1 /* 2 * S390 version 3 * Copyright IBM Corp. 1999, 2000 4 * Author(s): Hartmut Penner (hp@de.ibm.com) 5 * Ulrich Weigand (weigand@de.ibm.com) 6 * Martin Schwidefsky (schwidefsky@de.ibm.com) 7 * 8 * Derived from "include/asm-i386/pgtable.h" 9 */ 10 11 #ifndef _ASM_S390_PGTABLE_H 12 #define _ASM_S390_PGTABLE_H 13 14 /* 15 * The Linux memory management assumes a three-level page table setup. 16 * For s390 64 bit we use up to four of the five levels the hardware 17 * provides (region first tables are not used). 18 * 19 * The "pgd_xxx()" functions are trivial for a folded two-level 20 * setup: the pgd is never bad, and a pmd always exists (as it's folded 21 * into the pgd entry) 22 * 23 * This file contains the functions and defines necessary to modify and use 24 * the S390 page table tree. 25 */ 26 #ifndef __ASSEMBLY__ 27 #include <linux/sched.h> 28 #include <linux/mm_types.h> 29 #include <linux/page-flags.h> 30 #include <linux/radix-tree.h> 31 #include <asm/bug.h> 32 #include <asm/page.h> 33 34 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 35 extern void paging_init(void); 36 extern void vmem_map_init(void); 37 38 /* 39 * The S390 doesn't have any external MMU info: the kernel page 40 * tables contain all the necessary information. 41 */ 42 #define update_mmu_cache(vma, address, ptep) do { } while (0) 43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 44 45 /* 46 * ZERO_PAGE is a global shared page that is always zero; used 47 * for zero-mapped memory areas etc.. 48 */ 49 50 extern unsigned long empty_zero_page; 51 extern unsigned long zero_page_mask; 52 53 #define ZERO_PAGE(vaddr) \ 54 (virt_to_page((void *)(empty_zero_page + \ 55 (((unsigned long)(vaddr)) &zero_page_mask)))) 56 #define __HAVE_COLOR_ZERO_PAGE 57 58 /* TODO: s390 cannot support io_remap_pfn_range... */ 59 #endif /* !__ASSEMBLY__ */ 60 61 /* 62 * PMD_SHIFT determines the size of the area a second-level page 63 * table can map 64 * PGDIR_SHIFT determines what a third-level page table entry can map 65 */ 66 #define PMD_SHIFT 20 67 #define PUD_SHIFT 31 68 #define PGDIR_SHIFT 42 69 70 #define PMD_SIZE (1UL << PMD_SHIFT) 71 #define PMD_MASK (~(PMD_SIZE-1)) 72 #define PUD_SIZE (1UL << PUD_SHIFT) 73 #define PUD_MASK (~(PUD_SIZE-1)) 74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 75 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 76 77 /* 78 * entries per page directory level: the S390 is two-level, so 79 * we don't really have any PMD directory physically. 80 * for S390 segment-table entries are combined to one PGD 81 * that leads to 1024 pte per pgd 82 */ 83 #define PTRS_PER_PTE 256 84 #define PTRS_PER_PMD 2048 85 #define PTRS_PER_PUD 2048 86 #define PTRS_PER_PGD 2048 87 88 #define FIRST_USER_ADDRESS 0UL 89 90 #define pte_ERROR(e) \ 91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 92 #define pmd_ERROR(e) \ 93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 94 #define pud_ERROR(e) \ 95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e)) 96 #define pgd_ERROR(e) \ 97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 98 99 #ifndef __ASSEMBLY__ 100 /* 101 * The vmalloc and module area will always be on the topmost area of the 102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules. 103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where 104 * modules will reside. That makes sure that inter module branches always 105 * happen without trampolines and in addition the placement within a 2GB frame 106 * is branch prediction unit friendly. 107 */ 108 extern unsigned long VMALLOC_START; 109 extern unsigned long VMALLOC_END; 110 extern struct page *vmemmap; 111 112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap) 113 114 extern unsigned long MODULES_VADDR; 115 extern unsigned long MODULES_END; 116 #define MODULES_VADDR MODULES_VADDR 117 #define MODULES_END MODULES_END 118 #define MODULES_LEN (1UL << 31) 119 120 static inline int is_module_addr(void *addr) 121 { 122 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 123 if (addr < (void *)MODULES_VADDR) 124 return 0; 125 if (addr > (void *)MODULES_END) 126 return 0; 127 return 1; 128 } 129 130 /* 131 * A 64 bit pagetable entry of S390 has following format: 132 * | PFRA |0IPC| OS | 133 * 0000000000111111111122222222223333333333444444444455555555556666 134 * 0123456789012345678901234567890123456789012345678901234567890123 135 * 136 * I Page-Invalid Bit: Page is not available for address-translation 137 * P Page-Protection Bit: Store access not possible for page 138 * C Change-bit override: HW is not required to set change bit 139 * 140 * A 64 bit segmenttable entry of S390 has following format: 141 * | P-table origin | TT 142 * 0000000000111111111122222222223333333333444444444455555555556666 143 * 0123456789012345678901234567890123456789012345678901234567890123 144 * 145 * I Segment-Invalid Bit: Segment is not available for address-translation 146 * C Common-Segment Bit: Segment is not private (PoP 3-30) 147 * P Page-Protection Bit: Store access not possible for page 148 * TT Type 00 149 * 150 * A 64 bit region table entry of S390 has following format: 151 * | S-table origin | TF TTTL 152 * 0000000000111111111122222222223333333333444444444455555555556666 153 * 0123456789012345678901234567890123456789012345678901234567890123 154 * 155 * I Segment-Invalid Bit: Segment is not available for address-translation 156 * TT Type 01 157 * TF 158 * TL Table length 159 * 160 * The 64 bit regiontable origin of S390 has following format: 161 * | region table origon | DTTL 162 * 0000000000111111111122222222223333333333444444444455555555556666 163 * 0123456789012345678901234567890123456789012345678901234567890123 164 * 165 * X Space-Switch event: 166 * G Segment-Invalid Bit: 167 * P Private-Space Bit: 168 * S Storage-Alteration: 169 * R Real space 170 * TL Table-Length: 171 * 172 * A storage key has the following format: 173 * | ACC |F|R|C|0| 174 * 0 3 4 5 6 7 175 * ACC: access key 176 * F : fetch protection bit 177 * R : referenced bit 178 * C : changed bit 179 */ 180 181 /* Hardware bits in the page table entry */ 182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */ 183 #define _PAGE_INVALID 0x400 /* HW invalid bit */ 184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 185 186 /* Software bits in the page table entry */ 187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */ 188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */ 189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 190 #define _PAGE_READ 0x010 /* SW pte read bit */ 191 #define _PAGE_WRITE 0x020 /* SW pte write bit */ 192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 194 #define __HAVE_ARCH_PTE_SPECIAL 195 196 #ifdef CONFIG_MEM_SOFT_DIRTY 197 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 198 #else 199 #define _PAGE_SOFT_DIRTY 0x000 200 #endif 201 202 /* Set of bits not changed in pte_modify */ 203 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 204 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 205 206 /* 207 * handle_pte_fault uses pte_present and pte_none to find out the pte type 208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 209 * distinguish present from not-present ptes. It is changed only with the page 210 * table lock held. 211 * 212 * The following table gives the different possible bit combinations for 213 * the pte hardware and software bits in the last 12 bits of a pte 214 * (. unassigned bit, x don't care, t swap type): 215 * 216 * 842100000000 217 * 000084210000 218 * 000000008421 219 * .IR.uswrdy.p 220 * empty .10.00000000 221 * swap .11..ttttt.0 222 * prot-none, clean, old .11.xx0000.1 223 * prot-none, clean, young .11.xx0001.1 224 * prot-none, dirty, old .10.xx0010.1 225 * prot-none, dirty, young .10.xx0011.1 226 * read-only, clean, old .11.xx0100.1 227 * read-only, clean, young .01.xx0101.1 228 * read-only, dirty, old .11.xx0110.1 229 * read-only, dirty, young .01.xx0111.1 230 * read-write, clean, old .11.xx1100.1 231 * read-write, clean, young .01.xx1101.1 232 * read-write, dirty, old .10.xx1110.1 233 * read-write, dirty, young .00.xx1111.1 234 * HW-bits: R read-only, I invalid 235 * SW-bits: p present, y young, d dirty, r read, w write, s special, 236 * u unused, l large 237 * 238 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 239 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 241 */ 242 243 /* Bits in the segment/region table address-space-control-element */ 244 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */ 245 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 246 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 247 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 248 #define _ASCE_REAL_SPACE 0x20 /* real space control */ 249 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 250 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 251 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 252 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 253 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 254 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 255 256 /* Bits in the region table entry */ 257 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 258 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 259 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 260 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ 261 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 262 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 263 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 264 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 265 266 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 267 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 268 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 269 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 270 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 271 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 272 273 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */ 274 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */ 275 276 /* Bits in the segment table entry */ 277 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 278 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL 279 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 280 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */ 281 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */ 282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 283 284 #define _SEGMENT_ENTRY (0) 285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 286 287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 289 #define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */ 290 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 291 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */ 292 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */ 293 294 #ifdef CONFIG_MEM_SOFT_DIRTY 295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 296 #else 297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 298 #endif 299 300 /* 301 * Segment table entry encoding (R = read-only, I = invalid, y = young bit): 302 * dy..R...I...wr 303 * prot-none, clean, old 00..1...1...00 304 * prot-none, clean, young 01..1...1...00 305 * prot-none, dirty, old 10..1...1...00 306 * prot-none, dirty, young 11..1...1...00 307 * read-only, clean, old 00..1...1...01 308 * read-only, clean, young 01..1...0...01 309 * read-only, dirty, old 10..1...1...01 310 * read-only, dirty, young 11..1...0...01 311 * read-write, clean, old 00..1...1...11 312 * read-write, clean, young 01..1...0...11 313 * read-write, dirty, old 10..0...1...11 314 * read-write, dirty, young 11..0...0...11 315 * The segment table origin is used to distinguish empty (origin==0) from 316 * read-write, old segment table entries (origin!=0) 317 * HW-bits: R read-only, I invalid 318 * SW-bits: y young, d dirty, r read, w write 319 */ 320 321 #define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */ 322 323 /* Page status table bits for virtualization */ 324 #define PGSTE_ACC_BITS 0xf000000000000000UL 325 #define PGSTE_FP_BIT 0x0800000000000000UL 326 #define PGSTE_PCL_BIT 0x0080000000000000UL 327 #define PGSTE_HR_BIT 0x0040000000000000UL 328 #define PGSTE_HC_BIT 0x0020000000000000UL 329 #define PGSTE_GR_BIT 0x0004000000000000UL 330 #define PGSTE_GC_BIT 0x0002000000000000UL 331 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 332 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 333 334 /* Guest Page State used for virtualization */ 335 #define _PGSTE_GPS_ZERO 0x0000000080000000UL 336 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 337 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 338 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 339 340 /* 341 * A user page table pointer has the space-switch-event bit, the 342 * private-space-control bit and the storage-alteration-event-control 343 * bit set. A kernel page table pointer doesn't need them. 344 */ 345 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 346 _ASCE_ALT_EVENT) 347 348 /* 349 * Page protection definitions. 350 */ 351 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID) 352 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 353 _PAGE_INVALID | _PAGE_PROTECT) 354 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 355 _PAGE_INVALID | _PAGE_PROTECT) 356 357 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 358 _PAGE_YOUNG | _PAGE_DIRTY) 359 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 360 _PAGE_YOUNG | _PAGE_DIRTY) 361 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 362 _PAGE_PROTECT) 363 364 /* 365 * On s390 the page table entry has an invalid bit and a read-only bit. 366 * Read permission implies execute permission and write permission 367 * implies read permission. 368 */ 369 /*xwr*/ 370 #define __P000 PAGE_NONE 371 #define __P001 PAGE_READ 372 #define __P010 PAGE_READ 373 #define __P011 PAGE_READ 374 #define __P100 PAGE_READ 375 #define __P101 PAGE_READ 376 #define __P110 PAGE_READ 377 #define __P111 PAGE_READ 378 379 #define __S000 PAGE_NONE 380 #define __S001 PAGE_READ 381 #define __S010 PAGE_WRITE 382 #define __S011 PAGE_WRITE 383 #define __S100 PAGE_READ 384 #define __S101 PAGE_READ 385 #define __S110 PAGE_WRITE 386 #define __S111 PAGE_WRITE 387 388 /* 389 * Segment entry (large page) protection definitions. 390 */ 391 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 392 _SEGMENT_ENTRY_PROTECT) 393 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \ 394 _SEGMENT_ENTRY_READ) 395 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \ 396 _SEGMENT_ENTRY_WRITE) 397 398 static inline int mm_has_pgste(struct mm_struct *mm) 399 { 400 #ifdef CONFIG_PGSTE 401 if (unlikely(mm->context.has_pgste)) 402 return 1; 403 #endif 404 return 0; 405 } 406 407 static inline int mm_alloc_pgste(struct mm_struct *mm) 408 { 409 #ifdef CONFIG_PGSTE 410 if (unlikely(mm->context.alloc_pgste)) 411 return 1; 412 #endif 413 return 0; 414 } 415 416 /* 417 * In the case that a guest uses storage keys 418 * faults should no longer be backed by zero pages 419 */ 420 #define mm_forbids_zeropage mm_use_skey 421 static inline int mm_use_skey(struct mm_struct *mm) 422 { 423 #ifdef CONFIG_PGSTE 424 if (mm->context.use_skey) 425 return 1; 426 #endif 427 return 0; 428 } 429 430 /* 431 * pgd/pmd/pte query functions 432 */ 433 static inline int pgd_present(pgd_t pgd) 434 { 435 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 436 return 1; 437 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 438 } 439 440 static inline int pgd_none(pgd_t pgd) 441 { 442 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2) 443 return 0; 444 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 445 } 446 447 static inline int pgd_bad(pgd_t pgd) 448 { 449 /* 450 * With dynamic page table levels the pgd can be a region table 451 * entry or a segment table entry. Check for the bit that are 452 * invalid for either table entry. 453 */ 454 unsigned long mask = 455 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & 456 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 457 return (pgd_val(pgd) & mask) != 0; 458 } 459 460 static inline int pud_present(pud_t pud) 461 { 462 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 463 return 1; 464 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 465 } 466 467 static inline int pud_none(pud_t pud) 468 { 469 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3) 470 return 0; 471 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL; 472 } 473 474 static inline int pud_large(pud_t pud) 475 { 476 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 477 return 0; 478 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 479 } 480 481 static inline int pud_bad(pud_t pud) 482 { 483 /* 484 * With dynamic page table levels the pud can be a region table 485 * entry or a segment table entry. Check for the bit that are 486 * invalid for either table entry. 487 */ 488 unsigned long mask = 489 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID & 490 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH; 491 return (pud_val(pud) & mask) != 0; 492 } 493 494 static inline int pmd_present(pmd_t pmd) 495 { 496 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID; 497 } 498 499 static inline int pmd_none(pmd_t pmd) 500 { 501 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID; 502 } 503 504 static inline int pmd_large(pmd_t pmd) 505 { 506 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 507 } 508 509 static inline unsigned long pmd_pfn(pmd_t pmd) 510 { 511 unsigned long origin_mask; 512 513 origin_mask = _SEGMENT_ENTRY_ORIGIN; 514 if (pmd_large(pmd)) 515 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 516 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT; 517 } 518 519 static inline int pmd_bad(pmd_t pmd) 520 { 521 if (pmd_large(pmd)) 522 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0; 523 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 524 } 525 526 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH 527 extern void pmdp_splitting_flush(struct vm_area_struct *vma, 528 unsigned long addr, pmd_t *pmdp); 529 530 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 531 extern int pmdp_set_access_flags(struct vm_area_struct *vma, 532 unsigned long address, pmd_t *pmdp, 533 pmd_t entry, int dirty); 534 535 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 536 extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 537 unsigned long address, pmd_t *pmdp); 538 539 #define __HAVE_ARCH_PMD_WRITE 540 static inline int pmd_write(pmd_t pmd) 541 { 542 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 543 } 544 545 static inline int pmd_dirty(pmd_t pmd) 546 { 547 int dirty = 1; 548 if (pmd_large(pmd)) 549 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 550 return dirty; 551 } 552 553 static inline int pmd_young(pmd_t pmd) 554 { 555 int young = 1; 556 if (pmd_large(pmd)) 557 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 558 return young; 559 } 560 561 static inline int pte_present(pte_t pte) 562 { 563 /* Bit pattern: (pte & 0x001) == 0x001 */ 564 return (pte_val(pte) & _PAGE_PRESENT) != 0; 565 } 566 567 static inline int pte_none(pte_t pte) 568 { 569 /* Bit pattern: pte == 0x400 */ 570 return pte_val(pte) == _PAGE_INVALID; 571 } 572 573 static inline int pte_swap(pte_t pte) 574 { 575 /* Bit pattern: (pte & 0x201) == 0x200 */ 576 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 577 == _PAGE_PROTECT; 578 } 579 580 static inline int pte_special(pte_t pte) 581 { 582 return (pte_val(pte) & _PAGE_SPECIAL); 583 } 584 585 #define __HAVE_ARCH_PTE_SAME 586 static inline int pte_same(pte_t a, pte_t b) 587 { 588 return pte_val(a) == pte_val(b); 589 } 590 591 #ifdef CONFIG_NUMA_BALANCING 592 static inline int pte_protnone(pte_t pte) 593 { 594 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 595 } 596 597 static inline int pmd_protnone(pmd_t pmd) 598 { 599 /* pmd_large(pmd) implies pmd_present(pmd) */ 600 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 601 } 602 #endif 603 604 static inline int pte_soft_dirty(pte_t pte) 605 { 606 return pte_val(pte) & _PAGE_SOFT_DIRTY; 607 } 608 #define pte_swp_soft_dirty pte_soft_dirty 609 610 static inline pte_t pte_mksoft_dirty(pte_t pte) 611 { 612 pte_val(pte) |= _PAGE_SOFT_DIRTY; 613 return pte; 614 } 615 #define pte_swp_mksoft_dirty pte_mksoft_dirty 616 617 static inline pte_t pte_clear_soft_dirty(pte_t pte) 618 { 619 pte_val(pte) &= ~_PAGE_SOFT_DIRTY; 620 return pte; 621 } 622 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty 623 624 static inline int pmd_soft_dirty(pmd_t pmd) 625 { 626 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 627 } 628 629 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 630 { 631 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY; 632 return pmd; 633 } 634 635 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 636 { 637 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY; 638 return pmd; 639 } 640 641 static inline pgste_t pgste_get_lock(pte_t *ptep) 642 { 643 unsigned long new = 0; 644 #ifdef CONFIG_PGSTE 645 unsigned long old; 646 647 preempt_disable(); 648 asm( 649 " lg %0,%2\n" 650 "0: lgr %1,%0\n" 651 " nihh %0,0xff7f\n" /* clear PCL bit in old */ 652 " oihh %1,0x0080\n" /* set PCL bit in new */ 653 " csg %0,%1,%2\n" 654 " jl 0b\n" 655 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE]) 656 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory"); 657 #endif 658 return __pgste(new); 659 } 660 661 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste) 662 { 663 #ifdef CONFIG_PGSTE 664 asm( 665 " nihh %1,0xff7f\n" /* clear PCL bit */ 666 " stg %1,%0\n" 667 : "=Q" (ptep[PTRS_PER_PTE]) 668 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) 669 : "cc", "memory"); 670 preempt_enable(); 671 #endif 672 } 673 674 static inline pgste_t pgste_get(pte_t *ptep) 675 { 676 unsigned long pgste = 0; 677 #ifdef CONFIG_PGSTE 678 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE); 679 #endif 680 return __pgste(pgste); 681 } 682 683 static inline void pgste_set(pte_t *ptep, pgste_t pgste) 684 { 685 #ifdef CONFIG_PGSTE 686 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste; 687 #endif 688 } 689 690 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste, 691 struct mm_struct *mm) 692 { 693 #ifdef CONFIG_PGSTE 694 unsigned long address, bits, skey; 695 696 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID) 697 return pgste; 698 address = pte_val(*ptep) & PAGE_MASK; 699 skey = (unsigned long) page_get_storage_key(address); 700 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED); 701 /* Transfer page changed & referenced bit to guest bits in pgste */ 702 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */ 703 /* Copy page access key and fetch protection bit to pgste */ 704 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT); 705 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56; 706 #endif 707 return pgste; 708 709 } 710 711 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry, 712 struct mm_struct *mm) 713 { 714 #ifdef CONFIG_PGSTE 715 unsigned long address; 716 unsigned long nkey; 717 718 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID) 719 return; 720 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID)); 721 address = pte_val(entry) & PAGE_MASK; 722 /* 723 * Set page access key and fetch protection bit from pgste. 724 * The guest C/R information is still in the PGSTE, set real 725 * key C/R to 0. 726 */ 727 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56; 728 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48; 729 page_set_storage_key(address, nkey, 0); 730 #endif 731 } 732 733 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry) 734 { 735 if ((pte_val(entry) & _PAGE_PRESENT) && 736 (pte_val(entry) & _PAGE_WRITE) && 737 !(pte_val(entry) & _PAGE_INVALID)) { 738 if (!MACHINE_HAS_ESOP) { 739 /* 740 * Without enhanced suppression-on-protection force 741 * the dirty bit on for all writable ptes. 742 */ 743 pte_val(entry) |= _PAGE_DIRTY; 744 pte_val(entry) &= ~_PAGE_PROTECT; 745 } 746 if (!(pte_val(entry) & _PAGE_PROTECT)) 747 /* This pte allows write access, set user-dirty */ 748 pgste_val(pgste) |= PGSTE_UC_BIT; 749 } 750 *ptep = entry; 751 return pgste; 752 } 753 754 /** 755 * struct gmap_struct - guest address space 756 * @crst_list: list of all crst tables used in the guest address space 757 * @mm: pointer to the parent mm_struct 758 * @guest_to_host: radix tree with guest to host address translation 759 * @host_to_guest: radix tree with pointer to segment table entries 760 * @guest_table_lock: spinlock to protect all entries in the guest page table 761 * @table: pointer to the page directory 762 * @asce: address space control element for gmap page table 763 * @pfault_enabled: defines if pfaults are applicable for the guest 764 */ 765 struct gmap { 766 struct list_head list; 767 struct list_head crst_list; 768 struct mm_struct *mm; 769 struct radix_tree_root guest_to_host; 770 struct radix_tree_root host_to_guest; 771 spinlock_t guest_table_lock; 772 unsigned long *table; 773 unsigned long asce; 774 unsigned long asce_end; 775 void *private; 776 bool pfault_enabled; 777 }; 778 779 /** 780 * struct gmap_notifier - notify function block for page invalidation 781 * @notifier_call: address of callback function 782 */ 783 struct gmap_notifier { 784 struct list_head list; 785 void (*notifier_call)(struct gmap *gmap, unsigned long gaddr); 786 }; 787 788 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit); 789 void gmap_free(struct gmap *gmap); 790 void gmap_enable(struct gmap *gmap); 791 void gmap_disable(struct gmap *gmap); 792 int gmap_map_segment(struct gmap *gmap, unsigned long from, 793 unsigned long to, unsigned long len); 794 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); 795 unsigned long __gmap_translate(struct gmap *, unsigned long gaddr); 796 unsigned long gmap_translate(struct gmap *, unsigned long gaddr); 797 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr); 798 int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags); 799 void gmap_discard(struct gmap *, unsigned long from, unsigned long to); 800 void __gmap_zap(struct gmap *, unsigned long gaddr); 801 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *); 802 803 804 void gmap_register_ipte_notifier(struct gmap_notifier *); 805 void gmap_unregister_ipte_notifier(struct gmap_notifier *); 806 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len); 807 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *); 808 809 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm, 810 unsigned long addr, 811 pte_t *ptep, pgste_t pgste) 812 { 813 #ifdef CONFIG_PGSTE 814 if (pgste_val(pgste) & PGSTE_IN_BIT) { 815 pgste_val(pgste) &= ~PGSTE_IN_BIT; 816 gmap_do_ipte_notify(mm, addr, ptep); 817 } 818 #endif 819 return pgste; 820 } 821 822 /* 823 * Certain architectures need to do special things when PTEs 824 * within a page table are directly modified. Thus, the following 825 * hook is made available. 826 */ 827 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 828 pte_t *ptep, pte_t entry) 829 { 830 pgste_t pgste; 831 832 if (mm_has_pgste(mm)) { 833 pgste = pgste_get_lock(ptep); 834 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO; 835 pgste_set_key(ptep, pgste, entry, mm); 836 pgste = pgste_set_pte(ptep, pgste, entry); 837 pgste_set_unlock(ptep, pgste); 838 } else { 839 *ptep = entry; 840 } 841 } 842 843 /* 844 * query functions pte_write/pte_dirty/pte_young only work if 845 * pte_present() is true. Undefined behaviour if not.. 846 */ 847 static inline int pte_write(pte_t pte) 848 { 849 return (pte_val(pte) & _PAGE_WRITE) != 0; 850 } 851 852 static inline int pte_dirty(pte_t pte) 853 { 854 return (pte_val(pte) & _PAGE_DIRTY) != 0; 855 } 856 857 static inline int pte_young(pte_t pte) 858 { 859 return (pte_val(pte) & _PAGE_YOUNG) != 0; 860 } 861 862 #define __HAVE_ARCH_PTE_UNUSED 863 static inline int pte_unused(pte_t pte) 864 { 865 return pte_val(pte) & _PAGE_UNUSED; 866 } 867 868 /* 869 * pgd/pmd/pte modification functions 870 */ 871 872 static inline void pgd_clear(pgd_t *pgd) 873 { 874 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 875 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY; 876 } 877 878 static inline void pud_clear(pud_t *pud) 879 { 880 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 881 pud_val(*pud) = _REGION3_ENTRY_EMPTY; 882 } 883 884 static inline void pmd_clear(pmd_t *pmdp) 885 { 886 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID; 887 } 888 889 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 890 { 891 pte_val(*ptep) = _PAGE_INVALID; 892 } 893 894 /* 895 * The following pte modification functions only work if 896 * pte_present() is true. Undefined behaviour if not.. 897 */ 898 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 899 { 900 pte_val(pte) &= _PAGE_CHG_MASK; 901 pte_val(pte) |= pgprot_val(newprot); 902 /* 903 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the 904 * invalid bit set, clear it again for readable, young pages 905 */ 906 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 907 pte_val(pte) &= ~_PAGE_INVALID; 908 /* 909 * newprot for PAGE_READ and PAGE_WRITE has the page protection 910 * bit set, clear it again for writable, dirty pages 911 */ 912 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 913 pte_val(pte) &= ~_PAGE_PROTECT; 914 return pte; 915 } 916 917 static inline pte_t pte_wrprotect(pte_t pte) 918 { 919 pte_val(pte) &= ~_PAGE_WRITE; 920 pte_val(pte) |= _PAGE_PROTECT; 921 return pte; 922 } 923 924 static inline pte_t pte_mkwrite(pte_t pte) 925 { 926 pte_val(pte) |= _PAGE_WRITE; 927 if (pte_val(pte) & _PAGE_DIRTY) 928 pte_val(pte) &= ~_PAGE_PROTECT; 929 return pte; 930 } 931 932 static inline pte_t pte_mkclean(pte_t pte) 933 { 934 pte_val(pte) &= ~_PAGE_DIRTY; 935 pte_val(pte) |= _PAGE_PROTECT; 936 return pte; 937 } 938 939 static inline pte_t pte_mkdirty(pte_t pte) 940 { 941 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY; 942 if (pte_val(pte) & _PAGE_WRITE) 943 pte_val(pte) &= ~_PAGE_PROTECT; 944 return pte; 945 } 946 947 static inline pte_t pte_mkold(pte_t pte) 948 { 949 pte_val(pte) &= ~_PAGE_YOUNG; 950 pte_val(pte) |= _PAGE_INVALID; 951 return pte; 952 } 953 954 static inline pte_t pte_mkyoung(pte_t pte) 955 { 956 pte_val(pte) |= _PAGE_YOUNG; 957 if (pte_val(pte) & _PAGE_READ) 958 pte_val(pte) &= ~_PAGE_INVALID; 959 return pte; 960 } 961 962 static inline pte_t pte_mkspecial(pte_t pte) 963 { 964 pte_val(pte) |= _PAGE_SPECIAL; 965 return pte; 966 } 967 968 #ifdef CONFIG_HUGETLB_PAGE 969 static inline pte_t pte_mkhuge(pte_t pte) 970 { 971 pte_val(pte) |= _PAGE_LARGE; 972 return pte; 973 } 974 #endif 975 976 static inline void __ptep_ipte(unsigned long address, pte_t *ptep) 977 { 978 unsigned long pto = (unsigned long) ptep; 979 980 /* Invalidation + global TLB flush for the pte */ 981 asm volatile( 982 " ipte %2,%3" 983 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); 984 } 985 986 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep) 987 { 988 unsigned long pto = (unsigned long) ptep; 989 990 /* Invalidation + local TLB flush for the pte */ 991 asm volatile( 992 " .insn rrf,0xb2210000,%2,%3,0,1" 993 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address)); 994 } 995 996 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep) 997 { 998 unsigned long pto = (unsigned long) ptep; 999 1000 /* Invalidate a range of ptes + global TLB flush of the ptes */ 1001 do { 1002 asm volatile( 1003 " .insn rrf,0xb2210000,%2,%0,%1,0" 1004 : "+a" (address), "+a" (nr) : "a" (pto) : "memory"); 1005 } while (nr != 255); 1006 } 1007 1008 static inline void ptep_flush_direct(struct mm_struct *mm, 1009 unsigned long address, pte_t *ptep) 1010 { 1011 int active, count; 1012 1013 if (pte_val(*ptep) & _PAGE_INVALID) 1014 return; 1015 active = (mm == current->active_mm) ? 1 : 0; 1016 count = atomic_add_return(0x10000, &mm->context.attach_count); 1017 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active && 1018 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id()))) 1019 __ptep_ipte_local(address, ptep); 1020 else 1021 __ptep_ipte(address, ptep); 1022 atomic_sub(0x10000, &mm->context.attach_count); 1023 } 1024 1025 static inline void ptep_flush_lazy(struct mm_struct *mm, 1026 unsigned long address, pte_t *ptep) 1027 { 1028 int active, count; 1029 1030 if (pte_val(*ptep) & _PAGE_INVALID) 1031 return; 1032 active = (mm == current->active_mm) ? 1 : 0; 1033 count = atomic_add_return(0x10000, &mm->context.attach_count); 1034 if ((count & 0xffff) <= active) { 1035 pte_val(*ptep) |= _PAGE_INVALID; 1036 mm->context.flush_mm = 1; 1037 } else 1038 __ptep_ipte(address, ptep); 1039 atomic_sub(0x10000, &mm->context.attach_count); 1040 } 1041 1042 /* 1043 * Get (and clear) the user dirty bit for a pte. 1044 */ 1045 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm, 1046 unsigned long addr, 1047 pte_t *ptep) 1048 { 1049 pgste_t pgste; 1050 pte_t pte; 1051 int dirty; 1052 1053 if (!mm_has_pgste(mm)) 1054 return 0; 1055 pgste = pgste_get_lock(ptep); 1056 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT); 1057 pgste_val(pgste) &= ~PGSTE_UC_BIT; 1058 pte = *ptep; 1059 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) { 1060 pgste = pgste_ipte_notify(mm, addr, ptep, pgste); 1061 __ptep_ipte(addr, ptep); 1062 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE)) 1063 pte_val(pte) |= _PAGE_PROTECT; 1064 else 1065 pte_val(pte) |= _PAGE_INVALID; 1066 *ptep = pte; 1067 } 1068 pgste_set_unlock(ptep, pgste); 1069 return dirty; 1070 } 1071 1072 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1073 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1074 unsigned long addr, pte_t *ptep) 1075 { 1076 pgste_t pgste; 1077 pte_t pte, oldpte; 1078 int young; 1079 1080 if (mm_has_pgste(vma->vm_mm)) { 1081 pgste = pgste_get_lock(ptep); 1082 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste); 1083 } 1084 1085 oldpte = pte = *ptep; 1086 ptep_flush_direct(vma->vm_mm, addr, ptep); 1087 young = pte_young(pte); 1088 pte = pte_mkold(pte); 1089 1090 if (mm_has_pgste(vma->vm_mm)) { 1091 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm); 1092 pgste = pgste_set_pte(ptep, pgste, pte); 1093 pgste_set_unlock(ptep, pgste); 1094 } else 1095 *ptep = pte; 1096 1097 return young; 1098 } 1099 1100 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1101 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1102 unsigned long address, pte_t *ptep) 1103 { 1104 return ptep_test_and_clear_young(vma, address, ptep); 1105 } 1106 1107 /* 1108 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1109 * both clear the TLB for the unmapped pte. The reason is that 1110 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1111 * to modify an active pte. The sequence is 1112 * 1) ptep_get_and_clear 1113 * 2) set_pte_at 1114 * 3) flush_tlb_range 1115 * On s390 the tlb needs to get flushed with the modification of the pte 1116 * if the pte is active. The only way how this can be implemented is to 1117 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1118 * is a nop. 1119 */ 1120 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1121 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1122 unsigned long address, pte_t *ptep) 1123 { 1124 pgste_t pgste; 1125 pte_t pte; 1126 1127 if (mm_has_pgste(mm)) { 1128 pgste = pgste_get_lock(ptep); 1129 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1130 } 1131 1132 pte = *ptep; 1133 ptep_flush_lazy(mm, address, ptep); 1134 pte_val(*ptep) = _PAGE_INVALID; 1135 1136 if (mm_has_pgste(mm)) { 1137 pgste = pgste_update_all(&pte, pgste, mm); 1138 pgste_set_unlock(ptep, pgste); 1139 } 1140 return pte; 1141 } 1142 1143 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1144 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 1145 unsigned long address, 1146 pte_t *ptep) 1147 { 1148 pgste_t pgste; 1149 pte_t pte; 1150 1151 if (mm_has_pgste(mm)) { 1152 pgste = pgste_get_lock(ptep); 1153 pgste_ipte_notify(mm, address, ptep, pgste); 1154 } 1155 1156 pte = *ptep; 1157 ptep_flush_lazy(mm, address, ptep); 1158 1159 if (mm_has_pgste(mm)) { 1160 pgste = pgste_update_all(&pte, pgste, mm); 1161 pgste_set(ptep, pgste); 1162 } 1163 return pte; 1164 } 1165 1166 static inline void ptep_modify_prot_commit(struct mm_struct *mm, 1167 unsigned long address, 1168 pte_t *ptep, pte_t pte) 1169 { 1170 pgste_t pgste; 1171 1172 if (mm_has_pgste(mm)) { 1173 pgste = pgste_get(ptep); 1174 pgste_set_key(ptep, pgste, pte, mm); 1175 pgste = pgste_set_pte(ptep, pgste, pte); 1176 pgste_set_unlock(ptep, pgste); 1177 } else 1178 *ptep = pte; 1179 } 1180 1181 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1182 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1183 unsigned long address, pte_t *ptep) 1184 { 1185 pgste_t pgste; 1186 pte_t pte; 1187 1188 if (mm_has_pgste(vma->vm_mm)) { 1189 pgste = pgste_get_lock(ptep); 1190 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); 1191 } 1192 1193 pte = *ptep; 1194 ptep_flush_direct(vma->vm_mm, address, ptep); 1195 pte_val(*ptep) = _PAGE_INVALID; 1196 1197 if (mm_has_pgste(vma->vm_mm)) { 1198 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) == 1199 _PGSTE_GPS_USAGE_UNUSED) 1200 pte_val(pte) |= _PAGE_UNUSED; 1201 pgste = pgste_update_all(&pte, pgste, vma->vm_mm); 1202 pgste_set_unlock(ptep, pgste); 1203 } 1204 return pte; 1205 } 1206 1207 /* 1208 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1209 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1210 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1211 * cannot be accessed while the batched unmap is running. In this case 1212 * full==1 and a simple pte_clear is enough. See tlb.h. 1213 */ 1214 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1215 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1216 unsigned long address, 1217 pte_t *ptep, int full) 1218 { 1219 pgste_t pgste; 1220 pte_t pte; 1221 1222 if (!full && mm_has_pgste(mm)) { 1223 pgste = pgste_get_lock(ptep); 1224 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1225 } 1226 1227 pte = *ptep; 1228 if (!full) 1229 ptep_flush_lazy(mm, address, ptep); 1230 pte_val(*ptep) = _PAGE_INVALID; 1231 1232 if (!full && mm_has_pgste(mm)) { 1233 pgste = pgste_update_all(&pte, pgste, mm); 1234 pgste_set_unlock(ptep, pgste); 1235 } 1236 return pte; 1237 } 1238 1239 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1240 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm, 1241 unsigned long address, pte_t *ptep) 1242 { 1243 pgste_t pgste; 1244 pte_t pte = *ptep; 1245 1246 if (pte_write(pte)) { 1247 if (mm_has_pgste(mm)) { 1248 pgste = pgste_get_lock(ptep); 1249 pgste = pgste_ipte_notify(mm, address, ptep, pgste); 1250 } 1251 1252 ptep_flush_lazy(mm, address, ptep); 1253 pte = pte_wrprotect(pte); 1254 1255 if (mm_has_pgste(mm)) { 1256 pgste = pgste_set_pte(ptep, pgste, pte); 1257 pgste_set_unlock(ptep, pgste); 1258 } else 1259 *ptep = pte; 1260 } 1261 return pte; 1262 } 1263 1264 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1265 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1266 unsigned long address, pte_t *ptep, 1267 pte_t entry, int dirty) 1268 { 1269 pgste_t pgste; 1270 pte_t oldpte; 1271 1272 oldpte = *ptep; 1273 if (pte_same(oldpte, entry)) 1274 return 0; 1275 if (mm_has_pgste(vma->vm_mm)) { 1276 pgste = pgste_get_lock(ptep); 1277 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste); 1278 } 1279 1280 ptep_flush_direct(vma->vm_mm, address, ptep); 1281 1282 if (mm_has_pgste(vma->vm_mm)) { 1283 if (pte_val(oldpte) & _PAGE_INVALID) 1284 pgste_set_key(ptep, pgste, entry, vma->vm_mm); 1285 pgste = pgste_set_pte(ptep, pgste, entry); 1286 pgste_set_unlock(ptep, pgste); 1287 } else 1288 *ptep = entry; 1289 return 1; 1290 } 1291 1292 /* 1293 * Conversion functions: convert a page and protection to a page entry, 1294 * and a page entry and page directory to the page they refer to. 1295 */ 1296 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1297 { 1298 pte_t __pte; 1299 pte_val(__pte) = physpage + pgprot_val(pgprot); 1300 return pte_mkyoung(__pte); 1301 } 1302 1303 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1304 { 1305 unsigned long physpage = page_to_phys(page); 1306 pte_t __pte = mk_pte_phys(physpage, pgprot); 1307 1308 if (pte_write(__pte) && PageDirty(page)) 1309 __pte = pte_mkdirty(__pte); 1310 return __pte; 1311 } 1312 1313 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1314 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1315 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1316 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 1317 1318 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 1319 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 1320 1321 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) 1322 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN) 1323 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) 1324 1325 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address) 1326 { 1327 pud_t *pud = (pud_t *) pgd; 1328 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 1329 pud = (pud_t *) pgd_deref(*pgd); 1330 return pud + pud_index(address); 1331 } 1332 1333 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 1334 { 1335 pmd_t *pmd = (pmd_t *) pud; 1336 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 1337 pmd = (pmd_t *) pud_deref(*pud); 1338 return pmd + pmd_index(address); 1339 } 1340 1341 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot)) 1342 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1343 #define pte_page(x) pfn_to_page(pte_pfn(x)) 1344 1345 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1346 1347 /* Find an entry in the lowest level page table.. */ 1348 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr)) 1349 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address) 1350 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 1351 #define pte_unmap(pte) do { } while (0) 1352 1353 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1354 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1355 { 1356 /* 1357 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx) 1358 * Convert to segment table entry format. 1359 */ 1360 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1361 return pgprot_val(SEGMENT_NONE); 1362 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ)) 1363 return pgprot_val(SEGMENT_READ); 1364 return pgprot_val(SEGMENT_WRITE); 1365 } 1366 1367 static inline pmd_t pmd_wrprotect(pmd_t pmd) 1368 { 1369 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE; 1370 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1371 return pmd; 1372 } 1373 1374 static inline pmd_t pmd_mkwrite(pmd_t pmd) 1375 { 1376 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE; 1377 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1378 return pmd; 1379 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1380 return pmd; 1381 } 1382 1383 static inline pmd_t pmd_mkclean(pmd_t pmd) 1384 { 1385 if (pmd_large(pmd)) { 1386 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY; 1387 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1388 } 1389 return pmd; 1390 } 1391 1392 static inline pmd_t pmd_mkdirty(pmd_t pmd) 1393 { 1394 if (pmd_large(pmd)) { 1395 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | 1396 _SEGMENT_ENTRY_SOFT_DIRTY; 1397 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1398 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT; 1399 } 1400 return pmd; 1401 } 1402 1403 static inline pmd_t pmd_mkyoung(pmd_t pmd) 1404 { 1405 if (pmd_large(pmd)) { 1406 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1407 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1408 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID; 1409 } 1410 return pmd; 1411 } 1412 1413 static inline pmd_t pmd_mkold(pmd_t pmd) 1414 { 1415 if (pmd_large(pmd)) { 1416 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG; 1417 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1418 } 1419 return pmd; 1420 } 1421 1422 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1423 { 1424 if (pmd_large(pmd)) { 1425 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE | 1426 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG | 1427 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT | 1428 _SEGMENT_ENTRY_SOFT_DIRTY; 1429 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1430 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1431 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1432 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1433 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID; 1434 return pmd; 1435 } 1436 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN; 1437 pmd_val(pmd) |= massage_pgprot_pmd(newprot); 1438 return pmd; 1439 } 1440 1441 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1442 { 1443 pmd_t __pmd; 1444 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot); 1445 return __pmd; 1446 } 1447 1448 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1449 1450 static inline void __pmdp_csp(pmd_t *pmdp) 1451 { 1452 register unsigned long reg2 asm("2") = pmd_val(*pmdp); 1453 register unsigned long reg3 asm("3") = pmd_val(*pmdp) | 1454 _SEGMENT_ENTRY_INVALID; 1455 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5; 1456 1457 asm volatile( 1458 " csp %1,%3" 1459 : "=m" (*pmdp) 1460 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc"); 1461 } 1462 1463 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp) 1464 { 1465 unsigned long sto; 1466 1467 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); 1468 asm volatile( 1469 " .insn rrf,0xb98e0000,%2,%3,0,0" 1470 : "=m" (*pmdp) 1471 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) 1472 : "cc" ); 1473 } 1474 1475 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp) 1476 { 1477 unsigned long sto; 1478 1479 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t); 1480 asm volatile( 1481 " .insn rrf,0xb98e0000,%2,%3,0,1" 1482 : "=m" (*pmdp) 1483 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK)) 1484 : "cc" ); 1485 } 1486 1487 static inline void pmdp_flush_direct(struct mm_struct *mm, 1488 unsigned long address, pmd_t *pmdp) 1489 { 1490 int active, count; 1491 1492 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1493 return; 1494 if (!MACHINE_HAS_IDTE) { 1495 __pmdp_csp(pmdp); 1496 return; 1497 } 1498 active = (mm == current->active_mm) ? 1 : 0; 1499 count = atomic_add_return(0x10000, &mm->context.attach_count); 1500 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active && 1501 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id()))) 1502 __pmdp_idte_local(address, pmdp); 1503 else 1504 __pmdp_idte(address, pmdp); 1505 atomic_sub(0x10000, &mm->context.attach_count); 1506 } 1507 1508 static inline void pmdp_flush_lazy(struct mm_struct *mm, 1509 unsigned long address, pmd_t *pmdp) 1510 { 1511 int active, count; 1512 1513 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID) 1514 return; 1515 active = (mm == current->active_mm) ? 1 : 0; 1516 count = atomic_add_return(0x10000, &mm->context.attach_count); 1517 if ((count & 0xffff) <= active) { 1518 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID; 1519 mm->context.flush_mm = 1; 1520 } else if (MACHINE_HAS_IDTE) 1521 __pmdp_idte(address, pmdp); 1522 else 1523 __pmdp_csp(pmdp); 1524 atomic_sub(0x10000, &mm->context.attach_count); 1525 } 1526 1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1528 1529 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1530 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1531 pgtable_t pgtable); 1532 1533 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1534 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1535 1536 static inline int pmd_trans_splitting(pmd_t pmd) 1537 { 1538 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) && 1539 (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT); 1540 } 1541 1542 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1543 pmd_t *pmdp, pmd_t entry) 1544 { 1545 *pmdp = entry; 1546 } 1547 1548 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1549 { 1550 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE; 1551 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG; 1552 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT; 1553 return pmd; 1554 } 1555 1556 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1557 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1558 unsigned long address, pmd_t *pmdp) 1559 { 1560 pmd_t pmd; 1561 1562 pmd = *pmdp; 1563 pmdp_flush_direct(vma->vm_mm, address, pmdp); 1564 *pmdp = pmd_mkold(pmd); 1565 return pmd_young(pmd); 1566 } 1567 1568 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1569 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1570 unsigned long address, pmd_t *pmdp) 1571 { 1572 pmd_t pmd = *pmdp; 1573 1574 pmdp_flush_direct(mm, address, pmdp); 1575 pmd_clear(pmdp); 1576 return pmd; 1577 } 1578 1579 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1580 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 1581 unsigned long address, 1582 pmd_t *pmdp, int full) 1583 { 1584 pmd_t pmd = *pmdp; 1585 1586 if (!full) 1587 pmdp_flush_lazy(mm, address, pmdp); 1588 pmd_clear(pmdp); 1589 return pmd; 1590 } 1591 1592 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1593 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1594 unsigned long address, pmd_t *pmdp) 1595 { 1596 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1597 } 1598 1599 #define __HAVE_ARCH_PMDP_INVALIDATE 1600 static inline void pmdp_invalidate(struct vm_area_struct *vma, 1601 unsigned long address, pmd_t *pmdp) 1602 { 1603 pmdp_flush_direct(vma->vm_mm, address, pmdp); 1604 } 1605 1606 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1607 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1608 unsigned long address, pmd_t *pmdp) 1609 { 1610 pmd_t pmd = *pmdp; 1611 1612 if (pmd_write(pmd)) { 1613 pmdp_flush_direct(mm, address, pmdp); 1614 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd)); 1615 } 1616 } 1617 1618 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1619 unsigned long address, 1620 pmd_t *pmdp) 1621 { 1622 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1623 } 1624 #define pmdp_collapse_flush pmdp_collapse_flush 1625 1626 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot)) 1627 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1628 1629 static inline int pmd_trans_huge(pmd_t pmd) 1630 { 1631 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1632 } 1633 1634 static inline int has_transparent_hugepage(void) 1635 { 1636 return MACHINE_HAS_HPAGE ? 1 : 0; 1637 } 1638 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1639 1640 /* 1641 * 64 bit swap entry format: 1642 * A page-table entry has some bits we have to treat in a special way. 1643 * Bits 52 and bit 55 have to be zero, otherwise a specification 1644 * exception will occur instead of a page translation exception. The 1645 * specification exception has the bad habit not to store necessary 1646 * information in the lowcore. 1647 * Bits 54 and 63 are used to indicate the page type. 1648 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1649 * This leaves the bits 0-51 and bits 56-62 to store type and offset. 1650 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51 1651 * for the offset. 1652 * | offset |01100|type |00| 1653 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1654 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1655 */ 1656 1657 #define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1658 #define __SWP_OFFSET_SHIFT 12 1659 #define __SWP_TYPE_MASK ((1UL << 5) - 1) 1660 #define __SWP_TYPE_SHIFT 2 1661 1662 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1663 { 1664 pte_t pte; 1665 1666 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT; 1667 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1668 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1669 return pte; 1670 } 1671 1672 static inline unsigned long __swp_type(swp_entry_t entry) 1673 { 1674 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1675 } 1676 1677 static inline unsigned long __swp_offset(swp_entry_t entry) 1678 { 1679 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1680 } 1681 1682 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1683 { 1684 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1685 } 1686 1687 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1688 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1689 1690 #endif /* !__ASSEMBLY__ */ 1691 1692 #define kern_addr_valid(addr) (1) 1693 1694 extern int vmem_add_mapping(unsigned long start, unsigned long size); 1695 extern int vmem_remove_mapping(unsigned long start, unsigned long size); 1696 extern int s390_enable_sie(void); 1697 extern int s390_enable_skey(void); 1698 extern void s390_reset_cmma(struct mm_struct *mm); 1699 1700 /* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1701 #define HAVE_ARCH_UNMAPPED_AREA 1702 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1703 1704 /* 1705 * No page table caches to initialise 1706 */ 1707 static inline void pgtable_cache_init(void) { } 1708 static inline void check_pgt_cache(void) { } 1709 1710 #include <asm-generic/pgtable.h> 1711 1712 #endif /* _S390_PAGE_H */ 1713