _PAGE_PROTECT)
411 
412 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 				 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 				  _PAGE_YOUNG |	_PAGE_DIRTY)
420 
421 /*
422  * On s390 the page table entry has an invalid bit and a read-only bit.
423  * Read permission implies execute permission and write permission
424  * implies read permission.
425  */
426          /*xwr*/
427 
428 /*
429  * Segment entry (large page) protection definitions.
430  */
431 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
432 				 _SEGMENT_ENTRY_PROTECT)
433 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
434 				 _SEGMENT_ENTRY_READ | \
435 				 _SEGMENT_ENTRY_NOEXEC)
436 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
437 				 _SEGMENT_ENTRY_READ)
438 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
439 				 _SEGMENT_ENTRY_WRITE | \
440 				 _SEGMENT_ENTRY_NOEXEC)
441 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
442 				 _SEGMENT_ENTRY_WRITE)
443 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
444 				 _SEGMENT_ENTRY_LARGE |	\
445 				 _SEGMENT_ENTRY_READ |	\
446 				 _SEGMENT_ENTRY_WRITE | \
447 				 _SEGMENT_ENTRY_YOUNG | \
448 				 _SEGMENT_ENTRY_DIRTY | \
449 				 _SEGMENT_ENTRY_NOEXEC)
450 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
451 				 _SEGMENT_ENTRY_LARGE |	\
452 				 _SEGMENT_ENTRY_READ |	\
453 				 _SEGMENT_ENTRY_YOUNG |	\
454 				 _SEGMENT_ENTRY_PROTECT | \
455 				 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
457 				 _SEGMENT_ENTRY_LARGE |	\
458 				 _SEGMENT_ENTRY_READ |	\
459 				 _SEGMENT_ENTRY_WRITE | \
460 				 _SEGMENT_ENTRY_YOUNG |	\
461 				 _SEGMENT_ENTRY_DIRTY)
462 
463 /*
464  * Region3 entry (large page) protection definitions.
465  */
466 
467 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
468 				 _REGION3_ENTRY_LARGE |	 \
469 				 _REGION3_ENTRY_READ |	 \
470 				 _REGION3_ENTRY_WRITE |	 \
471 				 _REGION3_ENTRY_YOUNG |	 \
472 				 _REGION3_ENTRY_DIRTY | \
473 				 _REGION_ENTRY_NOEXEC)
474 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
475 				   _REGION3_ENTRY_LARGE |  \
476 				   _REGION3_ENTRY_READ |   \
477 				   _REGION3_ENTRY_YOUNG |  \
478 				   _REGION_ENTRY_PROTECT | \
479 				   _REGION_ENTRY_NOEXEC)
480 
481 static inline bool mm_p4d_folded(struct mm_struct *mm)
482 {
483 	return mm->context.asce_limit <= _REGION1_SIZE;
484 }
485 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
486 
487 static inline bool mm_pud_folded(struct mm_struct *mm)
488 {
489 	return mm->context.asce_limit <= _REGION2_SIZE;
490 }
491 #define mm_pud_folded(mm) mm_pud_folded(mm)
492 
493 static inline bool mm_pmd_folded(struct mm_struct *mm)
494 {
495 	return mm->context.asce_limit <= _REGION3_SIZE;
496 }
497 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
498 
499 static inline int mm_has_pgste(struct mm_struct *mm)
500 {
501 #ifdef CONFIG_PGSTE
502 	if (unlikely(mm->context.has_pgste))
503 		return 1;
504 #endif
505 	return 0;
506 }
507 
508 static inline int mm_is_protected(struct mm_struct *mm)
509 {
510 #ifdef CONFIG_PGSTE
511 	if (unlikely(atomic_read(&mm->context.protected_count)))
512 		return 1;
513 #endif
514 	return 0;
515 }
516 
517 static inline int mm_alloc_pgste(struct mm_struct *mm)
518 {
519 #ifdef CONFIG_PGSTE
520 	if (unlikely(mm->context.alloc_pgste))
521 		return 1;
522 #endif
523 	return 0;
524 }
525 
526 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
527 {
528 	return __pte(pte_val(pte) & ~pgprot_val(prot));
529 }
530 
531 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
532 {
533 	return __pte(pte_val(pte) | pgprot_val(prot));
534 }
535 
536 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
537 {
538 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
539 }
540 
541 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
542 {
543 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
544 }
545 
546 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
547 {
548 	return __pud(pud_val(pud) & ~pgprot_val(prot));
549 }
550 
551 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
552 {
553 	return __pud(pud_val(pud) | pgprot_val(prot));
554 }
555 
556 /*
557  * In the case that a guest uses storage keys
558  * faults should no longer be backed by zero pages
559  */
560 #define mm_forbids_zeropage mm_has_pgste
561 static inline int mm_uses_skeys(struct mm_struct *mm)
562 {
563 #ifdef CONFIG_PGSTE
564 	if (mm->context.uses_skeys)
565 		return 1;
566 #endif
567 	return 0;
568 }
569 
570 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
571 {
572 	union register_pair r1 = { .even = old, .odd = new, };
573 	unsigned long address = (unsigned long)ptr | 1;
574 
575 	asm volatile(
576 		"	csp	%[r1],%[address]"
577 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
578 		: [address] "d" (address)
579 		: "cc");
580 }
581 
582 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
583 {
584 	union register_pair r1 = { .even = old, .odd = new, };
585 	unsigned long address = (unsigned long)ptr | 1;
586 
587 	asm volatile(
588 		"	cspg	%[r1],%[address]"
589 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
590 		: [address] "d" (address)
591 		: "cc");
592 }
593 
594 #define CRDTE_DTT_PAGE		0x00UL
595 #define CRDTE_DTT_SEGMENT	0x10UL
596 #define CRDTE_DTT_REGION3	0x14UL
597 #define CRDTE_DTT_REGION2	0x18UL
598 #define CRDTE_DTT_REGION1	0x1cUL
599 
600 static inline void crdte(unsigned long old, unsigned long new,
601 			 unsigned long *table, unsigned long dtt,
602 			 unsigned long address, unsigned long asce)
603 {
604 	union register_pair r1 = { .even = old, .odd = new, };
605 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
606 
607 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
608 		     : [r1] "+&d" (r1.pair)
609 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
610 		     : "memory", "cc");
611 }
612 
613 /*
614  * pgd/p4d/pud/pmd/pte query functions
615  */
616 static inline int pgd_folded(pgd_t pgd)
617 {
618 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
619 }
620 
621 static inline int pgd_present(pgd_t pgd)
622 {
623 	if (pgd_folded(pgd))
624 		return 1;
625 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
626 }
627 
628 static inline int pgd_none(pgd_t pgd)
629 {
630 	if (pgd_folded(pgd))
631 		return 0;
632 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
633 }
634 
635 static inline int pgd_bad(pgd_t pgd)
636 {
637 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
638 		return 0;
639 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
640 }
641 
642 static inline unsigned long pgd_pfn(pgd_t pgd)
643 {
644 	unsigned long origin_mask;
645 
646 	origin_mask = _REGION_ENTRY_ORIGIN;
647 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
648 }
649 
650 static inline int p4d_folded(p4d_t p4d)
651 {
652 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
653 }
654 
655 static inline int p4d_present(p4d_t p4d)
656 {
657 	if (p4d_folded(p4d))
658 		return 1;
659 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
660 }
661 
662 static inline int p4d_none(p4d_t p4d)
663 {
664 	if (p4d_folded(p4d))
665 		return 0;
666 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
667 }
668 
669 static inline unsigned long p4d_pfn(p4d_t p4d)
670 {
671 	unsigned long origin_mask;
672 
673 	origin_mask = _REGION_ENTRY_ORIGIN;
674 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
675 }
676 
677 static inline int pud_folded(pud_t pud)
678 {
679 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
680 }
681 
682 static inline int pud_present(pud_t pud)
683 {
684 	if (pud_folded(pud))
685 		return 1;
686 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
687 }
688 
689 static inline int pud_none(pud_t pud)
690 {
691 	if (pud_folded(pud))
692 		return 0;
693 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
694 }
695 
696 #define pud_leaf	pud_large
697 static inline int pud_large(pud_t pud)
698 {
699 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
700 		return 0;
701 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
702 }
703 
704 #define pmd_leaf	pmd_large
705 static inline int pmd_large(pmd_t pmd)
706 {
707 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
708 }
709 
710 static inline int pmd_bad(pmd_t pmd)
711 {
712 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
713 		return 1;
714 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
715 }
716 
717 static inline int pud_bad(pud_t pud)
718 {
719 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
720 
721 	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
722 		return 1;
723 	if (type < _REGION_ENTRY_TYPE_R3)
724 		return 0;
725 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
726 }
727 
728 static inline int p4d_bad(p4d_t p4d)
729 {
730 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
731 
732 	if (type > _REGION_ENTRY_TYPE_R2)
733 		return 1;
734 	if (type < _REGION_ENTRY_TYPE_R2)
735 		return 0;
736 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
737 }
738 
739 static inline int pmd_present(pmd_t pmd)
740 {
741 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
742 }
743 
744 static inline int pmd_none(pmd_t pmd)
745 {
746 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
747 }
748 
749 #define pmd_write pmd_write
750 static inline int pmd_write(pmd_t pmd)
751 {
752 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
753 }
754 
755 #define pud_write pud_write
756 static inline int pud_write(pud_t pud)
757 {
758 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
759 }
760 
761 static inline int pmd_dirty(pmd_t pmd)
762 {
763 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764 }
765 
766 #define pmd_young pmd_young
767 static inline int pmd_young(pmd_t pmd)
768 {
769 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
770 }
771 
772 static inline int pte_present(pte_t pte)
773 {
774 	/* Bit pattern: (pte & 0x001) == 0x001 */
775 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
776 }
777 
778 static inline int pte_none(pte_t pte)
779 {
780 	/* Bit pattern: pte == 0x400 */
781 	return pte_val(pte) == _PAGE_INVALID;
782 }
783 
784 static inline int pte_swap(pte_t pte)
785 {
786 	/* Bit pattern: (pte & 0x201) == 0x200 */
787 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
788 		== _PAGE_PROTECT;
789 }
790 
791 static inline int pte_special(pte_t pte)
792 {
793 	return (pte_val(pte) & _PAGE_SPECIAL);
794 }
795 
796 #define __HAVE_ARCH_PTE_SAME
797 static inline int pte_same(pte_t a, pte_t b)
798 {
799 	return pte_val(a) == pte_val(b);
800 }
801 
802 #ifdef CONFIG_NUMA_BALANCING
803 static inline int pte_protnone(pte_t pte)
804 {
805 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
806 }
807 
808 static inline int pmd_protnone(pmd_t pmd)
809 {
810 	/* pmd_large(pmd) implies pmd_present(pmd) */
811 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
812 }
813 #endif
814 
815 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
816 static inline int pte_swp_exclusive(pte_t pte)
817 {
818 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
819 }
820 
821 static inline pte_t pte_swp_mkexclusive(pte_t pte)
822 {
823 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
824 }
825 
826 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
827 {
828 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
829 }
830 
831 static inline int pte_soft_dirty(pte_t pte)
832 {
833 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
834 }
835 #define pte_swp_soft_dirty pte_soft_dirty
836 
837 static inline pte_t pte_mksoft_dirty(pte_t pte)
838 {
839 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
840 }
841 #define pte_swp_mksoft_dirty pte_mksoft_dirty
842 
843 static inline pte_t pte_clear_soft_dirty(pte_t pte)
844 {
845 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
846 }
847 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
848 
849 static inline int pmd_soft_dirty(pmd_t pmd)
850 {
851 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
852 }
853 
854 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
855 {
856 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
857 }
858 
859 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
860 {
861 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
862 }
863 
864 /*
865  * query functions pte_write/pte_dirty/pte_young only work if
866  * pte_present() is true. Undefined behaviour if not..
867  */
868 static inline int pte_write(pte_t pte)
869 {
870 	return (pte_val(pte) & _PAGE_WRITE) != 0;
871 }
872 
873 static inline int pte_dirty(pte_t pte)
874 {
875 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
876 }
877 
878 static inline int pte_young(pte_t pte)
879 {
880 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
881 }
882 
883 #define __HAVE_ARCH_PTE_UNUSED
884 static inline int pte_unused(pte_t pte)
885 {
886 	return pte_val(pte) & _PAGE_UNUSED;
887 }
888 
889 /*
890  * Extract the pgprot value from the given pte while at the same time making it
891  * usable for kernel address space mappings where fault driven dirty and
892  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
893  * must not be set.
894  */
895 static inline pgprot_t pte_pgprot(pte_t pte)
896 {
897 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
898 
899 	if (pte_write(pte))
900 		pte_flags |= pgprot_val(PAGE_KERNEL);
901 	else
902 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
903 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
904 
905 	return __pgprot(pte_flags);
906 }
907 
908 /*
909  * pgd/pmd/pte modification functions
910  */
911 
912 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
913 {
914 	WRITE_ONCE(*pgdp, pgd);
915 }
916 
917 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
918 {
919 	WRITE_ONCE(*p4dp, p4d);
920 }
921 
922 static inline void set_pud(pud_t *pudp, pud_t pud)
923 {
924 	WRITE_ONCE(*pudp, pud);
925 }
926 
927 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
928 {
929 	WRITE_ONCE(*pmdp, pmd);
930 }
931 
932 static inline void set_pte(pte_t *ptep, pte_t pte)
933 {
934 	WRITE_ONCE(*ptep, pte);
935 }
936 
937 static inline void pgd_clear(pgd_t *pgd)
938 {
939 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
940 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
941 }
942 
943 static inline void p4d_clear(p4d_t *p4d)
944 {
945 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
946 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
947 }
948 
949 static inline void pud_clear(pud_t *pud)
950 {
951 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
952 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
953 }
954 
955 static inline void pmd_clear(pmd_t *pmdp)
956 {
957 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
958 }
959 
960 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
961 {
962 	set_pte(ptep, __pte(_PAGE_INVALID));
963 }
964 
965 /*
966  * The following pte modification functions only work if
967  * pte_present() is true. Undefined behaviour if not..
968  */
969 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
970 {
971 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
972 	pte = set_pte_bit(pte, newprot);
973 	/*
974 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
975 	 * has the invalid bit set, clear it again for readable, young pages
976 	 */
977 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
978 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
979 	/*
980 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
981 	 * protection bit set, clear it again for writable, dirty pages
982 	 */
983 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
984 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
985 	return pte;
986 }
987 
988 static inline pte_t pte_wrprotect(pte_t pte)
989 {
990 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
991 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
992 }
993 
994 static inline pte_t pte_mkwrite(pte_t pte)
995 {
996 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
997 	if (pte_val(pte) & _PAGE_DIRTY)
998 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
999 	return pte;
1000 }
1001 
1002 static inline pte_t pte_mkclean(pte_t pte)
1003 {
1004 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1005 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1006 }
1007 
1008 static inline pte_t pte_mkdirty(pte_t pte)
1009 {
1010 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1011 	if (pte_val(pte) & _PAGE_WRITE)
1012 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013 	return pte;
1014 }
1015 
1016 static inline pte_t pte_mkold(pte_t pte)
1017 {
1018 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1019 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1020 }
1021 
1022 static inline pte_t pte_mkyoung(pte_t pte)
1023 {
1024 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1025 	if (pte_val(pte) & _PAGE_READ)
1026 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1027 	return pte;
1028 }
1029 
1030 static inline pte_t pte_mkspecial(pte_t pte)
1031 {
1032 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1033 }
1034 
1035 #ifdef CONFIG_HUGETLB_PAGE
1036 static inline pte_t pte_mkhuge(pte_t pte)
1037 {
1038 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1039 }
1040 #endif
1041 
1042 #define IPTE_GLOBAL	0
1043 #define	IPTE_LOCAL	1
1044 
1045 #define IPTE_NODAT	0x400
1046 #define IPTE_GUEST_ASCE	0x800
1047 
1048 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1049 					unsigned long opt, unsigned long asce,
1050 					int local)
1051 {
1052 	unsigned long pto = __pa(ptep);
1053 
1054 	if (__builtin_constant_p(opt) && opt == 0) {
1055 		/* Invalidation + TLB flush for the pte */
1056 		asm volatile(
1057 			"	ipte	%[r1],%[r2],0,%[m4]"
1058 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1059 			  [m4] "i" (local));
1060 		return;
1061 	}
1062 
1063 	/* Invalidate ptes with options + TLB flush of the ptes */
1064 	opt = opt | (asce & _ASCE_ORIGIN);
1065 	asm volatile(
1066 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1067 		: [r2] "+a" (address), [r3] "+a" (opt)
1068 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1069 }
1070 
1071 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1072 					      pte_t *ptep, int local)
1073 {
1074 	unsigned long pto = __pa(ptep);
1075 
1076 	/* Invalidate a range of ptes + TLB flush of the ptes */
1077 	do {
1078 		asm volatile(
1079 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1080 			: [r2] "+a" (address), [r3] "+a" (nr)
1081 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1082 	} while (nr != 255);
1083 }
1084 
1085 /*
1086  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1087  * both clear the TLB for the unmapped pte. The reason is that
1088  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1089  * to modify an active pte. The sequence is
1090  *   1) ptep_get_and_clear
1091  *   2) set_pte_at
1092  *   3) flush_tlb_range
1093  * On s390 the tlb needs to get flushed with the modification of the pte
1094  * if the pte is active. The only way how this can be implemented is to
1095  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1096  * is a nop.
1097  */
1098 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1099 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1100 
1101 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1102 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1103 					    unsigned long addr, pte_t *ptep)
1104 {
1105 	pte_t pte = *ptep;
1106 
1107 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1108 	return pte_young(pte);
1109 }
1110 
1111 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1112 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1113 					 unsigned long address, pte_t *ptep)
1114 {
1115 	return ptep_test_and_clear_young(vma, address, ptep);
1116 }
1117 
1118 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1119 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1120 				       unsigned long addr, pte_t *ptep)
1121 {
1122 	pte_t res;
1123 
1124 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1125 	/* At this point the reference through the mapping is still present */
1126 	if (mm_is_protected(mm) && pte_present(res))
1127 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1128 	return res;
1129 }
1130 
1131 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1132 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1133 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1134 			     pte_t *, pte_t, pte_t);
1135 
1136 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1137 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1138 				     unsigned long addr, pte_t *ptep)
1139 {
1140 	pte_t res;
1141 
1142 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1143 	/* At this point the reference through the mapping is still present */
1144 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1145 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1146 	return res;
1147 }
1148 
1149 /*
1150  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1151  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1152  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1153  * cannot be accessed while the batched unmap is running. In this case
1154  * full==1 and a simple pte_clear is enough. See tlb.h.
1155  */
1156 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1157 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1158 					    unsigned long addr,
1159 					    pte_t *ptep, int full)
1160 {
1161 	pte_t res;
1162 
1163 	if (full) {
1164 		res = *ptep;
1165 		set_pte(ptep, __pte(_PAGE_INVALID));
1166 	} else {
1167 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1168 	}
1169 	/* Nothing to do */
1170 	if (!mm_is_protected(mm) || !pte_present(res))
1171 		return res;
1172 	/*
1173 	 * At this point the reference through the mapping is still present.
1174 	 * The notifier should have destroyed all protected vCPUs at this
1175 	 * point, so the destroy should be successful.
1176 	 */
1177 	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1178 		return res;
1179 	/*
1180 	 * If something went wrong and the page could not be destroyed, or
1181 	 * if this is not a mm teardown, the slower export is used as
1182 	 * fallback instead.
1183 	 */
1184 	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1185 	return res;
1186 }
1187 
1188 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1189 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1190 				      unsigned long addr, pte_t *ptep)
1191 {
1192 	pte_t pte = *ptep;
1193 
1194 	if (pte_write(pte))
1195 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1196 }
1197 
1198 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1199 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1200 					unsigned long addr, pte_t *ptep,
1201 					pte_t entry, int dirty)
1202 {
1203 	if (pte_same(*ptep, entry))
1204 		return 0;
1205 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1206 	return 1;
1207 }
1208 
1209 /*
1210  * Additional functions to handle KVM guest page tables
1211  */
1212 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1213 		     pte_t *ptep, pte_t entry);
1214 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1215 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1216 		 pte_t *ptep, unsigned long bits);
1217 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1218 		    pte_t *ptep, int prot, unsigned long bit);
1219 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1220 		     pte_t *ptep , int reset);
1221 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1222 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1223 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1224 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1225 
1226 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1227 			    pte_t *ptep);
1228 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1229 			  unsigned char key, bool nq);
1230 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1231 			       unsigned char key, unsigned char *oldkey,
1232 			       bool nq, bool mr, bool mc);
1233 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1234 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1235 			  unsigned char *key);
1236 
1237 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1238 				unsigned long bits, unsigned long value);
1239 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1240 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1241 			unsigned long *oldpte, unsigned long *oldpgste);
1242 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1243 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1244 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1245 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1246 
1247 #define pgprot_writecombine	pgprot_writecombine
1248 pgprot_t pgprot_writecombine(pgprot_t prot);
1249 
1250 #define pgprot_writethrough	pgprot_writethrough
1251 pgprot_t pgprot_writethrough(pgprot_t prot);
1252 
1253 /*
1254  * Certain architectures need to do special things when PTEs
1255  * within a page table are directly modified.  Thus, the following
1256  * hook is made available.
1257  */
1258 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1259 			      pte_t *ptep, pte_t entry)
1260 {
1261 	if (pte_present(entry))
1262 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1263 	if (mm_has_pgste(mm))
1264 		ptep_set_pte_at(mm, addr, ptep, entry);
1265 	else
1266 		set_pte(ptep, entry);
1267 }
1268 
1269 /*
1270  * Conversion functions: convert a page and protection to a page entry,
1271  * and a page entry and page directory to the page they refer to.
1272  */
1273 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1274 {
1275 	pte_t __pte;
1276 
1277 	__pte = __pte(physpage | pgprot_val(pgprot));
1278 	if (!MACHINE_HAS_NX)
1279 		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1280 	return pte_mkyoung(__pte);
1281 }
1282 
1283 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1284 {
1285 	unsigned long physpage = page_to_phys(page);
1286 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1287 
1288 	if (pte_write(__pte) && PageDirty(page))
1289 		__pte = pte_mkdirty(__pte);
1290 	return __pte;
1291 }
1292 
1293 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1294 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1295 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1296 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1297 
1298 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1299 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1300 
1301 static inline unsigned long pmd_deref(pmd_t pmd)
1302 {
1303 	unsigned long origin_mask;
1304 
1305 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1306 	if (pmd_large(pmd))
1307 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1308 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1309 }
1310 
1311 static inline unsigned long pmd_pfn(pmd_t pmd)
1312 {
1313 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1314 }
1315 
1316 static inline unsigned long pud_deref(pud_t pud)
1317 {
1318 	unsigned long origin_mask;
1319 
1320 	origin_mask = _REGION_ENTRY_ORIGIN;
1321 	if (pud_large(pud))
1322 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1323 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1324 }
1325 
1326 static inline unsigned long pud_pfn(pud_t pud)
1327 {
1328 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1329 }
1330 
1331 /*
1332  * The pgd_offset function *always* adds the index for the top-level
1333  * region/segment table. This is done to get a sequence like the
1334  * following to work:
1335  *	pgdp = pgd_offset(current->mm, addr);
1336  *	pgd = READ_ONCE(*pgdp);
1337  *	p4dp = p4d_offset(&pgd, addr);
1338  *	...
1339  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1340  * only add an index if they dereferenced the pointer.
1341  */
1342 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1343 {
1344 	unsigned long rste;
1345 	unsigned int shift;
1346 
1347 	/* Get the first entry of the top level table */
1348 	rste = pgd_val(*pgd);
1349 	/* Pick up the shift from the table type of the first entry */
1350 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1351 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1352 }
1353 
1354 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1355 
1356 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1357 {
1358 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1359 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1360 	return (p4d_t *) pgdp;
1361 }
1362 #define p4d_offset_lockless p4d_offset_lockless
1363 
1364 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1365 {
1366 	return p4d_offset_lockless(pgdp, *pgdp, address);
1367 }
1368 
1369 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1370 {
1371 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1372 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1373 	return (pud_t *) p4dp;
1374 }
1375 #define pud_offset_lockless pud_offset_lockless
1376 
1377 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1378 {
1379 	return pud_offset_lockless(p4dp, *p4dp, address);
1380 }
1381 #define pud_offset pud_offset
1382 
1383 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1384 {
1385 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1386 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1387 	return (pmd_t *) pudp;
1388 }
1389 #define pmd_offset_lockless pmd_offset_lockless
1390 
1391 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1392 {
1393 	return pmd_offset_lockless(pudp, *pudp, address);
1394 }
1395 #define pmd_offset pmd_offset
1396 
1397 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1398 {
1399 	return (unsigned long) pmd_deref(pmd);
1400 }
1401 
1402 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1403 {
1404 	return end <= current->mm->context.asce_limit;
1405 }
1406 #define gup_fast_permitted gup_fast_permitted
1407 
1408 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1409 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1410 #define pte_page(x) pfn_to_page(pte_pfn(x))
1411 
1412 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1413 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1414 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1415 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1416 
1417 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1418 {
1419 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1420 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1421 }
1422 
1423 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1424 {
1425 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1426 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1427 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1428 	return pmd;
1429 }
1430 
1431 static inline pmd_t pmd_mkclean(pmd_t pmd)
1432 {
1433 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1434 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1435 }
1436 
1437 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1438 {
1439 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1440 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1441 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1442 	return pmd;
1443 }
1444 
1445 static inline pud_t pud_wrprotect(pud_t pud)
1446 {
1447 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1448 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1449 }
1450 
1451 static inline pud_t pud_mkwrite(pud_t pud)
1452 {
1453 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1454 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1455 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1456 	return pud;
1457 }
1458 
1459 static inline pud_t pud_mkclean(pud_t pud)
1460 {
1461 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1462 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1463 }
1464 
1465 static inline pud_t pud_mkdirty(pud_t pud)
1466 {
1467 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1468 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1469 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1470 	return pud;
1471 }
1472 
1473 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1474 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1475 {
1476 	/*
1477 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1478 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1479 	 */
1480 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1481 		return pgprot_val(SEGMENT_NONE);
1482 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1483 		return pgprot_val(SEGMENT_RO);
1484 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1485 		return pgprot_val(SEGMENT_RX);
1486 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1487 		return pgprot_val(SEGMENT_RW);
1488 	return pgprot_val(SEGMENT_RWX);
1489 }
1490 
1491 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1492 {
1493 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1494 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1495 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1496 	return pmd;
1497 }
1498 
1499 static inline pmd_t pmd_mkold(pmd_t pmd)
1500 {
1501 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1502 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1503 }
1504 
1505 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1506 {
1507 	unsigned long mask;
1508 
1509 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1510 	mask |= _SEGMENT_ENTRY_DIRTY;
1511 	mask |= _SEGMENT_ENTRY_YOUNG;
1512 	mask |=	_SEGMENT_ENTRY_LARGE;
1513 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1514 	pmd = __pmd(pmd_val(pmd) & mask);
1515 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1516 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1517 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1518 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1519 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1520 	return pmd;
1521 }
1522 
1523 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1524 {
1525 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1526 }
1527 
1528 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1529 
1530 static inline void __pmdp_csp(pmd_t *pmdp)
1531 {
1532 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1533 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1534 }
1535 
1536 #define IDTE_GLOBAL	0
1537 #define IDTE_LOCAL	1
1538 
1539 #define IDTE_PTOA	0x0800
1540 #define IDTE_NODAT	0x1000
1541 #define IDTE_GUEST_ASCE	0x2000
1542 
1543 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1544 					unsigned long opt, unsigned long asce,
1545 					int local)
1546 {
1547 	unsigned long sto;
1548 
1549 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1550 	if (__builtin_constant_p(opt) && opt == 0) {
1551 		/* flush without guest asce */
1552 		asm volatile(
1553 			"	idte	%[r1],0,%[r2],%[m4]"
1554 			: "+m" (*pmdp)
1555 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1556 			  [m4] "i" (local)
1557 			: "cc" );
1558 	} else {
1559 		/* flush with guest asce */
1560 		asm volatile(
1561 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1562 			: "+m" (*pmdp)
1563 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1564 			  [r3] "a" (asce), [m4] "i" (local)
1565 			: "cc" );
1566 	}
1567 }
1568 
1569 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1570 					unsigned long opt, unsigned long asce,
1571 					int local)
1572 {
1573 	unsigned long r3o;
1574 
1575 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1576 	r3o |= _ASCE_TYPE_REGION3;
1577 	if (__builtin_constant_p(opt) && opt == 0) {
1578 		/* flush without guest asce */
1579 		asm volatile(
1580 			"	idte	%[r1],0,%[r2],%[m4]"
1581 			: "+m" (*pudp)
1582 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1583 			  [m4] "i" (local)
1584 			: "cc");
1585 	} else {
1586 		/* flush with guest asce */
1587 		asm volatile(
1588 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1589 			: "+m" (*pudp)
1590 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1591 			  [r3] "a" (asce), [m4] "i" (local)
1592 			: "cc" );
1593 	}
1594 }
1595 
1596 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1597 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1598 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1599 
1600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1601 
1602 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1603 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1604 				pgtable_t pgtable);
1605 
1606 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1607 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1608 
1609 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1610 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1611 					unsigned long addr, pmd_t *pmdp,
1612 					pmd_t entry, int dirty)
1613 {
1614 	VM_BUG_ON(addr & ~HPAGE_MASK);
1615 
1616 	entry = pmd_mkyoung(entry);
1617 	if (dirty)
1618 		entry = pmd_mkdirty(entry);
1619 	if (pmd_val(*pmdp) == pmd_val(entry))
1620 		return 0;
1621 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1622 	return 1;
1623 }
1624 
1625 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1626 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1627 					    unsigned long addr, pmd_t *pmdp)
1628 {
1629 	pmd_t pmd = *pmdp;
1630 
1631 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1632 	return pmd_young(pmd);
1633 }
1634 
1635 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1636 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1637 					 unsigned long addr, pmd_t *pmdp)
1638 {
1639 	VM_BUG_ON(addr & ~HPAGE_MASK);
1640 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1641 }
1642 
1643 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1644 			      pmd_t *pmdp, pmd_t entry)
1645 {
1646 	if (!MACHINE_HAS_NX)
1647 		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1648 	set_pmd(pmdp, entry);
1649 }
1650 
1651 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1652 {
1653 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1654 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1655 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1656 }
1657 
1658 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1659 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1660 					    unsigned long addr, pmd_t *pmdp)
1661 {
1662 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1663 }
1664 
1665 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1666 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1667 						 unsigned long addr,
1668 						 pmd_t *pmdp, int full)
1669 {
1670 	if (full) {
1671 		pmd_t pmd = *pmdp;
1672 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1673 		return pmd;
1674 	}
1675 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1676 }
1677 
1678 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1679 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1680 					  unsigned long addr, pmd_t *pmdp)
1681 {
1682 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1683 }
1684 
1685 #define __HAVE_ARCH_PMDP_INVALIDATE
1686 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1687 				   unsigned long addr, pmd_t *pmdp)
1688 {
1689 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1690 
1691 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1692 }
1693 
1694 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1695 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1696 				      unsigned long addr, pmd_t *pmdp)
1697 {
1698 	pmd_t pmd = *pmdp;
1699 
1700 	if (pmd_write(pmd))
1701 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1702 }
1703 
1704 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1705 					unsigned long address,
1706 					pmd_t *pmdp)
1707 {
1708 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1709 }
1710 #define pmdp_collapse_flush pmdp_collapse_flush
1711 
1712 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1713 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1714 
1715 static inline int pmd_trans_huge(pmd_t pmd)
1716 {
1717 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1718 }
1719 
1720 #define has_transparent_hugepage has_transparent_hugepage
1721 static inline int has_transparent_hugepage(void)
1722 {
1723 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1724 }
1725 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1726 
1727 /*
1728  * 64 bit swap entry format:
1729  * A page-table entry has some bits we have to treat in a special way.
1730  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1731  * as invalid.
1732  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1733  * |			  offset			|E11XX|type |S0|
1734  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1735  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1736  *
1737  * Bits 0-51 store the offset.
1738  * Bit 52 (E) is used to remember PG_anon_exclusive.
1739  * Bits 57-61 store the type.
1740  * Bit 62 (S) is used for softdirty tracking.
1741  * Bits 55 and 56 (X) are unused.
1742  */
1743 
1744 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1745 #define __SWP_OFFSET_SHIFT	12
1746 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1747 #define __SWP_TYPE_SHIFT	2
1748 
1749 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1750 {
1751 	unsigned long pteval;
1752 
1753 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1754 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1755 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1756 	return __pte(pteval);
1757 }
1758 
1759 static inline unsigned long __swp_type(swp_entry_t entry)
1760 {
1761 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1762 }
1763 
1764 static inline unsigned long __swp_offset(swp_entry_t entry)
1765 {
1766 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1767 }
1768 
1769 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1770 {
1771 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1772 }
1773 
1774 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1775 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1776 
1777 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1778 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1779 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1780 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1781 extern void vmem_unmap_4k_page(unsigned long addr);
1782 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1783 extern int s390_enable_sie(void);
1784 extern int s390_enable_skey(void);
1785 extern void s390_reset_cmma(struct mm_struct *mm);
1786 
1787 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1788 #define HAVE_ARCH_UNMAPPED_AREA
1789 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1790 
1791 #define pmd_pgtable(pmd) \
1792 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1793 
1794 #endif /* _S390_PAGE_H */
1795