xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision 9ac8d3fb)
1 /*
2  *  include/asm-s390/pgtable.h
3  *
4  *  S390 version
5  *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
6  *    Author(s): Hartmut Penner (hp@de.ibm.com)
7  *               Ulrich Weigand (weigand@de.ibm.com)
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
9  *
10  *  Derived from "include/asm-i386/pgtable.h"
11  */
12 
13 #ifndef _ASM_S390_PGTABLE_H
14 #define _ASM_S390_PGTABLE_H
15 
16 /*
17  * The Linux memory management assumes a three-level page table setup. For
18  * s390 31 bit we "fold" the mid level into the top-level page table, so
19  * that we physically have the same two-level page table as the s390 mmu
20  * expects in 31 bit mode. For s390 64 bit we use three of the five levels
21  * the hardware provides (region first and region second tables are not
22  * used).
23  *
24  * The "pgd_xxx()" functions are trivial for a folded two-level
25  * setup: the pgd is never bad, and a pmd always exists (as it's folded
26  * into the pgd entry)
27  *
28  * This file contains the functions and defines necessary to modify and use
29  * the S390 page table tree.
30  */
31 #ifndef __ASSEMBLY__
32 #include <linux/sched.h>
33 #include <linux/mm_types.h>
34 #include <asm/bitops.h>
35 #include <asm/bug.h>
36 #include <asm/processor.h>
37 
38 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
39 extern void paging_init(void);
40 extern void vmem_map_init(void);
41 
42 /*
43  * The S390 doesn't have any external MMU info: the kernel page
44  * tables contain all the necessary information.
45  */
46 #define update_mmu_cache(vma, address, pte)     do { } while (0)
47 
48 /*
49  * ZERO_PAGE is a global shared page that is always zero: used
50  * for zero-mapped memory areas etc..
51  */
52 extern char empty_zero_page[PAGE_SIZE];
53 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
54 #endif /* !__ASSEMBLY__ */
55 
56 /*
57  * PMD_SHIFT determines the size of the area a second-level page
58  * table can map
59  * PGDIR_SHIFT determines what a third-level page table entry can map
60  */
61 #ifndef __s390x__
62 # define PMD_SHIFT	20
63 # define PUD_SHIFT	20
64 # define PGDIR_SHIFT	20
65 #else /* __s390x__ */
66 # define PMD_SHIFT	20
67 # define PUD_SHIFT	31
68 # define PGDIR_SHIFT	42
69 #endif /* __s390x__ */
70 
71 #define PMD_SIZE        (1UL << PMD_SHIFT)
72 #define PMD_MASK        (~(PMD_SIZE-1))
73 #define PUD_SIZE	(1UL << PUD_SHIFT)
74 #define PUD_MASK	(~(PUD_SIZE-1))
75 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
76 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
77 
78 /*
79  * entries per page directory level: the S390 is two-level, so
80  * we don't really have any PMD directory physically.
81  * for S390 segment-table entries are combined to one PGD
82  * that leads to 1024 pte per pgd
83  */
84 #define PTRS_PER_PTE	256
85 #ifndef __s390x__
86 #define PTRS_PER_PMD	1
87 #define PTRS_PER_PUD	1
88 #else /* __s390x__ */
89 #define PTRS_PER_PMD	2048
90 #define PTRS_PER_PUD	2048
91 #endif /* __s390x__ */
92 #define PTRS_PER_PGD	2048
93 
94 #define FIRST_USER_ADDRESS  0
95 
96 #define pte_ERROR(e) \
97 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
98 #define pmd_ERROR(e) \
99 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
100 #define pud_ERROR(e) \
101 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
102 #define pgd_ERROR(e) \
103 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
104 
105 #ifndef __ASSEMBLY__
106 /*
107  * The vmalloc area will always be on the topmost area of the kernel
108  * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
109  * which should be enough for any sane case.
110  * By putting vmalloc at the top, we maximise the gap between physical
111  * memory and vmalloc to catch misplaced memory accesses. As a side
112  * effect, this also makes sure that 64 bit module code cannot be used
113  * as system call address.
114  */
115 #ifndef __s390x__
116 #define VMALLOC_START	0x78000000UL
117 #define VMALLOC_END	0x7e000000UL
118 #define VMEM_MAP_END	0x80000000UL
119 #else /* __s390x__ */
120 #define VMALLOC_START	0x3e000000000UL
121 #define VMALLOC_END	0x3e040000000UL
122 #define VMEM_MAP_END	0x40000000000UL
123 #endif /* __s390x__ */
124 
125 /*
126  * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
127  * mapping. This needs to be calculated at compile time since the size of the
128  * VMEM_MAP is static but the size of struct page can change.
129  */
130 #define VMEM_MAX_PAGES	((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
131 #define VMEM_MAX_PFN	min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
132 #define VMEM_MAX_PHYS	((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
133 #define vmemmap		((struct page *) VMALLOC_END)
134 
135 /*
136  * A 31 bit pagetable entry of S390 has following format:
137  *  |   PFRA          |    |  OS  |
138  * 0                   0IP0
139  * 00000000001111111111222222222233
140  * 01234567890123456789012345678901
141  *
142  * I Page-Invalid Bit:    Page is not available for address-translation
143  * P Page-Protection Bit: Store access not possible for page
144  *
145  * A 31 bit segmenttable entry of S390 has following format:
146  *  |   P-table origin      |  |PTL
147  * 0                         IC
148  * 00000000001111111111222222222233
149  * 01234567890123456789012345678901
150  *
151  * I Segment-Invalid Bit:    Segment is not available for address-translation
152  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
153  * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
154  *
155  * The 31 bit segmenttable origin of S390 has following format:
156  *
157  *  |S-table origin   |     | STL |
158  * X                   **GPS
159  * 00000000001111111111222222222233
160  * 01234567890123456789012345678901
161  *
162  * X Space-Switch event:
163  * G Segment-Invalid Bit:     *
164  * P Private-Space Bit:       Segment is not private (PoP 3-30)
165  * S Storage-Alteration:
166  * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
167  *
168  * A 64 bit pagetable entry of S390 has following format:
169  * |                     PFRA                         |0IP0|  OS  |
170  * 0000000000111111111122222222223333333333444444444455555555556666
171  * 0123456789012345678901234567890123456789012345678901234567890123
172  *
173  * I Page-Invalid Bit:    Page is not available for address-translation
174  * P Page-Protection Bit: Store access not possible for page
175  *
176  * A 64 bit segmenttable entry of S390 has following format:
177  * |        P-table origin                              |      TT
178  * 0000000000111111111122222222223333333333444444444455555555556666
179  * 0123456789012345678901234567890123456789012345678901234567890123
180  *
181  * I Segment-Invalid Bit:    Segment is not available for address-translation
182  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
183  * P Page-Protection Bit: Store access not possible for page
184  * TT Type 00
185  *
186  * A 64 bit region table entry of S390 has following format:
187  * |        S-table origin                             |   TF  TTTL
188  * 0000000000111111111122222222223333333333444444444455555555556666
189  * 0123456789012345678901234567890123456789012345678901234567890123
190  *
191  * I Segment-Invalid Bit:    Segment is not available for address-translation
192  * TT Type 01
193  * TF
194  * TL Table length
195  *
196  * The 64 bit regiontable origin of S390 has following format:
197  * |      region table origon                          |       DTTL
198  * 0000000000111111111122222222223333333333444444444455555555556666
199  * 0123456789012345678901234567890123456789012345678901234567890123
200  *
201  * X Space-Switch event:
202  * G Segment-Invalid Bit:
203  * P Private-Space Bit:
204  * S Storage-Alteration:
205  * R Real space
206  * TL Table-Length:
207  *
208  * A storage key has the following format:
209  * | ACC |F|R|C|0|
210  *  0   3 4 5 6 7
211  * ACC: access key
212  * F  : fetch protection bit
213  * R  : referenced bit
214  * C  : changed bit
215  */
216 
217 /* Hardware bits in the page table entry */
218 #define _PAGE_RO	0x200		/* HW read-only bit  */
219 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
220 
221 /* Software bits in the page table entry */
222 #define _PAGE_SWT	0x001		/* SW pte type bit t */
223 #define _PAGE_SWX	0x002		/* SW pte type bit x */
224 #define _PAGE_SPECIAL	0x004		/* SW associated with special page */
225 #define __HAVE_ARCH_PTE_SPECIAL
226 
227 /* Set of bits not changed in pte_modify */
228 #define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_SPECIAL)
229 
230 /* Six different types of pages. */
231 #define _PAGE_TYPE_EMPTY	0x400
232 #define _PAGE_TYPE_NONE		0x401
233 #define _PAGE_TYPE_SWAP		0x403
234 #define _PAGE_TYPE_FILE		0x601	/* bit 0x002 is used for offset !! */
235 #define _PAGE_TYPE_RO		0x200
236 #define _PAGE_TYPE_RW		0x000
237 #define _PAGE_TYPE_EX_RO	0x202
238 #define _PAGE_TYPE_EX_RW	0x002
239 
240 /*
241  * Only four types for huge pages, using the invalid bit and protection bit
242  * of a segment table entry.
243  */
244 #define _HPAGE_TYPE_EMPTY	0x020	/* _SEGMENT_ENTRY_INV */
245 #define _HPAGE_TYPE_NONE	0x220
246 #define _HPAGE_TYPE_RO		0x200	/* _SEGMENT_ENTRY_RO  */
247 #define _HPAGE_TYPE_RW		0x000
248 
249 /*
250  * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
251  * pte_none and pte_file to find out the pte type WITHOUT holding the page
252  * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
253  * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
254  * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
255  * This change is done while holding the lock, but the intermediate step
256  * of a previously valid pte with the hw invalid bit set can be observed by
257  * handle_pte_fault. That makes it necessary that all valid pte types with
258  * the hw invalid bit set must be distinguishable from the four pte types
259  * empty, none, swap and file.
260  *
261  *			irxt  ipte  irxt
262  * _PAGE_TYPE_EMPTY	1000   ->   1000
263  * _PAGE_TYPE_NONE	1001   ->   1001
264  * _PAGE_TYPE_SWAP	1011   ->   1011
265  * _PAGE_TYPE_FILE	11?1   ->   11?1
266  * _PAGE_TYPE_RO	0100   ->   1100
267  * _PAGE_TYPE_RW	0000   ->   1000
268  * _PAGE_TYPE_EX_RO	0110   ->   1110
269  * _PAGE_TYPE_EX_RW	0010   ->   1010
270  *
271  * pte_none is true for bits combinations 1000, 1010, 1100, 1110
272  * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
273  * pte_file is true for bits combinations 1101, 1111
274  * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
275  */
276 
277 /* Page status table bits for virtualization */
278 #define RCP_PCL_BIT	55
279 #define RCP_HR_BIT	54
280 #define RCP_HC_BIT	53
281 #define RCP_GR_BIT	50
282 #define RCP_GC_BIT	49
283 
284 /* User dirty bit for KVM's migration feature */
285 #define KVM_UD_BIT	47
286 
287 #ifndef __s390x__
288 
289 /* Bits in the segment table address-space-control-element */
290 #define _ASCE_SPACE_SWITCH	0x80000000UL	/* space switch event	    */
291 #define _ASCE_ORIGIN_MASK	0x7ffff000UL	/* segment table origin	    */
292 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
293 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
294 #define _ASCE_TABLE_LENGTH	0x7f	/* 128 x 64 entries = 8k	    */
295 
296 /* Bits in the segment table entry */
297 #define _SEGMENT_ENTRY_ORIGIN	0x7fffffc0UL	/* page table origin	    */
298 #define _SEGMENT_ENTRY_INV	0x20	/* invalid segment table entry	    */
299 #define _SEGMENT_ENTRY_COMMON	0x10	/* common segment bit		    */
300 #define _SEGMENT_ENTRY_PTL	0x0f	/* page table length		    */
301 
302 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PTL)
303 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INV)
304 
305 #else /* __s390x__ */
306 
307 /* Bits in the segment/region table address-space-control-element */
308 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
309 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
310 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
311 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
312 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
313 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
314 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
315 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
316 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
317 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
318 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
319 
320 /* Bits in the region table entry */
321 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
322 #define _REGION_ENTRY_INV	0x20	/* invalid region table entry	    */
323 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
324 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
325 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
326 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
327 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
328 
329 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
330 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
331 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
332 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
333 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
334 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
335 
336 /* Bits in the segment table entry */
337 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
338 #define _SEGMENT_ENTRY_RO	0x200	/* page protection bit		    */
339 #define _SEGMENT_ENTRY_INV	0x20	/* invalid segment table entry	    */
340 
341 #define _SEGMENT_ENTRY		(0)
342 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INV)
343 
344 #define _SEGMENT_ENTRY_LARGE	0x400	/* STE-format control, large page   */
345 #define _SEGMENT_ENTRY_CO	0x100	/* change-recording override   */
346 
347 #endif /* __s390x__ */
348 
349 /*
350  * A user page table pointer has the space-switch-event bit, the
351  * private-space-control bit and the storage-alteration-event-control
352  * bit set. A kernel page table pointer doesn't need them.
353  */
354 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
355 				 _ASCE_ALT_EVENT)
356 
357 /* Bits int the storage key */
358 #define _PAGE_CHANGED    0x02          /* HW changed bit                   */
359 #define _PAGE_REFERENCED 0x04          /* HW referenced bit                */
360 
361 /*
362  * Page protection definitions.
363  */
364 #define PAGE_NONE	__pgprot(_PAGE_TYPE_NONE)
365 #define PAGE_RO		__pgprot(_PAGE_TYPE_RO)
366 #define PAGE_RW		__pgprot(_PAGE_TYPE_RW)
367 #define PAGE_EX_RO	__pgprot(_PAGE_TYPE_EX_RO)
368 #define PAGE_EX_RW	__pgprot(_PAGE_TYPE_EX_RW)
369 
370 #define PAGE_KERNEL	PAGE_RW
371 #define PAGE_COPY	PAGE_RO
372 
373 /*
374  * Dependent on the EXEC_PROTECT option s390 can do execute protection.
375  * Write permission always implies read permission. In theory with a
376  * primary/secondary page table execute only can be implemented but
377  * it would cost an additional bit in the pte to distinguish all the
378  * different pte types. To avoid that execute permission currently
379  * implies read permission as well.
380  */
381          /*xwr*/
382 #define __P000	PAGE_NONE
383 #define __P001	PAGE_RO
384 #define __P010	PAGE_RO
385 #define __P011	PAGE_RO
386 #define __P100	PAGE_EX_RO
387 #define __P101	PAGE_EX_RO
388 #define __P110	PAGE_EX_RO
389 #define __P111	PAGE_EX_RO
390 
391 #define __S000	PAGE_NONE
392 #define __S001	PAGE_RO
393 #define __S010	PAGE_RW
394 #define __S011	PAGE_RW
395 #define __S100	PAGE_EX_RO
396 #define __S101	PAGE_EX_RO
397 #define __S110	PAGE_EX_RW
398 #define __S111	PAGE_EX_RW
399 
400 #ifndef __s390x__
401 # define PxD_SHADOW_SHIFT	1
402 #else /* __s390x__ */
403 # define PxD_SHADOW_SHIFT	2
404 #endif /* __s390x__ */
405 
406 static inline void *get_shadow_table(void *table)
407 {
408 	unsigned long addr, offset;
409 	struct page *page;
410 
411 	addr = (unsigned long) table;
412 	offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
413 	page = virt_to_page((void *)(addr ^ offset));
414 	return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
415 }
416 
417 /*
418  * Certain architectures need to do special things when PTEs
419  * within a page table are directly modified.  Thus, the following
420  * hook is made available.
421  */
422 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
423 			      pte_t *ptep, pte_t entry)
424 {
425 	*ptep = entry;
426 	if (mm->context.noexec) {
427 		if (!(pte_val(entry) & _PAGE_INVALID) &&
428 		    (pte_val(entry) & _PAGE_SWX))
429 			pte_val(entry) |= _PAGE_RO;
430 		else
431 			pte_val(entry) = _PAGE_TYPE_EMPTY;
432 		ptep[PTRS_PER_PTE] = entry;
433 	}
434 }
435 
436 /*
437  * pgd/pmd/pte query functions
438  */
439 #ifndef __s390x__
440 
441 static inline int pgd_present(pgd_t pgd) { return 1; }
442 static inline int pgd_none(pgd_t pgd)    { return 0; }
443 static inline int pgd_bad(pgd_t pgd)     { return 0; }
444 
445 static inline int pud_present(pud_t pud) { return 1; }
446 static inline int pud_none(pud_t pud)	 { return 0; }
447 static inline int pud_bad(pud_t pud)	 { return 0; }
448 
449 #else /* __s390x__ */
450 
451 static inline int pgd_present(pgd_t pgd)
452 {
453 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
454 		return 1;
455 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
456 }
457 
458 static inline int pgd_none(pgd_t pgd)
459 {
460 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
461 		return 0;
462 	return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
463 }
464 
465 static inline int pgd_bad(pgd_t pgd)
466 {
467 	/*
468 	 * With dynamic page table levels the pgd can be a region table
469 	 * entry or a segment table entry. Check for the bit that are
470 	 * invalid for either table entry.
471 	 */
472 	unsigned long mask =
473 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
474 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
475 	return (pgd_val(pgd) & mask) != 0;
476 }
477 
478 static inline int pud_present(pud_t pud)
479 {
480 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
481 		return 1;
482 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
483 }
484 
485 static inline int pud_none(pud_t pud)
486 {
487 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
488 		return 0;
489 	return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
490 }
491 
492 static inline int pud_bad(pud_t pud)
493 {
494 	/*
495 	 * With dynamic page table levels the pud can be a region table
496 	 * entry or a segment table entry. Check for the bit that are
497 	 * invalid for either table entry.
498 	 */
499 	unsigned long mask =
500 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
501 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
502 	return (pud_val(pud) & mask) != 0;
503 }
504 
505 #endif /* __s390x__ */
506 
507 static inline int pmd_present(pmd_t pmd)
508 {
509 	return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
510 }
511 
512 static inline int pmd_none(pmd_t pmd)
513 {
514 	return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
515 }
516 
517 static inline int pmd_bad(pmd_t pmd)
518 {
519 	unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
520 	return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
521 }
522 
523 static inline int pte_none(pte_t pte)
524 {
525 	return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
526 }
527 
528 static inline int pte_present(pte_t pte)
529 {
530 	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
531 	return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
532 		(!(pte_val(pte) & _PAGE_INVALID) &&
533 		 !(pte_val(pte) & _PAGE_SWT));
534 }
535 
536 static inline int pte_file(pte_t pte)
537 {
538 	unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
539 	return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
540 }
541 
542 static inline int pte_special(pte_t pte)
543 {
544 	return (pte_val(pte) & _PAGE_SPECIAL);
545 }
546 
547 #define __HAVE_ARCH_PTE_SAME
548 #define pte_same(a,b)  (pte_val(a) == pte_val(b))
549 
550 static inline void rcp_lock(pte_t *ptep)
551 {
552 #ifdef CONFIG_PGSTE
553 	unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
554 	preempt_disable();
555 	while (test_and_set_bit(RCP_PCL_BIT, pgste))
556 		;
557 #endif
558 }
559 
560 static inline void rcp_unlock(pte_t *ptep)
561 {
562 #ifdef CONFIG_PGSTE
563 	unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
564 	clear_bit(RCP_PCL_BIT, pgste);
565 	preempt_enable();
566 #endif
567 }
568 
569 /* forward declaration for SetPageUptodate in page-flags.h*/
570 static inline void page_clear_dirty(struct page *page);
571 #include <linux/page-flags.h>
572 
573 static inline void ptep_rcp_copy(pte_t *ptep)
574 {
575 #ifdef CONFIG_PGSTE
576 	struct page *page = virt_to_page(pte_val(*ptep));
577 	unsigned int skey;
578 	unsigned long *pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
579 
580 	skey = page_get_storage_key(page_to_phys(page));
581 	if (skey & _PAGE_CHANGED) {
582 		set_bit_simple(RCP_GC_BIT, pgste);
583 		set_bit_simple(KVM_UD_BIT, pgste);
584 	}
585 	if (skey & _PAGE_REFERENCED)
586 		set_bit_simple(RCP_GR_BIT, pgste);
587 	if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
588 		SetPageDirty(page);
589 		set_bit_simple(KVM_UD_BIT, pgste);
590 	}
591 	if (test_and_clear_bit_simple(RCP_HR_BIT, pgste))
592 		SetPageReferenced(page);
593 #endif
594 }
595 
596 /*
597  * query functions pte_write/pte_dirty/pte_young only work if
598  * pte_present() is true. Undefined behaviour if not..
599  */
600 static inline int pte_write(pte_t pte)
601 {
602 	return (pte_val(pte) & _PAGE_RO) == 0;
603 }
604 
605 static inline int pte_dirty(pte_t pte)
606 {
607 	/* A pte is neither clean nor dirty on s/390. The dirty bit
608 	 * is in the storage key. See page_test_and_clear_dirty for
609 	 * details.
610 	 */
611 	return 0;
612 }
613 
614 static inline int pte_young(pte_t pte)
615 {
616 	/* A pte is neither young nor old on s/390. The young bit
617 	 * is in the storage key. See page_test_and_clear_young for
618 	 * details.
619 	 */
620 	return 0;
621 }
622 
623 /*
624  * pgd/pmd/pte modification functions
625  */
626 
627 #ifndef __s390x__
628 
629 #define pgd_clear(pgd)		do { } while (0)
630 #define pud_clear(pud)		do { } while (0)
631 
632 #else /* __s390x__ */
633 
634 static inline void pgd_clear_kernel(pgd_t * pgd)
635 {
636 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
637 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
638 }
639 
640 static inline void pgd_clear(pgd_t * pgd)
641 {
642 	pgd_t *shadow = get_shadow_table(pgd);
643 
644 	pgd_clear_kernel(pgd);
645 	if (shadow)
646 		pgd_clear_kernel(shadow);
647 }
648 
649 static inline void pud_clear_kernel(pud_t *pud)
650 {
651 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
652 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
653 }
654 
655 static inline void pud_clear(pud_t *pud)
656 {
657 	pud_t *shadow = get_shadow_table(pud);
658 
659 	pud_clear_kernel(pud);
660 	if (shadow)
661 		pud_clear_kernel(shadow);
662 }
663 
664 #endif /* __s390x__ */
665 
666 static inline void pmd_clear_kernel(pmd_t * pmdp)
667 {
668 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
669 }
670 
671 static inline void pmd_clear(pmd_t *pmd)
672 {
673 	pmd_t *shadow = get_shadow_table(pmd);
674 
675 	pmd_clear_kernel(pmd);
676 	if (shadow)
677 		pmd_clear_kernel(shadow);
678 }
679 
680 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
681 {
682 	if (mm->context.has_pgste)
683 		ptep_rcp_copy(ptep);
684 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
685 	if (mm->context.noexec)
686 		pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
687 }
688 
689 /*
690  * The following pte modification functions only work if
691  * pte_present() is true. Undefined behaviour if not..
692  */
693 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
694 {
695 	pte_val(pte) &= _PAGE_CHG_MASK;
696 	pte_val(pte) |= pgprot_val(newprot);
697 	return pte;
698 }
699 
700 static inline pte_t pte_wrprotect(pte_t pte)
701 {
702 	/* Do not clobber _PAGE_TYPE_NONE pages!  */
703 	if (!(pte_val(pte) & _PAGE_INVALID))
704 		pte_val(pte) |= _PAGE_RO;
705 	return pte;
706 }
707 
708 static inline pte_t pte_mkwrite(pte_t pte)
709 {
710 	pte_val(pte) &= ~_PAGE_RO;
711 	return pte;
712 }
713 
714 static inline pte_t pte_mkclean(pte_t pte)
715 {
716 	/* The only user of pte_mkclean is the fork() code.
717 	   We must *not* clear the *physical* page dirty bit
718 	   just because fork() wants to clear the dirty bit in
719 	   *one* of the page's mappings.  So we just do nothing. */
720 	return pte;
721 }
722 
723 static inline pte_t pte_mkdirty(pte_t pte)
724 {
725 	/* We do not explicitly set the dirty bit because the
726 	 * sske instruction is slow. It is faster to let the
727 	 * next instruction set the dirty bit.
728 	 */
729 	return pte;
730 }
731 
732 static inline pte_t pte_mkold(pte_t pte)
733 {
734 	/* S/390 doesn't keep its dirty/referenced bit in the pte.
735 	 * There is no point in clearing the real referenced bit.
736 	 */
737 	return pte;
738 }
739 
740 static inline pte_t pte_mkyoung(pte_t pte)
741 {
742 	/* S/390 doesn't keep its dirty/referenced bit in the pte.
743 	 * There is no point in setting the real referenced bit.
744 	 */
745 	return pte;
746 }
747 
748 static inline pte_t pte_mkspecial(pte_t pte)
749 {
750 	pte_val(pte) |= _PAGE_SPECIAL;
751 	return pte;
752 }
753 
754 #ifdef CONFIG_PGSTE
755 /*
756  * Get (and clear) the user dirty bit for a PTE.
757  */
758 static inline int kvm_s390_test_and_clear_page_dirty(struct mm_struct *mm,
759 						     pte_t *ptep)
760 {
761 	int dirty;
762 	unsigned long *pgste;
763 	struct page *page;
764 	unsigned int skey;
765 
766 	if (!mm->context.has_pgste)
767 		return -EINVAL;
768 	rcp_lock(ptep);
769 	pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
770 	page = virt_to_page(pte_val(*ptep));
771 	skey = page_get_storage_key(page_to_phys(page));
772 	if (skey & _PAGE_CHANGED) {
773 		set_bit_simple(RCP_GC_BIT, pgste);
774 		set_bit_simple(KVM_UD_BIT, pgste);
775 	}
776 	if (test_and_clear_bit_simple(RCP_HC_BIT, pgste)) {
777 		SetPageDirty(page);
778 		set_bit_simple(KVM_UD_BIT, pgste);
779 	}
780 	dirty = test_and_clear_bit_simple(KVM_UD_BIT, pgste);
781 	if (skey & _PAGE_CHANGED)
782 		page_clear_dirty(page);
783 	rcp_unlock(ptep);
784 	return dirty;
785 }
786 #endif
787 
788 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
789 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
790 					    unsigned long addr, pte_t *ptep)
791 {
792 #ifdef CONFIG_PGSTE
793 	unsigned long physpage;
794 	int young;
795 	unsigned long *pgste;
796 
797 	if (!vma->vm_mm->context.has_pgste)
798 		return 0;
799 	physpage = pte_val(*ptep) & PAGE_MASK;
800 	pgste = (unsigned long *) (ptep + PTRS_PER_PTE);
801 
802 	young = ((page_get_storage_key(physpage) & _PAGE_REFERENCED) != 0);
803 	rcp_lock(ptep);
804 	if (young)
805 		set_bit_simple(RCP_GR_BIT, pgste);
806 	young |= test_and_clear_bit_simple(RCP_HR_BIT, pgste);
807 	rcp_unlock(ptep);
808 	return young;
809 #endif
810 	return 0;
811 }
812 
813 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
814 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
815 					 unsigned long address, pte_t *ptep)
816 {
817 	/* No need to flush TLB
818 	 * On s390 reference bits are in storage key and never in TLB
819 	 * With virtualization we handle the reference bit, without we
820 	 * we can simply return */
821 #ifdef CONFIG_PGSTE
822 	return ptep_test_and_clear_young(vma, address, ptep);
823 #endif
824 	return 0;
825 }
826 
827 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
828 {
829 	if (!(pte_val(*ptep) & _PAGE_INVALID)) {
830 #ifndef __s390x__
831 		/* pto must point to the start of the segment table */
832 		pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
833 #else
834 		/* ipte in zarch mode can do the math */
835 		pte_t *pto = ptep;
836 #endif
837 		asm volatile(
838 			"	ipte	%2,%3"
839 			: "=m" (*ptep) : "m" (*ptep),
840 			  "a" (pto), "a" (address));
841 	}
842 }
843 
844 static inline void ptep_invalidate(struct mm_struct *mm,
845 				   unsigned long address, pte_t *ptep)
846 {
847 	if (mm->context.has_pgste) {
848 		rcp_lock(ptep);
849 		__ptep_ipte(address, ptep);
850 		ptep_rcp_copy(ptep);
851 		pte_val(*ptep) = _PAGE_TYPE_EMPTY;
852 		rcp_unlock(ptep);
853 		return;
854 	}
855 	__ptep_ipte(address, ptep);
856 	pte_val(*ptep) = _PAGE_TYPE_EMPTY;
857 	if (mm->context.noexec) {
858 		__ptep_ipte(address, ptep + PTRS_PER_PTE);
859 		pte_val(*(ptep + PTRS_PER_PTE)) = _PAGE_TYPE_EMPTY;
860 	}
861 }
862 
863 /*
864  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
865  * both clear the TLB for the unmapped pte. The reason is that
866  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
867  * to modify an active pte. The sequence is
868  *   1) ptep_get_and_clear
869  *   2) set_pte_at
870  *   3) flush_tlb_range
871  * On s390 the tlb needs to get flushed with the modification of the pte
872  * if the pte is active. The only way how this can be implemented is to
873  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
874  * is a nop.
875  */
876 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
877 #define ptep_get_and_clear(__mm, __address, __ptep)			\
878 ({									\
879 	pte_t __pte = *(__ptep);					\
880 	if (atomic_read(&(__mm)->mm_users) > 1 ||			\
881 	    (__mm) != current->active_mm)				\
882 		ptep_invalidate(__mm, __address, __ptep);		\
883 	else								\
884 		pte_clear((__mm), (__address), (__ptep));		\
885 	__pte;								\
886 })
887 
888 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
889 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
890 				     unsigned long address, pte_t *ptep)
891 {
892 	pte_t pte = *ptep;
893 	ptep_invalidate(vma->vm_mm, address, ptep);
894 	return pte;
895 }
896 
897 /*
898  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
899  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
900  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
901  * cannot be accessed while the batched unmap is running. In this case
902  * full==1 and a simple pte_clear is enough. See tlb.h.
903  */
904 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
905 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
906 					    unsigned long addr,
907 					    pte_t *ptep, int full)
908 {
909 	pte_t pte = *ptep;
910 
911 	if (full)
912 		pte_clear(mm, addr, ptep);
913 	else
914 		ptep_invalidate(mm, addr, ptep);
915 	return pte;
916 }
917 
918 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
919 #define ptep_set_wrprotect(__mm, __addr, __ptep)			\
920 ({									\
921 	pte_t __pte = *(__ptep);					\
922 	if (pte_write(__pte)) {						\
923 		if (atomic_read(&(__mm)->mm_users) > 1 ||		\
924 		    (__mm) != current->active_mm)			\
925 			ptep_invalidate(__mm, __addr, __ptep);		\
926 		set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte));	\
927 	}								\
928 })
929 
930 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
931 #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty)	\
932 ({									\
933 	int __changed = !pte_same(*(__ptep), __entry);			\
934 	if (__changed) {						\
935 		ptep_invalidate((__vma)->vm_mm, __addr, __ptep);	\
936 		set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry);	\
937 	}								\
938 	__changed;							\
939 })
940 
941 /*
942  * Test and clear dirty bit in storage key.
943  * We can't clear the changed bit atomically. This is a potential
944  * race against modification of the referenced bit. This function
945  * should therefore only be called if it is not mapped in any
946  * address space.
947  */
948 #define __HAVE_ARCH_PAGE_TEST_DIRTY
949 static inline int page_test_dirty(struct page *page)
950 {
951 	return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
952 }
953 
954 #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
955 static inline void page_clear_dirty(struct page *page)
956 {
957 	page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
958 }
959 
960 /*
961  * Test and clear referenced bit in storage key.
962  */
963 #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
964 static inline int page_test_and_clear_young(struct page *page)
965 {
966 	unsigned long physpage = page_to_phys(page);
967 	int ccode;
968 
969 	asm volatile(
970 		"	rrbe	0,%1\n"
971 		"	ipm	%0\n"
972 		"	srl	%0,28\n"
973 		: "=d" (ccode) : "a" (physpage) : "cc" );
974 	return ccode & 2;
975 }
976 
977 /*
978  * Conversion functions: convert a page and protection to a page entry,
979  * and a page entry and page directory to the page they refer to.
980  */
981 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
982 {
983 	pte_t __pte;
984 	pte_val(__pte) = physpage + pgprot_val(pgprot);
985 	return __pte;
986 }
987 
988 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
989 {
990 	unsigned long physpage = page_to_phys(page);
991 
992 	return mk_pte_phys(physpage, pgprot);
993 }
994 
995 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
996 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
997 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
998 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
999 
1000 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1001 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1002 
1003 #ifndef __s390x__
1004 
1005 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1006 #define pud_deref(pmd) ({ BUG(); 0UL; })
1007 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1008 
1009 #define pud_offset(pgd, address) ((pud_t *) pgd)
1010 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1011 
1012 #else /* __s390x__ */
1013 
1014 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1015 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1016 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1017 
1018 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1019 {
1020 	pud_t *pud = (pud_t *) pgd;
1021 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1022 		pud = (pud_t *) pgd_deref(*pgd);
1023 	return pud  + pud_index(address);
1024 }
1025 
1026 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1027 {
1028 	pmd_t *pmd = (pmd_t *) pud;
1029 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1030 		pmd = (pmd_t *) pud_deref(*pud);
1031 	return pmd + pmd_index(address);
1032 }
1033 
1034 #endif /* __s390x__ */
1035 
1036 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1037 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1038 #define pte_page(x) pfn_to_page(pte_pfn(x))
1039 
1040 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1041 
1042 /* Find an entry in the lowest level page table.. */
1043 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1044 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1045 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1046 #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
1047 #define pte_unmap(pte) do { } while (0)
1048 #define pte_unmap_nested(pte) do { } while (0)
1049 
1050 /*
1051  * 31 bit swap entry format:
1052  * A page-table entry has some bits we have to treat in a special way.
1053  * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1054  * exception will occur instead of a page translation exception. The
1055  * specifiation exception has the bad habit not to store necessary
1056  * information in the lowcore.
1057  * Bit 21 and bit 22 are the page invalid bit and the page protection
1058  * bit. We set both to indicate a swapped page.
1059  * Bit 30 and 31 are used to distinguish the different page types. For
1060  * a swapped page these bits need to be zero.
1061  * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1062  * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1063  * plus 24 for the offset.
1064  * 0|     offset        |0110|o|type |00|
1065  * 0 0000000001111111111 2222 2 22222 33
1066  * 0 1234567890123456789 0123 4 56789 01
1067  *
1068  * 64 bit swap entry format:
1069  * A page-table entry has some bits we have to treat in a special way.
1070  * Bits 52 and bit 55 have to be zero, otherwise an specification
1071  * exception will occur instead of a page translation exception. The
1072  * specifiation exception has the bad habit not to store necessary
1073  * information in the lowcore.
1074  * Bit 53 and bit 54 are the page invalid bit and the page protection
1075  * bit. We set both to indicate a swapped page.
1076  * Bit 62 and 63 are used to distinguish the different page types. For
1077  * a swapped page these bits need to be zero.
1078  * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1079  * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1080  * plus 56 for the offset.
1081  * |                      offset                        |0110|o|type |00|
1082  *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1083  *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1084  */
1085 #ifndef __s390x__
1086 #define __SWP_OFFSET_MASK (~0UL >> 12)
1087 #else
1088 #define __SWP_OFFSET_MASK (~0UL >> 11)
1089 #endif
1090 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1091 {
1092 	pte_t pte;
1093 	offset &= __SWP_OFFSET_MASK;
1094 	pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1095 		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1096 	return pte;
1097 }
1098 
1099 #define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
1100 #define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
1101 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1102 
1103 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1104 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1105 
1106 #ifndef __s390x__
1107 # define PTE_FILE_MAX_BITS	26
1108 #else /* __s390x__ */
1109 # define PTE_FILE_MAX_BITS	59
1110 #endif /* __s390x__ */
1111 
1112 #define pte_to_pgoff(__pte) \
1113 	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1114 
1115 #define pgoff_to_pte(__off) \
1116 	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1117 		   | _PAGE_TYPE_FILE })
1118 
1119 #endif /* !__ASSEMBLY__ */
1120 
1121 #define kern_addr_valid(addr)   (1)
1122 
1123 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1124 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1125 extern int s390_enable_sie(void);
1126 
1127 /*
1128  * No page table caches to initialise
1129  */
1130 #define pgtable_cache_init()	do { } while (0)
1131 
1132 #include <asm-generic/pgtable.h>
1133 
1134 #endif /* _S390_PAGE_H */
1135