xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision 519b58bb)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24 
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
28 
29 enum {
30 	PG_DIRECT_MAP_4K = 0,
31 	PG_DIRECT_MAP_1M,
32 	PG_DIRECT_MAP_2G,
33 	PG_DIRECT_MAP_MAX
34 };
35 
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37 
38 static inline void update_page_count(int level, long count)
39 {
40 	if (IS_ENABLED(CONFIG_PROC_FS))
41 		atomic_long_add(count, &direct_pages_count[level]);
42 }
43 
44 struct seq_file;
45 void arch_report_meminfo(struct seq_file *m);
46 
47 /*
48  * The S390 doesn't have any external MMU info: the kernel page
49  * tables contain all the necessary information.
50  */
51 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53 
54 /*
55  * ZERO_PAGE is a global shared page that is always zero; used
56  * for zero-mapped memory areas etc..
57  */
58 
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61 
62 #define ZERO_PAGE(vaddr) \
63 	(virt_to_page((void *)(empty_zero_page + \
64 	 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66 
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68 
69 #define pte_ERROR(e) \
70 	pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 	pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 	pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 	pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 	pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. 512GB are reserved for vmalloc by default.
83  * At the top of the vmalloc area a 2GB area is reserved where modules
84  * will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a
86  * 2GB frame is branch prediction unit friendly.
87  */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93 
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95 
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR	MODULES_VADDR
99 #define MODULES_END	MODULES_END
100 #define MODULES_LEN	(1UL << 31)
101 
102 static inline int is_module_addr(void *addr)
103 {
104 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 	if (addr < (void *)MODULES_VADDR)
106 		return 0;
107 	if (addr > (void *)MODULES_END)
108 		return 0;
109 	return 1;
110 }
111 
112 /*
113  * A 64 bit pagetable entry of S390 has following format:
114  * |			 PFRA			      |0IPC|  OS  |
115  * 0000000000111111111122222222223333333333444444444455555555556666
116  * 0123456789012345678901234567890123456789012345678901234567890123
117  *
118  * I Page-Invalid Bit:    Page is not available for address-translation
119  * P Page-Protection Bit: Store access not possible for page
120  * C Change-bit override: HW is not required to set change bit
121  *
122  * A 64 bit segmenttable entry of S390 has following format:
123  * |        P-table origin                              |      TT
124  * 0000000000111111111122222222223333333333444444444455555555556666
125  * 0123456789012345678901234567890123456789012345678901234567890123
126  *
127  * I Segment-Invalid Bit:    Segment is not available for address-translation
128  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
129  * P Page-Protection Bit: Store access not possible for page
130  * TT Type 00
131  *
132  * A 64 bit region table entry of S390 has following format:
133  * |        S-table origin                             |   TF  TTTL
134  * 0000000000111111111122222222223333333333444444444455555555556666
135  * 0123456789012345678901234567890123456789012345678901234567890123
136  *
137  * I Segment-Invalid Bit:    Segment is not available for address-translation
138  * TT Type 01
139  * TF
140  * TL Table length
141  *
142  * The 64 bit regiontable origin of S390 has following format:
143  * |      region table origon                          |       DTTL
144  * 0000000000111111111122222222223333333333444444444455555555556666
145  * 0123456789012345678901234567890123456789012345678901234567890123
146  *
147  * X Space-Switch event:
148  * G Segment-Invalid Bit:
149  * P Private-Space Bit:
150  * S Storage-Alteration:
151  * R Real space
152  * TL Table-Length:
153  *
154  * A storage key has the following format:
155  * | ACC |F|R|C|0|
156  *  0   3 4 5 6 7
157  * ACC: access key
158  * F  : fetch protection bit
159  * R  : referenced bit
160  * C  : changed bit
161  */
162 
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
165 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
166 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
167 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
168 
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
171 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
172 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
173 #define _PAGE_READ	0x010		/* SW pte read bit */
174 #define _PAGE_WRITE	0x020		/* SW pte write bit */
175 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
176 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
177 
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183 
184 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE	/* SW pte exclusive swap bit */
185 
186 /* Set of bits not changed in pte_modify */
187 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
188 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
189 
190 /*
191  * handle_pte_fault uses pte_present and pte_none to find out the pte type
192  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
193  * distinguish present from not-present ptes. It is changed only with the page
194  * table lock held.
195  *
196  * The following table gives the different possible bit combinations for
197  * the pte hardware and software bits in the last 12 bits of a pte
198  * (. unassigned bit, x don't care, t swap type):
199  *
200  *				842100000000
201  *				000084210000
202  *				000000008421
203  *				.IR.uswrdy.p
204  * empty			.10.00000000
205  * swap				.11..ttttt.0
206  * prot-none, clean, old	.11.xx0000.1
207  * prot-none, clean, young	.11.xx0001.1
208  * prot-none, dirty, old	.11.xx0010.1
209  * prot-none, dirty, young	.11.xx0011.1
210  * read-only, clean, old	.11.xx0100.1
211  * read-only, clean, young	.01.xx0101.1
212  * read-only, dirty, old	.11.xx0110.1
213  * read-only, dirty, young	.01.xx0111.1
214  * read-write, clean, old	.11.xx1100.1
215  * read-write, clean, young	.01.xx1101.1
216  * read-write, dirty, old	.10.xx1110.1
217  * read-write, dirty, young	.00.xx1111.1
218  * HW-bits: R read-only, I invalid
219  * SW-bits: p present, y young, d dirty, r read, w write, s special,
220  *	    u unused, l large
221  *
222  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
223  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
224  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
225  */
226 
227 /* Bits in the segment/region table address-space-control-element */
228 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
229 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
230 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
231 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
232 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
233 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
234 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
235 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
236 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
237 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
238 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
239 
240 /* Bits in the region table entry */
241 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
242 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
243 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
244 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
245 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
246 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
247 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
248 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
249 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
250 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
251 
252 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
253 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
254 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
255 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
256 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
257 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
258 
259 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
260 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
261 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
262 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
263 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
264 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
265 
266 #ifdef CONFIG_MEM_SOFT_DIRTY
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
268 #else
269 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
270 #endif
271 
272 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
273 
274 /* Bits in the segment table entry */
275 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
276 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
277 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
278 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
279 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
280 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
281 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
282 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
283 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
284 
285 #define _SEGMENT_ENTRY		(0)
286 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
287 
288 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
289 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
290 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
291 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
292 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
293 
294 #ifdef CONFIG_MEM_SOFT_DIRTY
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296 #else
297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
298 #endif
299 
300 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
301 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
302 
303 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
304 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
305 
306 #define _REGION1_SHIFT	53
307 #define _REGION2_SHIFT	42
308 #define _REGION3_SHIFT	31
309 #define _SEGMENT_SHIFT	20
310 
311 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
312 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
313 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
314 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
315 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
316 
317 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
318 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
319 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
320 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
321 
322 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
323 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
324 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
325 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
326 
327 #define PMD_SHIFT	_SEGMENT_SHIFT
328 #define PUD_SHIFT	_REGION3_SHIFT
329 #define P4D_SHIFT	_REGION2_SHIFT
330 #define PGDIR_SHIFT	_REGION1_SHIFT
331 
332 #define PMD_SIZE	_SEGMENT_SIZE
333 #define PUD_SIZE	_REGION3_SIZE
334 #define P4D_SIZE	_REGION2_SIZE
335 #define PGDIR_SIZE	_REGION1_SIZE
336 
337 #define PMD_MASK	_SEGMENT_MASK
338 #define PUD_MASK	_REGION3_MASK
339 #define P4D_MASK	_REGION2_MASK
340 #define PGDIR_MASK	_REGION1_MASK
341 
342 #define PTRS_PER_PTE	_PAGE_ENTRIES
343 #define PTRS_PER_PMD	_CRST_ENTRIES
344 #define PTRS_PER_PUD	_CRST_ENTRIES
345 #define PTRS_PER_P4D	_CRST_ENTRIES
346 #define PTRS_PER_PGD	_CRST_ENTRIES
347 
348 /*
349  * Segment table and region3 table entry encoding
350  * (R = read-only, I = invalid, y = young bit):
351  *				dy..R...I...wr
352  * prot-none, clean, old	00..1...1...00
353  * prot-none, clean, young	01..1...1...00
354  * prot-none, dirty, old	10..1...1...00
355  * prot-none, dirty, young	11..1...1...00
356  * read-only, clean, old	00..1...1...01
357  * read-only, clean, young	01..1...0...01
358  * read-only, dirty, old	10..1...1...01
359  * read-only, dirty, young	11..1...0...01
360  * read-write, clean, old	00..1...1...11
361  * read-write, clean, young	01..1...0...11
362  * read-write, dirty, old	10..0...1...11
363  * read-write, dirty, young	11..0...0...11
364  * The segment table origin is used to distinguish empty (origin==0) from
365  * read-write, old segment table entries (origin!=0)
366  * HW-bits: R read-only, I invalid
367  * SW-bits: y young, d dirty, r read, w write
368  */
369 
370 /* Page status table bits for virtualization */
371 #define PGSTE_ACC_BITS	0xf000000000000000UL
372 #define PGSTE_FP_BIT	0x0800000000000000UL
373 #define PGSTE_PCL_BIT	0x0080000000000000UL
374 #define PGSTE_HR_BIT	0x0040000000000000UL
375 #define PGSTE_HC_BIT	0x0020000000000000UL
376 #define PGSTE_GR_BIT	0x0004000000000000UL
377 #define PGSTE_GC_BIT	0x0002000000000000UL
378 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
379 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
380 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
381 
382 /* Guest Page State used for virtualization */
383 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
384 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
385 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
386 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
387 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
388 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
389 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
390 
391 /*
392  * A user page table pointer has the space-switch-event bit, the
393  * private-space-control bit and the storage-alteration-event-control
394  * bit set. A kernel page table pointer doesn't need them.
395  */
396 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
397 				 _ASCE_ALT_EVENT)
398 
399 /*
400  * Page protection definitions.
401  */
402 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
406 				 _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
409 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 				 _PAGE_INVALID | _PAGE_PROTECT)
411 
412 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
415 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
417 				 _PAGE_PROTECT | _PAGE_NOEXEC)
418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 				  _PAGE_YOUNG |	_PAGE_DIRTY)
420 
421 /*
422  * On s390 the page table entry has an invalid bit and a read-only bit.
423  * Read permission implies execute permission and write permission
424  * implies read permission.
425  */
426          /*xwr*/
427 
428 /*
429  * Segment entry (large page) protection definitions.
430  */
431 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
432 				 _SEGMENT_ENTRY_PROTECT)
433 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
434 				 _SEGMENT_ENTRY_READ | \
435 				 _SEGMENT_ENTRY_NOEXEC)
436 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
437 				 _SEGMENT_ENTRY_READ)
438 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
439 				 _SEGMENT_ENTRY_WRITE | \
440 				 _SEGMENT_ENTRY_NOEXEC)
441 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
442 				 _SEGMENT_ENTRY_WRITE)
443 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
444 				 _SEGMENT_ENTRY_LARGE |	\
445 				 _SEGMENT_ENTRY_READ |	\
446 				 _SEGMENT_ENTRY_WRITE | \
447 				 _SEGMENT_ENTRY_YOUNG | \
448 				 _SEGMENT_ENTRY_DIRTY | \
449 				 _SEGMENT_ENTRY_NOEXEC)
450 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
451 				 _SEGMENT_ENTRY_LARGE |	\
452 				 _SEGMENT_ENTRY_READ |	\
453 				 _SEGMENT_ENTRY_YOUNG |	\
454 				 _SEGMENT_ENTRY_PROTECT | \
455 				 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
457 				 _SEGMENT_ENTRY_LARGE |	\
458 				 _SEGMENT_ENTRY_READ |	\
459 				 _SEGMENT_ENTRY_WRITE | \
460 				 _SEGMENT_ENTRY_YOUNG |	\
461 				 _SEGMENT_ENTRY_DIRTY)
462 
463 /*
464  * Region3 entry (large page) protection definitions.
465  */
466 
467 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
468 				 _REGION3_ENTRY_LARGE |	 \
469 				 _REGION3_ENTRY_READ |	 \
470 				 _REGION3_ENTRY_WRITE |	 \
471 				 _REGION3_ENTRY_YOUNG |	 \
472 				 _REGION3_ENTRY_DIRTY | \
473 				 _REGION_ENTRY_NOEXEC)
474 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
475 				   _REGION3_ENTRY_LARGE |  \
476 				   _REGION3_ENTRY_READ |   \
477 				   _REGION3_ENTRY_YOUNG |  \
478 				   _REGION_ENTRY_PROTECT | \
479 				   _REGION_ENTRY_NOEXEC)
480 
481 static inline bool mm_p4d_folded(struct mm_struct *mm)
482 {
483 	return mm->context.asce_limit <= _REGION1_SIZE;
484 }
485 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
486 
487 static inline bool mm_pud_folded(struct mm_struct *mm)
488 {
489 	return mm->context.asce_limit <= _REGION2_SIZE;
490 }
491 #define mm_pud_folded(mm) mm_pud_folded(mm)
492 
493 static inline bool mm_pmd_folded(struct mm_struct *mm)
494 {
495 	return mm->context.asce_limit <= _REGION3_SIZE;
496 }
497 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
498 
499 static inline int mm_has_pgste(struct mm_struct *mm)
500 {
501 #ifdef CONFIG_PGSTE
502 	if (unlikely(mm->context.has_pgste))
503 		return 1;
504 #endif
505 	return 0;
506 }
507 
508 static inline int mm_is_protected(struct mm_struct *mm)
509 {
510 #ifdef CONFIG_PGSTE
511 	if (unlikely(atomic_read(&mm->context.protected_count)))
512 		return 1;
513 #endif
514 	return 0;
515 }
516 
517 static inline int mm_alloc_pgste(struct mm_struct *mm)
518 {
519 #ifdef CONFIG_PGSTE
520 	if (unlikely(mm->context.alloc_pgste))
521 		return 1;
522 #endif
523 	return 0;
524 }
525 
526 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
527 {
528 	return __pte(pte_val(pte) & ~pgprot_val(prot));
529 }
530 
531 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
532 {
533 	return __pte(pte_val(pte) | pgprot_val(prot));
534 }
535 
536 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
537 {
538 	return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
539 }
540 
541 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
542 {
543 	return __pmd(pmd_val(pmd) | pgprot_val(prot));
544 }
545 
546 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
547 {
548 	return __pud(pud_val(pud) & ~pgprot_val(prot));
549 }
550 
551 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
552 {
553 	return __pud(pud_val(pud) | pgprot_val(prot));
554 }
555 
556 /*
557  * In the case that a guest uses storage keys
558  * faults should no longer be backed by zero pages
559  */
560 #define mm_forbids_zeropage mm_has_pgste
561 static inline int mm_uses_skeys(struct mm_struct *mm)
562 {
563 #ifdef CONFIG_PGSTE
564 	if (mm->context.uses_skeys)
565 		return 1;
566 #endif
567 	return 0;
568 }
569 
570 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
571 {
572 	union register_pair r1 = { .even = old, .odd = new, };
573 	unsigned long address = (unsigned long)ptr | 1;
574 
575 	asm volatile(
576 		"	csp	%[r1],%[address]"
577 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
578 		: [address] "d" (address)
579 		: "cc");
580 }
581 
582 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
583 {
584 	union register_pair r1 = { .even = old, .odd = new, };
585 	unsigned long address = (unsigned long)ptr | 1;
586 
587 	asm volatile(
588 		"	cspg	%[r1],%[address]"
589 		: [r1] "+&d" (r1.pair), "+m" (*ptr)
590 		: [address] "d" (address)
591 		: "cc");
592 }
593 
594 #define CRDTE_DTT_PAGE		0x00UL
595 #define CRDTE_DTT_SEGMENT	0x10UL
596 #define CRDTE_DTT_REGION3	0x14UL
597 #define CRDTE_DTT_REGION2	0x18UL
598 #define CRDTE_DTT_REGION1	0x1cUL
599 
600 static inline void crdte(unsigned long old, unsigned long new,
601 			 unsigned long *table, unsigned long dtt,
602 			 unsigned long address, unsigned long asce)
603 {
604 	union register_pair r1 = { .even = old, .odd = new, };
605 	union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
606 
607 	asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
608 		     : [r1] "+&d" (r1.pair)
609 		     : [r2] "d" (r2.pair), [asce] "a" (asce)
610 		     : "memory", "cc");
611 }
612 
613 /*
614  * pgd/p4d/pud/pmd/pte query functions
615  */
616 static inline int pgd_folded(pgd_t pgd)
617 {
618 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
619 }
620 
621 static inline int pgd_present(pgd_t pgd)
622 {
623 	if (pgd_folded(pgd))
624 		return 1;
625 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
626 }
627 
628 static inline int pgd_none(pgd_t pgd)
629 {
630 	if (pgd_folded(pgd))
631 		return 0;
632 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
633 }
634 
635 static inline int pgd_bad(pgd_t pgd)
636 {
637 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
638 		return 0;
639 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
640 }
641 
642 static inline unsigned long pgd_pfn(pgd_t pgd)
643 {
644 	unsigned long origin_mask;
645 
646 	origin_mask = _REGION_ENTRY_ORIGIN;
647 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
648 }
649 
650 static inline int p4d_folded(p4d_t p4d)
651 {
652 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
653 }
654 
655 static inline int p4d_present(p4d_t p4d)
656 {
657 	if (p4d_folded(p4d))
658 		return 1;
659 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
660 }
661 
662 static inline int p4d_none(p4d_t p4d)
663 {
664 	if (p4d_folded(p4d))
665 		return 0;
666 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
667 }
668 
669 static inline unsigned long p4d_pfn(p4d_t p4d)
670 {
671 	unsigned long origin_mask;
672 
673 	origin_mask = _REGION_ENTRY_ORIGIN;
674 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
675 }
676 
677 static inline int pud_folded(pud_t pud)
678 {
679 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
680 }
681 
682 static inline int pud_present(pud_t pud)
683 {
684 	if (pud_folded(pud))
685 		return 1;
686 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
687 }
688 
689 static inline int pud_none(pud_t pud)
690 {
691 	if (pud_folded(pud))
692 		return 0;
693 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
694 }
695 
696 #define pud_leaf	pud_large
697 static inline int pud_large(pud_t pud)
698 {
699 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
700 		return 0;
701 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
702 }
703 
704 #define pmd_leaf	pmd_large
705 static inline int pmd_large(pmd_t pmd)
706 {
707 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
708 }
709 
710 static inline int pmd_bad(pmd_t pmd)
711 {
712 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
713 		return 1;
714 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
715 }
716 
717 static inline int pud_bad(pud_t pud)
718 {
719 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
720 
721 	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
722 		return 1;
723 	if (type < _REGION_ENTRY_TYPE_R3)
724 		return 0;
725 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
726 }
727 
728 static inline int p4d_bad(p4d_t p4d)
729 {
730 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
731 
732 	if (type > _REGION_ENTRY_TYPE_R2)
733 		return 1;
734 	if (type < _REGION_ENTRY_TYPE_R2)
735 		return 0;
736 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
737 }
738 
739 static inline int pmd_present(pmd_t pmd)
740 {
741 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
742 }
743 
744 static inline int pmd_none(pmd_t pmd)
745 {
746 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
747 }
748 
749 #define pmd_write pmd_write
750 static inline int pmd_write(pmd_t pmd)
751 {
752 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
753 }
754 
755 #define pud_write pud_write
756 static inline int pud_write(pud_t pud)
757 {
758 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
759 }
760 
761 static inline int pmd_dirty(pmd_t pmd)
762 {
763 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
764 }
765 
766 static inline int pmd_young(pmd_t pmd)
767 {
768 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
769 }
770 
771 static inline int pte_present(pte_t pte)
772 {
773 	/* Bit pattern: (pte & 0x001) == 0x001 */
774 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
775 }
776 
777 static inline int pte_none(pte_t pte)
778 {
779 	/* Bit pattern: pte == 0x400 */
780 	return pte_val(pte) == _PAGE_INVALID;
781 }
782 
783 static inline int pte_swap(pte_t pte)
784 {
785 	/* Bit pattern: (pte & 0x201) == 0x200 */
786 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
787 		== _PAGE_PROTECT;
788 }
789 
790 static inline int pte_special(pte_t pte)
791 {
792 	return (pte_val(pte) & _PAGE_SPECIAL);
793 }
794 
795 #define __HAVE_ARCH_PTE_SAME
796 static inline int pte_same(pte_t a, pte_t b)
797 {
798 	return pte_val(a) == pte_val(b);
799 }
800 
801 #ifdef CONFIG_NUMA_BALANCING
802 static inline int pte_protnone(pte_t pte)
803 {
804 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
805 }
806 
807 static inline int pmd_protnone(pmd_t pmd)
808 {
809 	/* pmd_large(pmd) implies pmd_present(pmd) */
810 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
811 }
812 #endif
813 
814 #define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
815 static inline int pte_swp_exclusive(pte_t pte)
816 {
817 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
818 }
819 
820 static inline pte_t pte_swp_mkexclusive(pte_t pte)
821 {
822 	return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
823 }
824 
825 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
826 {
827 	return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
828 }
829 
830 static inline int pte_soft_dirty(pte_t pte)
831 {
832 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
833 }
834 #define pte_swp_soft_dirty pte_soft_dirty
835 
836 static inline pte_t pte_mksoft_dirty(pte_t pte)
837 {
838 	return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
839 }
840 #define pte_swp_mksoft_dirty pte_mksoft_dirty
841 
842 static inline pte_t pte_clear_soft_dirty(pte_t pte)
843 {
844 	return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
845 }
846 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
847 
848 static inline int pmd_soft_dirty(pmd_t pmd)
849 {
850 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
851 }
852 
853 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
854 {
855 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
856 }
857 
858 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
859 {
860 	return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
861 }
862 
863 /*
864  * query functions pte_write/pte_dirty/pte_young only work if
865  * pte_present() is true. Undefined behaviour if not..
866  */
867 static inline int pte_write(pte_t pte)
868 {
869 	return (pte_val(pte) & _PAGE_WRITE) != 0;
870 }
871 
872 static inline int pte_dirty(pte_t pte)
873 {
874 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
875 }
876 
877 static inline int pte_young(pte_t pte)
878 {
879 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
880 }
881 
882 #define __HAVE_ARCH_PTE_UNUSED
883 static inline int pte_unused(pte_t pte)
884 {
885 	return pte_val(pte) & _PAGE_UNUSED;
886 }
887 
888 /*
889  * Extract the pgprot value from the given pte while at the same time making it
890  * usable for kernel address space mappings where fault driven dirty and
891  * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
892  * must not be set.
893  */
894 static inline pgprot_t pte_pgprot(pte_t pte)
895 {
896 	unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
897 
898 	if (pte_write(pte))
899 		pte_flags |= pgprot_val(PAGE_KERNEL);
900 	else
901 		pte_flags |= pgprot_val(PAGE_KERNEL_RO);
902 	pte_flags |= pte_val(pte) & mio_wb_bit_mask;
903 
904 	return __pgprot(pte_flags);
905 }
906 
907 /*
908  * pgd/pmd/pte modification functions
909  */
910 
911 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
912 {
913 	WRITE_ONCE(*pgdp, pgd);
914 }
915 
916 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
917 {
918 	WRITE_ONCE(*p4dp, p4d);
919 }
920 
921 static inline void set_pud(pud_t *pudp, pud_t pud)
922 {
923 	WRITE_ONCE(*pudp, pud);
924 }
925 
926 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
927 {
928 	WRITE_ONCE(*pmdp, pmd);
929 }
930 
931 static inline void set_pte(pte_t *ptep, pte_t pte)
932 {
933 	WRITE_ONCE(*ptep, pte);
934 }
935 
936 static inline void pgd_clear(pgd_t *pgd)
937 {
938 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
939 		set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
940 }
941 
942 static inline void p4d_clear(p4d_t *p4d)
943 {
944 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
945 		set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
946 }
947 
948 static inline void pud_clear(pud_t *pud)
949 {
950 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
951 		set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
952 }
953 
954 static inline void pmd_clear(pmd_t *pmdp)
955 {
956 	set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
957 }
958 
959 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
960 {
961 	set_pte(ptep, __pte(_PAGE_INVALID));
962 }
963 
964 /*
965  * The following pte modification functions only work if
966  * pte_present() is true. Undefined behaviour if not..
967  */
968 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
969 {
970 	pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
971 	pte = set_pte_bit(pte, newprot);
972 	/*
973 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
974 	 * has the invalid bit set, clear it again for readable, young pages
975 	 */
976 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
977 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
978 	/*
979 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
980 	 * protection bit set, clear it again for writable, dirty pages
981 	 */
982 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
983 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
984 	return pte;
985 }
986 
987 static inline pte_t pte_wrprotect(pte_t pte)
988 {
989 	pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
990 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
991 }
992 
993 static inline pte_t pte_mkwrite(pte_t pte)
994 {
995 	pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
996 	if (pte_val(pte) & _PAGE_DIRTY)
997 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
998 	return pte;
999 }
1000 
1001 static inline pte_t pte_mkclean(pte_t pte)
1002 {
1003 	pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1004 	return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1005 }
1006 
1007 static inline pte_t pte_mkdirty(pte_t pte)
1008 {
1009 	pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1010 	if (pte_val(pte) & _PAGE_WRITE)
1011 		pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1012 	return pte;
1013 }
1014 
1015 static inline pte_t pte_mkold(pte_t pte)
1016 {
1017 	pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1018 	return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1019 }
1020 
1021 static inline pte_t pte_mkyoung(pte_t pte)
1022 {
1023 	pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1024 	if (pte_val(pte) & _PAGE_READ)
1025 		pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1026 	return pte;
1027 }
1028 
1029 static inline pte_t pte_mkspecial(pte_t pte)
1030 {
1031 	return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1032 }
1033 
1034 #ifdef CONFIG_HUGETLB_PAGE
1035 static inline pte_t pte_mkhuge(pte_t pte)
1036 {
1037 	return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1038 }
1039 #endif
1040 
1041 #define IPTE_GLOBAL	0
1042 #define	IPTE_LOCAL	1
1043 
1044 #define IPTE_NODAT	0x400
1045 #define IPTE_GUEST_ASCE	0x800
1046 
1047 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1048 					unsigned long opt, unsigned long asce,
1049 					int local)
1050 {
1051 	unsigned long pto = __pa(ptep);
1052 
1053 	if (__builtin_constant_p(opt) && opt == 0) {
1054 		/* Invalidation + TLB flush for the pte */
1055 		asm volatile(
1056 			"	ipte	%[r1],%[r2],0,%[m4]"
1057 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1058 			  [m4] "i" (local));
1059 		return;
1060 	}
1061 
1062 	/* Invalidate ptes with options + TLB flush of the ptes */
1063 	opt = opt | (asce & _ASCE_ORIGIN);
1064 	asm volatile(
1065 		"	ipte	%[r1],%[r2],%[r3],%[m4]"
1066 		: [r2] "+a" (address), [r3] "+a" (opt)
1067 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1068 }
1069 
1070 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1071 					      pte_t *ptep, int local)
1072 {
1073 	unsigned long pto = __pa(ptep);
1074 
1075 	/* Invalidate a range of ptes + TLB flush of the ptes */
1076 	do {
1077 		asm volatile(
1078 			"	ipte %[r1],%[r2],%[r3],%[m4]"
1079 			: [r2] "+a" (address), [r3] "+a" (nr)
1080 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1081 	} while (nr != 255);
1082 }
1083 
1084 /*
1085  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1086  * both clear the TLB for the unmapped pte. The reason is that
1087  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1088  * to modify an active pte. The sequence is
1089  *   1) ptep_get_and_clear
1090  *   2) set_pte_at
1091  *   3) flush_tlb_range
1092  * On s390 the tlb needs to get flushed with the modification of the pte
1093  * if the pte is active. The only way how this can be implemented is to
1094  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1095  * is a nop.
1096  */
1097 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1098 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1099 
1100 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1101 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1102 					    unsigned long addr, pte_t *ptep)
1103 {
1104 	pte_t pte = *ptep;
1105 
1106 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1107 	return pte_young(pte);
1108 }
1109 
1110 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1111 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1112 					 unsigned long address, pte_t *ptep)
1113 {
1114 	return ptep_test_and_clear_young(vma, address, ptep);
1115 }
1116 
1117 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1118 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1119 				       unsigned long addr, pte_t *ptep)
1120 {
1121 	pte_t res;
1122 
1123 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1124 	/* At this point the reference through the mapping is still present */
1125 	if (mm_is_protected(mm) && pte_present(res))
1126 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1127 	return res;
1128 }
1129 
1130 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1131 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1132 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1133 			     pte_t *, pte_t, pte_t);
1134 
1135 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1136 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1137 				     unsigned long addr, pte_t *ptep)
1138 {
1139 	pte_t res;
1140 
1141 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1142 	/* At this point the reference through the mapping is still present */
1143 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1144 		uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1145 	return res;
1146 }
1147 
1148 /*
1149  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1150  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1151  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1152  * cannot be accessed while the batched unmap is running. In this case
1153  * full==1 and a simple pte_clear is enough. See tlb.h.
1154  */
1155 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1156 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1157 					    unsigned long addr,
1158 					    pte_t *ptep, int full)
1159 {
1160 	pte_t res;
1161 
1162 	if (full) {
1163 		res = *ptep;
1164 		set_pte(ptep, __pte(_PAGE_INVALID));
1165 	} else {
1166 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1167 	}
1168 	/* Nothing to do */
1169 	if (!mm_is_protected(mm) || !pte_present(res))
1170 		return res;
1171 	/*
1172 	 * At this point the reference through the mapping is still present.
1173 	 * The notifier should have destroyed all protected vCPUs at this
1174 	 * point, so the destroy should be successful.
1175 	 */
1176 	if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1177 		return res;
1178 	/*
1179 	 * If something went wrong and the page could not be destroyed, or
1180 	 * if this is not a mm teardown, the slower export is used as
1181 	 * fallback instead.
1182 	 */
1183 	uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1184 	return res;
1185 }
1186 
1187 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1188 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1189 				      unsigned long addr, pte_t *ptep)
1190 {
1191 	pte_t pte = *ptep;
1192 
1193 	if (pte_write(pte))
1194 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1195 }
1196 
1197 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1198 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1199 					unsigned long addr, pte_t *ptep,
1200 					pte_t entry, int dirty)
1201 {
1202 	if (pte_same(*ptep, entry))
1203 		return 0;
1204 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1205 	return 1;
1206 }
1207 
1208 /*
1209  * Additional functions to handle KVM guest page tables
1210  */
1211 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1212 		     pte_t *ptep, pte_t entry);
1213 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1214 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1215 		 pte_t *ptep, unsigned long bits);
1216 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1217 		    pte_t *ptep, int prot, unsigned long bit);
1218 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1219 		     pte_t *ptep , int reset);
1220 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1221 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1222 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1223 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1224 
1225 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1226 			    pte_t *ptep);
1227 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1228 			  unsigned char key, bool nq);
1229 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1230 			       unsigned char key, unsigned char *oldkey,
1231 			       bool nq, bool mr, bool mc);
1232 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1233 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1234 			  unsigned char *key);
1235 
1236 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1237 				unsigned long bits, unsigned long value);
1238 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1239 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1240 			unsigned long *oldpte, unsigned long *oldpgste);
1241 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1242 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1243 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1244 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1245 
1246 #define pgprot_writecombine	pgprot_writecombine
1247 pgprot_t pgprot_writecombine(pgprot_t prot);
1248 
1249 #define pgprot_writethrough	pgprot_writethrough
1250 pgprot_t pgprot_writethrough(pgprot_t prot);
1251 
1252 /*
1253  * Certain architectures need to do special things when PTEs
1254  * within a page table are directly modified.  Thus, the following
1255  * hook is made available.
1256  */
1257 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1258 			      pte_t *ptep, pte_t entry)
1259 {
1260 	if (pte_present(entry))
1261 		entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1262 	if (mm_has_pgste(mm))
1263 		ptep_set_pte_at(mm, addr, ptep, entry);
1264 	else
1265 		set_pte(ptep, entry);
1266 }
1267 
1268 /*
1269  * Conversion functions: convert a page and protection to a page entry,
1270  * and a page entry and page directory to the page they refer to.
1271  */
1272 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1273 {
1274 	pte_t __pte;
1275 
1276 	__pte = __pte(physpage | pgprot_val(pgprot));
1277 	if (!MACHINE_HAS_NX)
1278 		__pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1279 	return pte_mkyoung(__pte);
1280 }
1281 
1282 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1283 {
1284 	unsigned long physpage = page_to_phys(page);
1285 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1286 
1287 	if (pte_write(__pte) && PageDirty(page))
1288 		__pte = pte_mkdirty(__pte);
1289 	return __pte;
1290 }
1291 
1292 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1293 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1294 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1295 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1296 
1297 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1298 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1299 
1300 static inline unsigned long pmd_deref(pmd_t pmd)
1301 {
1302 	unsigned long origin_mask;
1303 
1304 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1305 	if (pmd_large(pmd))
1306 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1307 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1308 }
1309 
1310 static inline unsigned long pmd_pfn(pmd_t pmd)
1311 {
1312 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1313 }
1314 
1315 static inline unsigned long pud_deref(pud_t pud)
1316 {
1317 	unsigned long origin_mask;
1318 
1319 	origin_mask = _REGION_ENTRY_ORIGIN;
1320 	if (pud_large(pud))
1321 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1322 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1323 }
1324 
1325 static inline unsigned long pud_pfn(pud_t pud)
1326 {
1327 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1328 }
1329 
1330 /*
1331  * The pgd_offset function *always* adds the index for the top-level
1332  * region/segment table. This is done to get a sequence like the
1333  * following to work:
1334  *	pgdp = pgd_offset(current->mm, addr);
1335  *	pgd = READ_ONCE(*pgdp);
1336  *	p4dp = p4d_offset(&pgd, addr);
1337  *	...
1338  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1339  * only add an index if they dereferenced the pointer.
1340  */
1341 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1342 {
1343 	unsigned long rste;
1344 	unsigned int shift;
1345 
1346 	/* Get the first entry of the top level table */
1347 	rste = pgd_val(*pgd);
1348 	/* Pick up the shift from the table type of the first entry */
1349 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1350 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1351 }
1352 
1353 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1354 
1355 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1356 {
1357 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1358 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1359 	return (p4d_t *) pgdp;
1360 }
1361 #define p4d_offset_lockless p4d_offset_lockless
1362 
1363 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1364 {
1365 	return p4d_offset_lockless(pgdp, *pgdp, address);
1366 }
1367 
1368 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1369 {
1370 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1371 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1372 	return (pud_t *) p4dp;
1373 }
1374 #define pud_offset_lockless pud_offset_lockless
1375 
1376 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1377 {
1378 	return pud_offset_lockless(p4dp, *p4dp, address);
1379 }
1380 #define pud_offset pud_offset
1381 
1382 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1383 {
1384 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1385 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1386 	return (pmd_t *) pudp;
1387 }
1388 #define pmd_offset_lockless pmd_offset_lockless
1389 
1390 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1391 {
1392 	return pmd_offset_lockless(pudp, *pudp, address);
1393 }
1394 #define pmd_offset pmd_offset
1395 
1396 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1397 {
1398 	return (unsigned long) pmd_deref(pmd);
1399 }
1400 
1401 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1402 {
1403 	return end <= current->mm->context.asce_limit;
1404 }
1405 #define gup_fast_permitted gup_fast_permitted
1406 
1407 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1408 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1409 #define pte_page(x) pfn_to_page(pte_pfn(x))
1410 
1411 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1412 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1413 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1414 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1415 
1416 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1417 {
1418 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1419 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1420 }
1421 
1422 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1423 {
1424 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1425 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1426 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1427 	return pmd;
1428 }
1429 
1430 static inline pmd_t pmd_mkclean(pmd_t pmd)
1431 {
1432 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1433 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1434 }
1435 
1436 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1437 {
1438 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1439 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1440 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1441 	return pmd;
1442 }
1443 
1444 static inline pud_t pud_wrprotect(pud_t pud)
1445 {
1446 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1447 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1448 }
1449 
1450 static inline pud_t pud_mkwrite(pud_t pud)
1451 {
1452 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1453 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1454 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1455 	return pud;
1456 }
1457 
1458 static inline pud_t pud_mkclean(pud_t pud)
1459 {
1460 	pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1461 	return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1462 }
1463 
1464 static inline pud_t pud_mkdirty(pud_t pud)
1465 {
1466 	pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1467 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1468 		pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1469 	return pud;
1470 }
1471 
1472 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1473 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1474 {
1475 	/*
1476 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1477 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1478 	 */
1479 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1480 		return pgprot_val(SEGMENT_NONE);
1481 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1482 		return pgprot_val(SEGMENT_RO);
1483 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1484 		return pgprot_val(SEGMENT_RX);
1485 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1486 		return pgprot_val(SEGMENT_RW);
1487 	return pgprot_val(SEGMENT_RWX);
1488 }
1489 
1490 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1491 {
1492 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1493 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1494 		pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1495 	return pmd;
1496 }
1497 
1498 static inline pmd_t pmd_mkold(pmd_t pmd)
1499 {
1500 	pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1501 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1502 }
1503 
1504 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1505 {
1506 	unsigned long mask;
1507 
1508 	mask  = _SEGMENT_ENTRY_ORIGIN_LARGE;
1509 	mask |= _SEGMENT_ENTRY_DIRTY;
1510 	mask |= _SEGMENT_ENTRY_YOUNG;
1511 	mask |=	_SEGMENT_ENTRY_LARGE;
1512 	mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1513 	pmd = __pmd(pmd_val(pmd) & mask);
1514 	pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1515 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1516 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1517 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1518 		pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1519 	return pmd;
1520 }
1521 
1522 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1523 {
1524 	return __pmd(physpage + massage_pgprot_pmd(pgprot));
1525 }
1526 
1527 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1528 
1529 static inline void __pmdp_csp(pmd_t *pmdp)
1530 {
1531 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1532 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1533 }
1534 
1535 #define IDTE_GLOBAL	0
1536 #define IDTE_LOCAL	1
1537 
1538 #define IDTE_PTOA	0x0800
1539 #define IDTE_NODAT	0x1000
1540 #define IDTE_GUEST_ASCE	0x2000
1541 
1542 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1543 					unsigned long opt, unsigned long asce,
1544 					int local)
1545 {
1546 	unsigned long sto;
1547 
1548 	sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1549 	if (__builtin_constant_p(opt) && opt == 0) {
1550 		/* flush without guest asce */
1551 		asm volatile(
1552 			"	idte	%[r1],0,%[r2],%[m4]"
1553 			: "+m" (*pmdp)
1554 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1555 			  [m4] "i" (local)
1556 			: "cc" );
1557 	} else {
1558 		/* flush with guest asce */
1559 		asm volatile(
1560 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1561 			: "+m" (*pmdp)
1562 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1563 			  [r3] "a" (asce), [m4] "i" (local)
1564 			: "cc" );
1565 	}
1566 }
1567 
1568 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1569 					unsigned long opt, unsigned long asce,
1570 					int local)
1571 {
1572 	unsigned long r3o;
1573 
1574 	r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1575 	r3o |= _ASCE_TYPE_REGION3;
1576 	if (__builtin_constant_p(opt) && opt == 0) {
1577 		/* flush without guest asce */
1578 		asm volatile(
1579 			"	idte	%[r1],0,%[r2],%[m4]"
1580 			: "+m" (*pudp)
1581 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1582 			  [m4] "i" (local)
1583 			: "cc");
1584 	} else {
1585 		/* flush with guest asce */
1586 		asm volatile(
1587 			"	idte	%[r1],%[r3],%[r2],%[m4]"
1588 			: "+m" (*pudp)
1589 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1590 			  [r3] "a" (asce), [m4] "i" (local)
1591 			: "cc" );
1592 	}
1593 }
1594 
1595 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1596 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1597 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1598 
1599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1600 
1601 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1602 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1603 				pgtable_t pgtable);
1604 
1605 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1606 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1607 
1608 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1609 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1610 					unsigned long addr, pmd_t *pmdp,
1611 					pmd_t entry, int dirty)
1612 {
1613 	VM_BUG_ON(addr & ~HPAGE_MASK);
1614 
1615 	entry = pmd_mkyoung(entry);
1616 	if (dirty)
1617 		entry = pmd_mkdirty(entry);
1618 	if (pmd_val(*pmdp) == pmd_val(entry))
1619 		return 0;
1620 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1621 	return 1;
1622 }
1623 
1624 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1625 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1626 					    unsigned long addr, pmd_t *pmdp)
1627 {
1628 	pmd_t pmd = *pmdp;
1629 
1630 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1631 	return pmd_young(pmd);
1632 }
1633 
1634 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1635 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1636 					 unsigned long addr, pmd_t *pmdp)
1637 {
1638 	VM_BUG_ON(addr & ~HPAGE_MASK);
1639 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1640 }
1641 
1642 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1643 			      pmd_t *pmdp, pmd_t entry)
1644 {
1645 	if (!MACHINE_HAS_NX)
1646 		entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1647 	set_pmd(pmdp, entry);
1648 }
1649 
1650 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1651 {
1652 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1653 	pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1654 	return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1655 }
1656 
1657 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1658 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1659 					    unsigned long addr, pmd_t *pmdp)
1660 {
1661 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1662 }
1663 
1664 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1665 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1666 						 unsigned long addr,
1667 						 pmd_t *pmdp, int full)
1668 {
1669 	if (full) {
1670 		pmd_t pmd = *pmdp;
1671 		set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1672 		return pmd;
1673 	}
1674 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1675 }
1676 
1677 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1678 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1679 					  unsigned long addr, pmd_t *pmdp)
1680 {
1681 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1682 }
1683 
1684 #define __HAVE_ARCH_PMDP_INVALIDATE
1685 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1686 				   unsigned long addr, pmd_t *pmdp)
1687 {
1688 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1689 
1690 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1691 }
1692 
1693 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1694 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1695 				      unsigned long addr, pmd_t *pmdp)
1696 {
1697 	pmd_t pmd = *pmdp;
1698 
1699 	if (pmd_write(pmd))
1700 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1701 }
1702 
1703 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1704 					unsigned long address,
1705 					pmd_t *pmdp)
1706 {
1707 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1708 }
1709 #define pmdp_collapse_flush pmdp_collapse_flush
1710 
1711 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1712 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1713 
1714 static inline int pmd_trans_huge(pmd_t pmd)
1715 {
1716 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1717 }
1718 
1719 #define has_transparent_hugepage has_transparent_hugepage
1720 static inline int has_transparent_hugepage(void)
1721 {
1722 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1723 }
1724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1725 
1726 /*
1727  * 64 bit swap entry format:
1728  * A page-table entry has some bits we have to treat in a special way.
1729  * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1730  * as invalid.
1731  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1732  * |			  offset			|E11XX|type |S0|
1733  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1734  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1735  *
1736  * Bits 0-51 store the offset.
1737  * Bit 52 (E) is used to remember PG_anon_exclusive.
1738  * Bits 57-61 store the type.
1739  * Bit 62 (S) is used for softdirty tracking.
1740  * Bits 55 and 56 (X) are unused.
1741  */
1742 
1743 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1744 #define __SWP_OFFSET_SHIFT	12
1745 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1746 #define __SWP_TYPE_SHIFT	2
1747 
1748 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1749 {
1750 	unsigned long pteval;
1751 
1752 	pteval = _PAGE_INVALID | _PAGE_PROTECT;
1753 	pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1754 	pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1755 	return __pte(pteval);
1756 }
1757 
1758 static inline unsigned long __swp_type(swp_entry_t entry)
1759 {
1760 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1761 }
1762 
1763 static inline unsigned long __swp_offset(swp_entry_t entry)
1764 {
1765 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1766 }
1767 
1768 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1769 {
1770 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1771 }
1772 
1773 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1774 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1775 
1776 #define kern_addr_valid(addr)   (1)
1777 
1778 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1779 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1780 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1781 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1782 extern void vmem_unmap_4k_page(unsigned long addr);
1783 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1784 extern int s390_enable_sie(void);
1785 extern int s390_enable_skey(void);
1786 extern void s390_reset_cmma(struct mm_struct *mm);
1787 
1788 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1789 #define HAVE_ARCH_UNMAPPED_AREA
1790 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1791 
1792 #define pmd_pgtable(pmd) \
1793 	((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1794 
1795 #endif /* _S390_PAGE_H */
1796