xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision 9b9c2cd4)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2000
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (weigand@de.ibm.com)
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *
8  *  Derived from "include/asm-i386/pgtable.h"
9  */
10 
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13 
14 /*
15  * The Linux memory management assumes a three-level page table setup.
16  * For s390 64 bit we use up to four of the five levels the hardware
17  * provides (region first tables are not used).
18  *
19  * The "pgd_xxx()" functions are trivial for a folded two-level
20  * setup: the pgd is never bad, and a pmd always exists (as it's folded
21  * into the pgd entry)
22  *
23  * This file contains the functions and defines necessary to modify and use
24  * the S390 page table tree.
25  */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <asm/bug.h>
32 #include <asm/page.h>
33 
34 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
37 
38 /*
39  * The S390 doesn't have any external MMU info: the kernel page
40  * tables contain all the necessary information.
41  */
42 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
44 
45 /*
46  * ZERO_PAGE is a global shared page that is always zero; used
47  * for zero-mapped memory areas etc..
48  */
49 
50 extern unsigned long empty_zero_page;
51 extern unsigned long zero_page_mask;
52 
53 #define ZERO_PAGE(vaddr) \
54 	(virt_to_page((void *)(empty_zero_page + \
55 	 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
57 
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
60 
61 /*
62  * PMD_SHIFT determines the size of the area a second-level page
63  * table can map
64  * PGDIR_SHIFT determines what a third-level page table entry can map
65  */
66 #define PMD_SHIFT	20
67 #define PUD_SHIFT	31
68 #define PGDIR_SHIFT	42
69 
70 #define PMD_SIZE        (1UL << PMD_SHIFT)
71 #define PMD_MASK        (~(PMD_SIZE-1))
72 #define PUD_SIZE	(1UL << PUD_SHIFT)
73 #define PUD_MASK	(~(PUD_SIZE-1))
74 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
76 
77 /*
78  * entries per page directory level: the S390 is two-level, so
79  * we don't really have any PMD directory physically.
80  * for S390 segment-table entries are combined to one PGD
81  * that leads to 1024 pte per pgd
82  */
83 #define PTRS_PER_PTE	256
84 #define PTRS_PER_PMD	2048
85 #define PTRS_PER_PUD	2048
86 #define PTRS_PER_PGD	2048
87 
88 #define FIRST_USER_ADDRESS  0UL
89 
90 #define pte_ERROR(e) \
91 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98 
99 #ifndef __ASSEMBLY__
100 /*
101  * The vmalloc and module area will always be on the topmost area of the
102  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104  * modules will reside. That makes sure that inter module branches always
105  * happen without trampolines and in addition the placement within a 2GB frame
106  * is branch prediction unit friendly.
107  */
108 extern unsigned long VMALLOC_START;
109 extern unsigned long VMALLOC_END;
110 extern struct page *vmemmap;
111 
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
113 
114 extern unsigned long MODULES_VADDR;
115 extern unsigned long MODULES_END;
116 #define MODULES_VADDR	MODULES_VADDR
117 #define MODULES_END	MODULES_END
118 #define MODULES_LEN	(1UL << 31)
119 
120 static inline int is_module_addr(void *addr)
121 {
122 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 	if (addr < (void *)MODULES_VADDR)
124 		return 0;
125 	if (addr > (void *)MODULES_END)
126 		return 0;
127 	return 1;
128 }
129 
130 /*
131  * A 64 bit pagetable entry of S390 has following format:
132  * |			 PFRA			      |0IPC|  OS  |
133  * 0000000000111111111122222222223333333333444444444455555555556666
134  * 0123456789012345678901234567890123456789012345678901234567890123
135  *
136  * I Page-Invalid Bit:    Page is not available for address-translation
137  * P Page-Protection Bit: Store access not possible for page
138  * C Change-bit override: HW is not required to set change bit
139  *
140  * A 64 bit segmenttable entry of S390 has following format:
141  * |        P-table origin                              |      TT
142  * 0000000000111111111122222222223333333333444444444455555555556666
143  * 0123456789012345678901234567890123456789012345678901234567890123
144  *
145  * I Segment-Invalid Bit:    Segment is not available for address-translation
146  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
147  * P Page-Protection Bit: Store access not possible for page
148  * TT Type 00
149  *
150  * A 64 bit region table entry of S390 has following format:
151  * |        S-table origin                             |   TF  TTTL
152  * 0000000000111111111122222222223333333333444444444455555555556666
153  * 0123456789012345678901234567890123456789012345678901234567890123
154  *
155  * I Segment-Invalid Bit:    Segment is not available for address-translation
156  * TT Type 01
157  * TF
158  * TL Table length
159  *
160  * The 64 bit regiontable origin of S390 has following format:
161  * |      region table origon                          |       DTTL
162  * 0000000000111111111122222222223333333333444444444455555555556666
163  * 0123456789012345678901234567890123456789012345678901234567890123
164  *
165  * X Space-Switch event:
166  * G Segment-Invalid Bit:
167  * P Private-Space Bit:
168  * S Storage-Alteration:
169  * R Real space
170  * TL Table-Length:
171  *
172  * A storage key has the following format:
173  * | ACC |F|R|C|0|
174  *  0   3 4 5 6 7
175  * ACC: access key
176  * F  : fetch protection bit
177  * R  : referenced bit
178  * C  : changed bit
179  */
180 
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
183 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
184 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
185 
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
188 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
189 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
190 #define _PAGE_READ	0x010		/* SW pte read bit */
191 #define _PAGE_WRITE	0x020		/* SW pte write bit */
192 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
193 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
195 
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201 
202 /* Set of bits not changed in pte_modify */
203 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
205 
206 /*
207  * handle_pte_fault uses pte_present and pte_none to find out the pte type
208  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209  * distinguish present from not-present ptes. It is changed only with the page
210  * table lock held.
211  *
212  * The following table gives the different possible bit combinations for
213  * the pte hardware and software bits in the last 12 bits of a pte
214  * (. unassigned bit, x don't care, t swap type):
215  *
216  *				842100000000
217  *				000084210000
218  *				000000008421
219  *				.IR.uswrdy.p
220  * empty			.10.00000000
221  * swap				.11..ttttt.0
222  * prot-none, clean, old	.11.xx0000.1
223  * prot-none, clean, young	.11.xx0001.1
224  * prot-none, dirty, old	.10.xx0010.1
225  * prot-none, dirty, young	.10.xx0011.1
226  * read-only, clean, old	.11.xx0100.1
227  * read-only, clean, young	.01.xx0101.1
228  * read-only, dirty, old	.11.xx0110.1
229  * read-only, dirty, young	.01.xx0111.1
230  * read-write, clean, old	.11.xx1100.1
231  * read-write, clean, young	.01.xx1101.1
232  * read-write, dirty, old	.10.xx1110.1
233  * read-write, dirty, young	.00.xx1111.1
234  * HW-bits: R read-only, I invalid
235  * SW-bits: p present, y young, d dirty, r read, w write, s special,
236  *	    u unused, l large
237  *
238  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
239  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
241  */
242 
243 /* Bits in the segment/region table address-space-control-element */
244 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
245 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
246 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
247 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
248 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
249 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
250 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
251 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
252 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
253 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
254 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
255 
256 /* Bits in the region table entry */
257 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
258 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
259 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
260 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
261 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
262 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
263 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
264 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
265 
266 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
272 
273 #define _REGION3_ENTRY_LARGE	0x400	/* RTTE-format control, large page  */
274 #define _REGION3_ENTRY_RO	0x200	/* page protection bit		    */
275 
276 /* Bits in the segment table entry */
277 #define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
278 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
280 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
281 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
282 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
283 
284 #define _SEGMENT_ENTRY		(0)
285 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
286 
287 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
289 #define _SEGMENT_ENTRY_SPLIT	0x0800	/* THP splitting bit */
290 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
291 #define _SEGMENT_ENTRY_READ	0x0002	/* SW segment read bit */
292 #define _SEGMENT_ENTRY_WRITE	0x0001	/* SW segment write bit */
293 
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296 #else
297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298 #endif
299 
300 /*
301  * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
302  *				dy..R...I...wr
303  * prot-none, clean, old	00..1...1...00
304  * prot-none, clean, young	01..1...1...00
305  * prot-none, dirty, old	10..1...1...00
306  * prot-none, dirty, young	11..1...1...00
307  * read-only, clean, old	00..1...1...01
308  * read-only, clean, young	01..1...0...01
309  * read-only, dirty, old	10..1...1...01
310  * read-only, dirty, young	11..1...0...01
311  * read-write, clean, old	00..1...1...11
312  * read-write, clean, young	01..1...0...11
313  * read-write, dirty, old	10..0...1...11
314  * read-write, dirty, young	11..0...0...11
315  * The segment table origin is used to distinguish empty (origin==0) from
316  * read-write, old segment table entries (origin!=0)
317  * HW-bits: R read-only, I invalid
318  * SW-bits: y young, d dirty, r read, w write
319  */
320 
321 #define _SEGMENT_ENTRY_SPLIT_BIT 11	/* THP splitting bit number */
322 
323 /* Page status table bits for virtualization */
324 #define PGSTE_ACC_BITS	0xf000000000000000UL
325 #define PGSTE_FP_BIT	0x0800000000000000UL
326 #define PGSTE_PCL_BIT	0x0080000000000000UL
327 #define PGSTE_HR_BIT	0x0040000000000000UL
328 #define PGSTE_HC_BIT	0x0020000000000000UL
329 #define PGSTE_GR_BIT	0x0004000000000000UL
330 #define PGSTE_GC_BIT	0x0002000000000000UL
331 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
332 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
333 
334 /* Guest Page State used for virtualization */
335 #define _PGSTE_GPS_ZERO		0x0000000080000000UL
336 #define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
337 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
338 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
339 
340 /*
341  * A user page table pointer has the space-switch-event bit, the
342  * private-space-control bit and the storage-alteration-event-control
343  * bit set. A kernel page table pointer doesn't need them.
344  */
345 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
346 				 _ASCE_ALT_EVENT)
347 
348 /*
349  * Page protection definitions.
350  */
351 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID)
352 #define PAGE_READ	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
353 				 _PAGE_INVALID | _PAGE_PROTECT)
354 #define PAGE_WRITE	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 				 _PAGE_INVALID | _PAGE_PROTECT)
356 
357 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
358 				 _PAGE_YOUNG | _PAGE_DIRTY)
359 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
360 				 _PAGE_YOUNG | _PAGE_DIRTY)
361 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
362 				 _PAGE_PROTECT)
363 
364 /*
365  * On s390 the page table entry has an invalid bit and a read-only bit.
366  * Read permission implies execute permission and write permission
367  * implies read permission.
368  */
369          /*xwr*/
370 #define __P000	PAGE_NONE
371 #define __P001	PAGE_READ
372 #define __P010	PAGE_READ
373 #define __P011	PAGE_READ
374 #define __P100	PAGE_READ
375 #define __P101	PAGE_READ
376 #define __P110	PAGE_READ
377 #define __P111	PAGE_READ
378 
379 #define __S000	PAGE_NONE
380 #define __S001	PAGE_READ
381 #define __S010	PAGE_WRITE
382 #define __S011	PAGE_WRITE
383 #define __S100	PAGE_READ
384 #define __S101	PAGE_READ
385 #define __S110	PAGE_WRITE
386 #define __S111	PAGE_WRITE
387 
388 /*
389  * Segment entry (large page) protection definitions.
390  */
391 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
392 				 _SEGMENT_ENTRY_PROTECT)
393 #define SEGMENT_READ	__pgprot(_SEGMENT_ENTRY_PROTECT | \
394 				 _SEGMENT_ENTRY_READ)
395 #define SEGMENT_WRITE	__pgprot(_SEGMENT_ENTRY_READ | \
396 				 _SEGMENT_ENTRY_WRITE)
397 
398 static inline int mm_has_pgste(struct mm_struct *mm)
399 {
400 #ifdef CONFIG_PGSTE
401 	if (unlikely(mm->context.has_pgste))
402 		return 1;
403 #endif
404 	return 0;
405 }
406 
407 static inline int mm_alloc_pgste(struct mm_struct *mm)
408 {
409 #ifdef CONFIG_PGSTE
410 	if (unlikely(mm->context.alloc_pgste))
411 		return 1;
412 #endif
413 	return 0;
414 }
415 
416 /*
417  * In the case that a guest uses storage keys
418  * faults should no longer be backed by zero pages
419  */
420 #define mm_forbids_zeropage mm_use_skey
421 static inline int mm_use_skey(struct mm_struct *mm)
422 {
423 #ifdef CONFIG_PGSTE
424 	if (mm->context.use_skey)
425 		return 1;
426 #endif
427 	return 0;
428 }
429 
430 /*
431  * pgd/pmd/pte query functions
432  */
433 static inline int pgd_present(pgd_t pgd)
434 {
435 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
436 		return 1;
437 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
438 }
439 
440 static inline int pgd_none(pgd_t pgd)
441 {
442 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
443 		return 0;
444 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
445 }
446 
447 static inline int pgd_bad(pgd_t pgd)
448 {
449 	/*
450 	 * With dynamic page table levels the pgd can be a region table
451 	 * entry or a segment table entry. Check for the bit that are
452 	 * invalid for either table entry.
453 	 */
454 	unsigned long mask =
455 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
456 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
457 	return (pgd_val(pgd) & mask) != 0;
458 }
459 
460 static inline int pud_present(pud_t pud)
461 {
462 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
463 		return 1;
464 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
465 }
466 
467 static inline int pud_none(pud_t pud)
468 {
469 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
470 		return 0;
471 	return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
472 }
473 
474 static inline int pud_large(pud_t pud)
475 {
476 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
477 		return 0;
478 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
479 }
480 
481 static inline int pud_bad(pud_t pud)
482 {
483 	/*
484 	 * With dynamic page table levels the pud can be a region table
485 	 * entry or a segment table entry. Check for the bit that are
486 	 * invalid for either table entry.
487 	 */
488 	unsigned long mask =
489 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
490 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
491 	return (pud_val(pud) & mask) != 0;
492 }
493 
494 static inline int pmd_present(pmd_t pmd)
495 {
496 	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
497 }
498 
499 static inline int pmd_none(pmd_t pmd)
500 {
501 	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
502 }
503 
504 static inline int pmd_large(pmd_t pmd)
505 {
506 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
507 }
508 
509 static inline unsigned long pmd_pfn(pmd_t pmd)
510 {
511 	unsigned long origin_mask;
512 
513 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
514 	if (pmd_large(pmd))
515 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
516 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
517 }
518 
519 static inline int pmd_bad(pmd_t pmd)
520 {
521 	if (pmd_large(pmd))
522 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
523 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
524 }
525 
526 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
527 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
528 				 unsigned long addr, pmd_t *pmdp);
529 
530 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
531 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
532 				 unsigned long address, pmd_t *pmdp,
533 				 pmd_t entry, int dirty);
534 
535 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
536 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
537 				  unsigned long address, pmd_t *pmdp);
538 
539 #define __HAVE_ARCH_PMD_WRITE
540 static inline int pmd_write(pmd_t pmd)
541 {
542 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
543 }
544 
545 static inline int pmd_dirty(pmd_t pmd)
546 {
547 	int dirty = 1;
548 	if (pmd_large(pmd))
549 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
550 	return dirty;
551 }
552 
553 static inline int pmd_young(pmd_t pmd)
554 {
555 	int young = 1;
556 	if (pmd_large(pmd))
557 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
558 	return young;
559 }
560 
561 static inline int pte_present(pte_t pte)
562 {
563 	/* Bit pattern: (pte & 0x001) == 0x001 */
564 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
565 }
566 
567 static inline int pte_none(pte_t pte)
568 {
569 	/* Bit pattern: pte == 0x400 */
570 	return pte_val(pte) == _PAGE_INVALID;
571 }
572 
573 static inline int pte_swap(pte_t pte)
574 {
575 	/* Bit pattern: (pte & 0x201) == 0x200 */
576 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
577 		== _PAGE_PROTECT;
578 }
579 
580 static inline int pte_special(pte_t pte)
581 {
582 	return (pte_val(pte) & _PAGE_SPECIAL);
583 }
584 
585 #define __HAVE_ARCH_PTE_SAME
586 static inline int pte_same(pte_t a, pte_t b)
587 {
588 	return pte_val(a) == pte_val(b);
589 }
590 
591 #ifdef CONFIG_NUMA_BALANCING
592 static inline int pte_protnone(pte_t pte)
593 {
594 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
595 }
596 
597 static inline int pmd_protnone(pmd_t pmd)
598 {
599 	/* pmd_large(pmd) implies pmd_present(pmd) */
600 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
601 }
602 #endif
603 
604 static inline int pte_soft_dirty(pte_t pte)
605 {
606 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
607 }
608 #define pte_swp_soft_dirty pte_soft_dirty
609 
610 static inline pte_t pte_mksoft_dirty(pte_t pte)
611 {
612 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
613 	return pte;
614 }
615 #define pte_swp_mksoft_dirty pte_mksoft_dirty
616 
617 static inline pte_t pte_clear_soft_dirty(pte_t pte)
618 {
619 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
620 	return pte;
621 }
622 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
623 
624 static inline int pmd_soft_dirty(pmd_t pmd)
625 {
626 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
627 }
628 
629 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
630 {
631 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
632 	return pmd;
633 }
634 
635 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
636 {
637 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
638 	return pmd;
639 }
640 
641 static inline pgste_t pgste_get_lock(pte_t *ptep)
642 {
643 	unsigned long new = 0;
644 #ifdef CONFIG_PGSTE
645 	unsigned long old;
646 
647 	preempt_disable();
648 	asm(
649 		"	lg	%0,%2\n"
650 		"0:	lgr	%1,%0\n"
651 		"	nihh	%0,0xff7f\n"	/* clear PCL bit in old */
652 		"	oihh	%1,0x0080\n"	/* set PCL bit in new */
653 		"	csg	%0,%1,%2\n"
654 		"	jl	0b\n"
655 		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
656 		: "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
657 #endif
658 	return __pgste(new);
659 }
660 
661 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
662 {
663 #ifdef CONFIG_PGSTE
664 	asm(
665 		"	nihh	%1,0xff7f\n"	/* clear PCL bit */
666 		"	stg	%1,%0\n"
667 		: "=Q" (ptep[PTRS_PER_PTE])
668 		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
669 		: "cc", "memory");
670 	preempt_enable();
671 #endif
672 }
673 
674 static inline pgste_t pgste_get(pte_t *ptep)
675 {
676 	unsigned long pgste = 0;
677 #ifdef CONFIG_PGSTE
678 	pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
679 #endif
680 	return __pgste(pgste);
681 }
682 
683 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
684 {
685 #ifdef CONFIG_PGSTE
686 	*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
687 #endif
688 }
689 
690 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
691 				       struct mm_struct *mm)
692 {
693 #ifdef CONFIG_PGSTE
694 	unsigned long address, bits, skey;
695 
696 	if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
697 		return pgste;
698 	address = pte_val(*ptep) & PAGE_MASK;
699 	skey = (unsigned long) page_get_storage_key(address);
700 	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
701 	/* Transfer page changed & referenced bit to guest bits in pgste */
702 	pgste_val(pgste) |= bits << 48;		/* GR bit & GC bit */
703 	/* Copy page access key and fetch protection bit to pgste */
704 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
705 	pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
706 #endif
707 	return pgste;
708 
709 }
710 
711 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
712 				 struct mm_struct *mm)
713 {
714 #ifdef CONFIG_PGSTE
715 	unsigned long address;
716 	unsigned long nkey;
717 
718 	if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
719 		return;
720 	VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
721 	address = pte_val(entry) & PAGE_MASK;
722 	/*
723 	 * Set page access key and fetch protection bit from pgste.
724 	 * The guest C/R information is still in the PGSTE, set real
725 	 * key C/R to 0.
726 	 */
727 	nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
728 	nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
729 	page_set_storage_key(address, nkey, 0);
730 #endif
731 }
732 
733 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
734 {
735 	if ((pte_val(entry) & _PAGE_PRESENT) &&
736 	    (pte_val(entry) & _PAGE_WRITE) &&
737 	    !(pte_val(entry) & _PAGE_INVALID)) {
738 		if (!MACHINE_HAS_ESOP) {
739 			/*
740 			 * Without enhanced suppression-on-protection force
741 			 * the dirty bit on for all writable ptes.
742 			 */
743 			pte_val(entry) |= _PAGE_DIRTY;
744 			pte_val(entry) &= ~_PAGE_PROTECT;
745 		}
746 		if (!(pte_val(entry) & _PAGE_PROTECT))
747 			/* This pte allows write access, set user-dirty */
748 			pgste_val(pgste) |= PGSTE_UC_BIT;
749 	}
750 	*ptep = entry;
751 	return pgste;
752 }
753 
754 /**
755  * struct gmap_struct - guest address space
756  * @crst_list: list of all crst tables used in the guest address space
757  * @mm: pointer to the parent mm_struct
758  * @guest_to_host: radix tree with guest to host address translation
759  * @host_to_guest: radix tree with pointer to segment table entries
760  * @guest_table_lock: spinlock to protect all entries in the guest page table
761  * @table: pointer to the page directory
762  * @asce: address space control element for gmap page table
763  * @pfault_enabled: defines if pfaults are applicable for the guest
764  */
765 struct gmap {
766 	struct list_head list;
767 	struct list_head crst_list;
768 	struct mm_struct *mm;
769 	struct radix_tree_root guest_to_host;
770 	struct radix_tree_root host_to_guest;
771 	spinlock_t guest_table_lock;
772 	unsigned long *table;
773 	unsigned long asce;
774 	unsigned long asce_end;
775 	void *private;
776 	bool pfault_enabled;
777 };
778 
779 /**
780  * struct gmap_notifier - notify function block for page invalidation
781  * @notifier_call: address of callback function
782  */
783 struct gmap_notifier {
784 	struct list_head list;
785 	void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
786 };
787 
788 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
789 void gmap_free(struct gmap *gmap);
790 void gmap_enable(struct gmap *gmap);
791 void gmap_disable(struct gmap *gmap);
792 int gmap_map_segment(struct gmap *gmap, unsigned long from,
793 		     unsigned long to, unsigned long len);
794 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
795 unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
796 unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
797 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
798 int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
799 void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
800 void __gmap_zap(struct gmap *, unsigned long gaddr);
801 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
802 
803 
804 void gmap_register_ipte_notifier(struct gmap_notifier *);
805 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
806 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
807 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
808 
809 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
810 					unsigned long addr,
811 					pte_t *ptep, pgste_t pgste)
812 {
813 #ifdef CONFIG_PGSTE
814 	if (pgste_val(pgste) & PGSTE_IN_BIT) {
815 		pgste_val(pgste) &= ~PGSTE_IN_BIT;
816 		gmap_do_ipte_notify(mm, addr, ptep);
817 	}
818 #endif
819 	return pgste;
820 }
821 
822 /*
823  * Certain architectures need to do special things when PTEs
824  * within a page table are directly modified.  Thus, the following
825  * hook is made available.
826  */
827 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
828 			      pte_t *ptep, pte_t entry)
829 {
830 	pgste_t pgste;
831 
832 	if (mm_has_pgste(mm)) {
833 		pgste = pgste_get_lock(ptep);
834 		pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
835 		pgste_set_key(ptep, pgste, entry, mm);
836 		pgste = pgste_set_pte(ptep, pgste, entry);
837 		pgste_set_unlock(ptep, pgste);
838 	} else {
839 		*ptep = entry;
840 	}
841 }
842 
843 /*
844  * query functions pte_write/pte_dirty/pte_young only work if
845  * pte_present() is true. Undefined behaviour if not..
846  */
847 static inline int pte_write(pte_t pte)
848 {
849 	return (pte_val(pte) & _PAGE_WRITE) != 0;
850 }
851 
852 static inline int pte_dirty(pte_t pte)
853 {
854 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
855 }
856 
857 static inline int pte_young(pte_t pte)
858 {
859 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
860 }
861 
862 #define __HAVE_ARCH_PTE_UNUSED
863 static inline int pte_unused(pte_t pte)
864 {
865 	return pte_val(pte) & _PAGE_UNUSED;
866 }
867 
868 /*
869  * pgd/pmd/pte modification functions
870  */
871 
872 static inline void pgd_clear(pgd_t *pgd)
873 {
874 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
875 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
876 }
877 
878 static inline void pud_clear(pud_t *pud)
879 {
880 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
881 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
882 }
883 
884 static inline void pmd_clear(pmd_t *pmdp)
885 {
886 	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
887 }
888 
889 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
890 {
891 	pte_val(*ptep) = _PAGE_INVALID;
892 }
893 
894 /*
895  * The following pte modification functions only work if
896  * pte_present() is true. Undefined behaviour if not..
897  */
898 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
899 {
900 	pte_val(pte) &= _PAGE_CHG_MASK;
901 	pte_val(pte) |= pgprot_val(newprot);
902 	/*
903 	 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
904 	 * invalid bit set, clear it again for readable, young pages
905 	 */
906 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
907 		pte_val(pte) &= ~_PAGE_INVALID;
908 	/*
909 	 * newprot for PAGE_READ and PAGE_WRITE has the page protection
910 	 * bit set, clear it again for writable, dirty pages
911 	 */
912 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
913 		pte_val(pte) &= ~_PAGE_PROTECT;
914 	return pte;
915 }
916 
917 static inline pte_t pte_wrprotect(pte_t pte)
918 {
919 	pte_val(pte) &= ~_PAGE_WRITE;
920 	pte_val(pte) |= _PAGE_PROTECT;
921 	return pte;
922 }
923 
924 static inline pte_t pte_mkwrite(pte_t pte)
925 {
926 	pte_val(pte) |= _PAGE_WRITE;
927 	if (pte_val(pte) & _PAGE_DIRTY)
928 		pte_val(pte) &= ~_PAGE_PROTECT;
929 	return pte;
930 }
931 
932 static inline pte_t pte_mkclean(pte_t pte)
933 {
934 	pte_val(pte) &= ~_PAGE_DIRTY;
935 	pte_val(pte) |= _PAGE_PROTECT;
936 	return pte;
937 }
938 
939 static inline pte_t pte_mkdirty(pte_t pte)
940 {
941 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
942 	if (pte_val(pte) & _PAGE_WRITE)
943 		pte_val(pte) &= ~_PAGE_PROTECT;
944 	return pte;
945 }
946 
947 static inline pte_t pte_mkold(pte_t pte)
948 {
949 	pte_val(pte) &= ~_PAGE_YOUNG;
950 	pte_val(pte) |= _PAGE_INVALID;
951 	return pte;
952 }
953 
954 static inline pte_t pte_mkyoung(pte_t pte)
955 {
956 	pte_val(pte) |= _PAGE_YOUNG;
957 	if (pte_val(pte) & _PAGE_READ)
958 		pte_val(pte) &= ~_PAGE_INVALID;
959 	return pte;
960 }
961 
962 static inline pte_t pte_mkspecial(pte_t pte)
963 {
964 	pte_val(pte) |= _PAGE_SPECIAL;
965 	return pte;
966 }
967 
968 #ifdef CONFIG_HUGETLB_PAGE
969 static inline pte_t pte_mkhuge(pte_t pte)
970 {
971 	pte_val(pte) |= _PAGE_LARGE;
972 	return pte;
973 }
974 #endif
975 
976 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
977 {
978 	unsigned long pto = (unsigned long) ptep;
979 
980 	/* Invalidation + global TLB flush for the pte */
981 	asm volatile(
982 		"	ipte	%2,%3"
983 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
984 }
985 
986 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
987 {
988 	unsigned long pto = (unsigned long) ptep;
989 
990 	/* Invalidation + local TLB flush for the pte */
991 	asm volatile(
992 		"	.insn rrf,0xb2210000,%2,%3,0,1"
993 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
994 }
995 
996 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
997 {
998 	unsigned long pto = (unsigned long) ptep;
999 
1000 	/* Invalidate a range of ptes + global TLB flush of the ptes */
1001 	do {
1002 		asm volatile(
1003 			"	.insn rrf,0xb2210000,%2,%0,%1,0"
1004 			: "+a" (address), "+a" (nr) : "a" (pto) : "memory");
1005 	} while (nr != 255);
1006 }
1007 
1008 static inline void ptep_flush_direct(struct mm_struct *mm,
1009 				     unsigned long address, pte_t *ptep)
1010 {
1011 	int active, count;
1012 
1013 	if (pte_val(*ptep) & _PAGE_INVALID)
1014 		return;
1015 	active = (mm == current->active_mm) ? 1 : 0;
1016 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1017 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1018 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1019 		__ptep_ipte_local(address, ptep);
1020 	else
1021 		__ptep_ipte(address, ptep);
1022 	atomic_sub(0x10000, &mm->context.attach_count);
1023 }
1024 
1025 static inline void ptep_flush_lazy(struct mm_struct *mm,
1026 				   unsigned long address, pte_t *ptep)
1027 {
1028 	int active, count;
1029 
1030 	if (pte_val(*ptep) & _PAGE_INVALID)
1031 		return;
1032 	active = (mm == current->active_mm) ? 1 : 0;
1033 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1034 	if ((count & 0xffff) <= active) {
1035 		pte_val(*ptep) |= _PAGE_INVALID;
1036 		mm->context.flush_mm = 1;
1037 	} else
1038 		__ptep_ipte(address, ptep);
1039 	atomic_sub(0x10000, &mm->context.attach_count);
1040 }
1041 
1042 /*
1043  * Get (and clear) the user dirty bit for a pte.
1044  */
1045 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1046 						 unsigned long addr,
1047 						 pte_t *ptep)
1048 {
1049 	pgste_t pgste;
1050 	pte_t pte;
1051 	int dirty;
1052 
1053 	if (!mm_has_pgste(mm))
1054 		return 0;
1055 	pgste = pgste_get_lock(ptep);
1056 	dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1057 	pgste_val(pgste) &= ~PGSTE_UC_BIT;
1058 	pte = *ptep;
1059 	if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1060 		pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1061 		__ptep_ipte(addr, ptep);
1062 		if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1063 			pte_val(pte) |= _PAGE_PROTECT;
1064 		else
1065 			pte_val(pte) |= _PAGE_INVALID;
1066 		*ptep = pte;
1067 	}
1068 	pgste_set_unlock(ptep, pgste);
1069 	return dirty;
1070 }
1071 
1072 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1073 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1074 					    unsigned long addr, pte_t *ptep)
1075 {
1076 	pgste_t pgste;
1077 	pte_t pte, oldpte;
1078 	int young;
1079 
1080 	if (mm_has_pgste(vma->vm_mm)) {
1081 		pgste = pgste_get_lock(ptep);
1082 		pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1083 	}
1084 
1085 	oldpte = pte = *ptep;
1086 	ptep_flush_direct(vma->vm_mm, addr, ptep);
1087 	young = pte_young(pte);
1088 	pte = pte_mkold(pte);
1089 
1090 	if (mm_has_pgste(vma->vm_mm)) {
1091 		pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1092 		pgste = pgste_set_pte(ptep, pgste, pte);
1093 		pgste_set_unlock(ptep, pgste);
1094 	} else
1095 		*ptep = pte;
1096 
1097 	return young;
1098 }
1099 
1100 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1101 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1102 					 unsigned long address, pte_t *ptep)
1103 {
1104 	return ptep_test_and_clear_young(vma, address, ptep);
1105 }
1106 
1107 /*
1108  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1109  * both clear the TLB for the unmapped pte. The reason is that
1110  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1111  * to modify an active pte. The sequence is
1112  *   1) ptep_get_and_clear
1113  *   2) set_pte_at
1114  *   3) flush_tlb_range
1115  * On s390 the tlb needs to get flushed with the modification of the pte
1116  * if the pte is active. The only way how this can be implemented is to
1117  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1118  * is a nop.
1119  */
1120 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1121 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1122 				       unsigned long address, pte_t *ptep)
1123 {
1124 	pgste_t pgste;
1125 	pte_t pte;
1126 
1127 	if (mm_has_pgste(mm)) {
1128 		pgste = pgste_get_lock(ptep);
1129 		pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1130 	}
1131 
1132 	pte = *ptep;
1133 	ptep_flush_lazy(mm, address, ptep);
1134 	pte_val(*ptep) = _PAGE_INVALID;
1135 
1136 	if (mm_has_pgste(mm)) {
1137 		pgste = pgste_update_all(&pte, pgste, mm);
1138 		pgste_set_unlock(ptep, pgste);
1139 	}
1140 	return pte;
1141 }
1142 
1143 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1144 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1145 					   unsigned long address,
1146 					   pte_t *ptep)
1147 {
1148 	pgste_t pgste;
1149 	pte_t pte;
1150 
1151 	if (mm_has_pgste(mm)) {
1152 		pgste = pgste_get_lock(ptep);
1153 		pgste_ipte_notify(mm, address, ptep, pgste);
1154 	}
1155 
1156 	pte = *ptep;
1157 	ptep_flush_lazy(mm, address, ptep);
1158 
1159 	if (mm_has_pgste(mm)) {
1160 		pgste = pgste_update_all(&pte, pgste, mm);
1161 		pgste_set(ptep, pgste);
1162 	}
1163 	return pte;
1164 }
1165 
1166 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1167 					   unsigned long address,
1168 					   pte_t *ptep, pte_t pte)
1169 {
1170 	pgste_t pgste;
1171 
1172 	if (mm_has_pgste(mm)) {
1173 		pgste = pgste_get(ptep);
1174 		pgste_set_key(ptep, pgste, pte, mm);
1175 		pgste = pgste_set_pte(ptep, pgste, pte);
1176 		pgste_set_unlock(ptep, pgste);
1177 	} else
1178 		*ptep = pte;
1179 }
1180 
1181 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1182 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1183 				     unsigned long address, pte_t *ptep)
1184 {
1185 	pgste_t pgste;
1186 	pte_t pte;
1187 
1188 	if (mm_has_pgste(vma->vm_mm)) {
1189 		pgste = pgste_get_lock(ptep);
1190 		pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1191 	}
1192 
1193 	pte = *ptep;
1194 	ptep_flush_direct(vma->vm_mm, address, ptep);
1195 	pte_val(*ptep) = _PAGE_INVALID;
1196 
1197 	if (mm_has_pgste(vma->vm_mm)) {
1198 		if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1199 		    _PGSTE_GPS_USAGE_UNUSED)
1200 			pte_val(pte) |= _PAGE_UNUSED;
1201 		pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1202 		pgste_set_unlock(ptep, pgste);
1203 	}
1204 	return pte;
1205 }
1206 
1207 /*
1208  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1209  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1210  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1211  * cannot be accessed while the batched unmap is running. In this case
1212  * full==1 and a simple pte_clear is enough. See tlb.h.
1213  */
1214 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1215 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1216 					    unsigned long address,
1217 					    pte_t *ptep, int full)
1218 {
1219 	pgste_t pgste;
1220 	pte_t pte;
1221 
1222 	if (!full && mm_has_pgste(mm)) {
1223 		pgste = pgste_get_lock(ptep);
1224 		pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1225 	}
1226 
1227 	pte = *ptep;
1228 	if (!full)
1229 		ptep_flush_lazy(mm, address, ptep);
1230 	pte_val(*ptep) = _PAGE_INVALID;
1231 
1232 	if (!full && mm_has_pgste(mm)) {
1233 		pgste = pgste_update_all(&pte, pgste, mm);
1234 		pgste_set_unlock(ptep, pgste);
1235 	}
1236 	return pte;
1237 }
1238 
1239 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1240 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1241 				       unsigned long address, pte_t *ptep)
1242 {
1243 	pgste_t pgste;
1244 	pte_t pte = *ptep;
1245 
1246 	if (pte_write(pte)) {
1247 		if (mm_has_pgste(mm)) {
1248 			pgste = pgste_get_lock(ptep);
1249 			pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1250 		}
1251 
1252 		ptep_flush_lazy(mm, address, ptep);
1253 		pte = pte_wrprotect(pte);
1254 
1255 		if (mm_has_pgste(mm)) {
1256 			pgste = pgste_set_pte(ptep, pgste, pte);
1257 			pgste_set_unlock(ptep, pgste);
1258 		} else
1259 			*ptep = pte;
1260 	}
1261 	return pte;
1262 }
1263 
1264 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1265 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1266 					unsigned long address, pte_t *ptep,
1267 					pte_t entry, int dirty)
1268 {
1269 	pgste_t pgste;
1270 	pte_t oldpte;
1271 
1272 	oldpte = *ptep;
1273 	if (pte_same(oldpte, entry))
1274 		return 0;
1275 	if (mm_has_pgste(vma->vm_mm)) {
1276 		pgste = pgste_get_lock(ptep);
1277 		pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1278 	}
1279 
1280 	ptep_flush_direct(vma->vm_mm, address, ptep);
1281 
1282 	if (mm_has_pgste(vma->vm_mm)) {
1283 		if (pte_val(oldpte) & _PAGE_INVALID)
1284 			pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1285 		pgste = pgste_set_pte(ptep, pgste, entry);
1286 		pgste_set_unlock(ptep, pgste);
1287 	} else
1288 		*ptep = entry;
1289 	return 1;
1290 }
1291 
1292 /*
1293  * Conversion functions: convert a page and protection to a page entry,
1294  * and a page entry and page directory to the page they refer to.
1295  */
1296 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1297 {
1298 	pte_t __pte;
1299 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1300 	return pte_mkyoung(__pte);
1301 }
1302 
1303 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1304 {
1305 	unsigned long physpage = page_to_phys(page);
1306 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1307 
1308 	if (pte_write(__pte) && PageDirty(page))
1309 		__pte = pte_mkdirty(__pte);
1310 	return __pte;
1311 }
1312 
1313 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1314 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1315 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1316 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1317 
1318 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1319 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1320 
1321 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1322 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1323 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1324 
1325 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1326 {
1327 	pud_t *pud = (pud_t *) pgd;
1328 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1329 		pud = (pud_t *) pgd_deref(*pgd);
1330 	return pud  + pud_index(address);
1331 }
1332 
1333 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1334 {
1335 	pmd_t *pmd = (pmd_t *) pud;
1336 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1337 		pmd = (pmd_t *) pud_deref(*pud);
1338 	return pmd + pmd_index(address);
1339 }
1340 
1341 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1342 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1343 #define pte_page(x) pfn_to_page(pte_pfn(x))
1344 
1345 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1346 
1347 /* Find an entry in the lowest level page table.. */
1348 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1349 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1350 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1351 #define pte_unmap(pte) do { } while (0)
1352 
1353 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1354 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1355 {
1356 	/*
1357 	 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1358 	 * Convert to segment table entry format.
1359 	 */
1360 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1361 		return pgprot_val(SEGMENT_NONE);
1362 	if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1363 		return pgprot_val(SEGMENT_READ);
1364 	return pgprot_val(SEGMENT_WRITE);
1365 }
1366 
1367 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1368 {
1369 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1370 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1371 	return pmd;
1372 }
1373 
1374 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1375 {
1376 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1377 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1378 		return pmd;
1379 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1380 	return pmd;
1381 }
1382 
1383 static inline pmd_t pmd_mkclean(pmd_t pmd)
1384 {
1385 	if (pmd_large(pmd)) {
1386 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1387 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1388 	}
1389 	return pmd;
1390 }
1391 
1392 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1393 {
1394 	if (pmd_large(pmd)) {
1395 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1396 				_SEGMENT_ENTRY_SOFT_DIRTY;
1397 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1398 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1399 	}
1400 	return pmd;
1401 }
1402 
1403 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1404 {
1405 	if (pmd_large(pmd)) {
1406 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1407 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1408 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1409 	}
1410 	return pmd;
1411 }
1412 
1413 static inline pmd_t pmd_mkold(pmd_t pmd)
1414 {
1415 	if (pmd_large(pmd)) {
1416 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1417 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1418 	}
1419 	return pmd;
1420 }
1421 
1422 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1423 {
1424 	if (pmd_large(pmd)) {
1425 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1426 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1427 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT |
1428 			_SEGMENT_ENTRY_SOFT_DIRTY;
1429 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1430 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1431 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1432 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1433 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1434 		return pmd;
1435 	}
1436 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1437 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1438 	return pmd;
1439 }
1440 
1441 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1442 {
1443 	pmd_t __pmd;
1444 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1445 	return __pmd;
1446 }
1447 
1448 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1449 
1450 static inline void __pmdp_csp(pmd_t *pmdp)
1451 {
1452 	register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1453 	register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1454 					       _SEGMENT_ENTRY_INVALID;
1455 	register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1456 
1457 	asm volatile(
1458 		"	csp %1,%3"
1459 		: "=m" (*pmdp)
1460 		: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1461 }
1462 
1463 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1464 {
1465 	unsigned long sto;
1466 
1467 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1468 	asm volatile(
1469 		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1470 		: "=m" (*pmdp)
1471 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1472 		: "cc" );
1473 }
1474 
1475 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1476 {
1477 	unsigned long sto;
1478 
1479 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1480 	asm volatile(
1481 		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1482 		: "=m" (*pmdp)
1483 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1484 		: "cc" );
1485 }
1486 
1487 static inline void pmdp_flush_direct(struct mm_struct *mm,
1488 				     unsigned long address, pmd_t *pmdp)
1489 {
1490 	int active, count;
1491 
1492 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1493 		return;
1494 	if (!MACHINE_HAS_IDTE) {
1495 		__pmdp_csp(pmdp);
1496 		return;
1497 	}
1498 	active = (mm == current->active_mm) ? 1 : 0;
1499 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1500 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1501 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1502 		__pmdp_idte_local(address, pmdp);
1503 	else
1504 		__pmdp_idte(address, pmdp);
1505 	atomic_sub(0x10000, &mm->context.attach_count);
1506 }
1507 
1508 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1509 				   unsigned long address, pmd_t *pmdp)
1510 {
1511 	int active, count;
1512 
1513 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1514 		return;
1515 	active = (mm == current->active_mm) ? 1 : 0;
1516 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1517 	if ((count & 0xffff) <= active) {
1518 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1519 		mm->context.flush_mm = 1;
1520 	} else if (MACHINE_HAS_IDTE)
1521 		__pmdp_idte(address, pmdp);
1522 	else
1523 		__pmdp_csp(pmdp);
1524 	atomic_sub(0x10000, &mm->context.attach_count);
1525 }
1526 
1527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1528 
1529 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1530 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1531 				       pgtable_t pgtable);
1532 
1533 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1534 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1535 
1536 static inline int pmd_trans_splitting(pmd_t pmd)
1537 {
1538 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1539 		(pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1540 }
1541 
1542 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1543 			      pmd_t *pmdp, pmd_t entry)
1544 {
1545 	*pmdp = entry;
1546 }
1547 
1548 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1549 {
1550 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1551 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1552 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1553 	return pmd;
1554 }
1555 
1556 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1557 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1558 					    unsigned long address, pmd_t *pmdp)
1559 {
1560 	pmd_t pmd;
1561 
1562 	pmd = *pmdp;
1563 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1564 	*pmdp = pmd_mkold(pmd);
1565 	return pmd_young(pmd);
1566 }
1567 
1568 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1569 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1570 					    unsigned long address, pmd_t *pmdp)
1571 {
1572 	pmd_t pmd = *pmdp;
1573 
1574 	pmdp_flush_direct(mm, address, pmdp);
1575 	pmd_clear(pmdp);
1576 	return pmd;
1577 }
1578 
1579 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1580 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1581 						 unsigned long address,
1582 						 pmd_t *pmdp, int full)
1583 {
1584 	pmd_t pmd = *pmdp;
1585 
1586 	if (!full)
1587 		pmdp_flush_lazy(mm, address, pmdp);
1588 	pmd_clear(pmdp);
1589 	return pmd;
1590 }
1591 
1592 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1593 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1594 					  unsigned long address, pmd_t *pmdp)
1595 {
1596 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1597 }
1598 
1599 #define __HAVE_ARCH_PMDP_INVALIDATE
1600 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1601 				   unsigned long address, pmd_t *pmdp)
1602 {
1603 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1604 }
1605 
1606 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1607 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1608 				      unsigned long address, pmd_t *pmdp)
1609 {
1610 	pmd_t pmd = *pmdp;
1611 
1612 	if (pmd_write(pmd)) {
1613 		pmdp_flush_direct(mm, address, pmdp);
1614 		set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1615 	}
1616 }
1617 
1618 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1619 					unsigned long address,
1620 					pmd_t *pmdp)
1621 {
1622 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1623 }
1624 #define pmdp_collapse_flush pmdp_collapse_flush
1625 
1626 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1627 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1628 
1629 static inline int pmd_trans_huge(pmd_t pmd)
1630 {
1631 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1632 }
1633 
1634 static inline int has_transparent_hugepage(void)
1635 {
1636 	return MACHINE_HAS_HPAGE ? 1 : 0;
1637 }
1638 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1639 
1640 /*
1641  * 64 bit swap entry format:
1642  * A page-table entry has some bits we have to treat in a special way.
1643  * Bits 52 and bit 55 have to be zero, otherwise a specification
1644  * exception will occur instead of a page translation exception. The
1645  * specification exception has the bad habit not to store necessary
1646  * information in the lowcore.
1647  * Bits 54 and 63 are used to indicate the page type.
1648  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1649  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1650  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1651  * for the offset.
1652  * |			  offset			|01100|type |00|
1653  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1654  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1655  */
1656 
1657 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1658 #define __SWP_OFFSET_SHIFT	12
1659 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1660 #define __SWP_TYPE_SHIFT	2
1661 
1662 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1663 {
1664 	pte_t pte;
1665 
1666 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1667 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1668 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1669 	return pte;
1670 }
1671 
1672 static inline unsigned long __swp_type(swp_entry_t entry)
1673 {
1674 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1675 }
1676 
1677 static inline unsigned long __swp_offset(swp_entry_t entry)
1678 {
1679 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1680 }
1681 
1682 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1683 {
1684 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1685 }
1686 
1687 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1688 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1689 
1690 #endif /* !__ASSEMBLY__ */
1691 
1692 #define kern_addr_valid(addr)   (1)
1693 
1694 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1695 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1696 extern int s390_enable_sie(void);
1697 extern int s390_enable_skey(void);
1698 extern void s390_reset_cmma(struct mm_struct *mm);
1699 
1700 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1701 #define HAVE_ARCH_UNMAPPED_AREA
1702 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1703 
1704 /*
1705  * No page table caches to initialise
1706  */
1707 static inline void pgtable_cache_init(void) { }
1708 static inline void check_pgt_cache(void) { }
1709 
1710 #include <asm-generic/pgtable.h>
1711 
1712 #endif /* _S390_PAGE_H */
1713