xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision 4e1a33b1)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2000
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (weigand@de.ibm.com)
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *
8  *  Derived from "include/asm-i386/pgtable.h"
9  */
10 
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13 
14 /*
15  * The Linux memory management assumes a three-level page table setup.
16  * For s390 64 bit we use up to four of the five levels the hardware
17  * provides (region first tables are not used).
18  *
19  * The "pgd_xxx()" functions are trivial for a folded two-level
20  * setup: the pgd is never bad, and a pmd always exists (as it's folded
21  * into the pgd entry)
22  *
23  * This file contains the functions and defines necessary to modify and use
24  * the S390 page table tree.
25  */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <linux/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/page.h>
34 
35 extern pgd_t swapper_pg_dir[];
36 extern void paging_init(void);
37 extern void vmem_map_init(void);
38 pmd_t *vmem_pmd_alloc(void);
39 pte_t *vmem_pte_alloc(void);
40 
41 enum {
42 	PG_DIRECT_MAP_4K = 0,
43 	PG_DIRECT_MAP_1M,
44 	PG_DIRECT_MAP_2G,
45 	PG_DIRECT_MAP_MAX
46 };
47 
48 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
49 
50 static inline void update_page_count(int level, long count)
51 {
52 	if (IS_ENABLED(CONFIG_PROC_FS))
53 		atomic_long_add(count, &direct_pages_count[level]);
54 }
55 
56 struct seq_file;
57 void arch_report_meminfo(struct seq_file *m);
58 
59 /*
60  * The S390 doesn't have any external MMU info: the kernel page
61  * tables contain all the necessary information.
62  */
63 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
64 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
65 
66 /*
67  * ZERO_PAGE is a global shared page that is always zero; used
68  * for zero-mapped memory areas etc..
69  */
70 
71 extern unsigned long empty_zero_page;
72 extern unsigned long zero_page_mask;
73 
74 #define ZERO_PAGE(vaddr) \
75 	(virt_to_page((void *)(empty_zero_page + \
76 	 (((unsigned long)(vaddr)) &zero_page_mask))))
77 #define __HAVE_COLOR_ZERO_PAGE
78 
79 /* TODO: s390 cannot support io_remap_pfn_range... */
80 #endif /* !__ASSEMBLY__ */
81 
82 /*
83  * PMD_SHIFT determines the size of the area a second-level page
84  * table can map
85  * PGDIR_SHIFT determines what a third-level page table entry can map
86  */
87 #define PMD_SHIFT	20
88 #define PUD_SHIFT	31
89 #define PGDIR_SHIFT	42
90 
91 #define PMD_SIZE        (1UL << PMD_SHIFT)
92 #define PMD_MASK        (~(PMD_SIZE-1))
93 #define PUD_SIZE	(1UL << PUD_SHIFT)
94 #define PUD_MASK	(~(PUD_SIZE-1))
95 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
96 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
97 
98 /*
99  * entries per page directory level: the S390 is two-level, so
100  * we don't really have any PMD directory physically.
101  * for S390 segment-table entries are combined to one PGD
102  * that leads to 1024 pte per pgd
103  */
104 #define PTRS_PER_PTE	256
105 #define PTRS_PER_PMD	2048
106 #define PTRS_PER_PUD	2048
107 #define PTRS_PER_PGD	2048
108 
109 #define FIRST_USER_ADDRESS  0UL
110 
111 #define pte_ERROR(e) \
112 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
113 #define pmd_ERROR(e) \
114 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
115 #define pud_ERROR(e) \
116 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
117 #define pgd_ERROR(e) \
118 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
119 
120 #ifndef __ASSEMBLY__
121 /*
122  * The vmalloc and module area will always be on the topmost area of the
123  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
124  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
125  * modules will reside. That makes sure that inter module branches always
126  * happen without trampolines and in addition the placement within a 2GB frame
127  * is branch prediction unit friendly.
128  */
129 extern unsigned long VMALLOC_START;
130 extern unsigned long VMALLOC_END;
131 extern struct page *vmemmap;
132 
133 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
134 
135 extern unsigned long MODULES_VADDR;
136 extern unsigned long MODULES_END;
137 #define MODULES_VADDR	MODULES_VADDR
138 #define MODULES_END	MODULES_END
139 #define MODULES_LEN	(1UL << 31)
140 
141 static inline int is_module_addr(void *addr)
142 {
143 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
144 	if (addr < (void *)MODULES_VADDR)
145 		return 0;
146 	if (addr > (void *)MODULES_END)
147 		return 0;
148 	return 1;
149 }
150 
151 /*
152  * A 64 bit pagetable entry of S390 has following format:
153  * |			 PFRA			      |0IPC|  OS  |
154  * 0000000000111111111122222222223333333333444444444455555555556666
155  * 0123456789012345678901234567890123456789012345678901234567890123
156  *
157  * I Page-Invalid Bit:    Page is not available for address-translation
158  * P Page-Protection Bit: Store access not possible for page
159  * C Change-bit override: HW is not required to set change bit
160  *
161  * A 64 bit segmenttable entry of S390 has following format:
162  * |        P-table origin                              |      TT
163  * 0000000000111111111122222222223333333333444444444455555555556666
164  * 0123456789012345678901234567890123456789012345678901234567890123
165  *
166  * I Segment-Invalid Bit:    Segment is not available for address-translation
167  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
168  * P Page-Protection Bit: Store access not possible for page
169  * TT Type 00
170  *
171  * A 64 bit region table entry of S390 has following format:
172  * |        S-table origin                             |   TF  TTTL
173  * 0000000000111111111122222222223333333333444444444455555555556666
174  * 0123456789012345678901234567890123456789012345678901234567890123
175  *
176  * I Segment-Invalid Bit:    Segment is not available for address-translation
177  * TT Type 01
178  * TF
179  * TL Table length
180  *
181  * The 64 bit regiontable origin of S390 has following format:
182  * |      region table origon                          |       DTTL
183  * 0000000000111111111122222222223333333333444444444455555555556666
184  * 0123456789012345678901234567890123456789012345678901234567890123
185  *
186  * X Space-Switch event:
187  * G Segment-Invalid Bit:
188  * P Private-Space Bit:
189  * S Storage-Alteration:
190  * R Real space
191  * TL Table-Length:
192  *
193  * A storage key has the following format:
194  * | ACC |F|R|C|0|
195  *  0   3 4 5 6 7
196  * ACC: access key
197  * F  : fetch protection bit
198  * R  : referenced bit
199  * C  : changed bit
200  */
201 
202 /* Hardware bits in the page table entry */
203 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
204 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
205 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
206 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
207 
208 /* Software bits in the page table entry */
209 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
210 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
211 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
212 #define _PAGE_READ	0x010		/* SW pte read bit */
213 #define _PAGE_WRITE	0x020		/* SW pte write bit */
214 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
215 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
216 #define __HAVE_ARCH_PTE_SPECIAL
217 
218 #ifdef CONFIG_MEM_SOFT_DIRTY
219 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
220 #else
221 #define _PAGE_SOFT_DIRTY 0x000
222 #endif
223 
224 /* Set of bits not changed in pte_modify */
225 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
226 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
227 
228 /*
229  * handle_pte_fault uses pte_present and pte_none to find out the pte type
230  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
231  * distinguish present from not-present ptes. It is changed only with the page
232  * table lock held.
233  *
234  * The following table gives the different possible bit combinations for
235  * the pte hardware and software bits in the last 12 bits of a pte
236  * (. unassigned bit, x don't care, t swap type):
237  *
238  *				842100000000
239  *				000084210000
240  *				000000008421
241  *				.IR.uswrdy.p
242  * empty			.10.00000000
243  * swap				.11..ttttt.0
244  * prot-none, clean, old	.11.xx0000.1
245  * prot-none, clean, young	.11.xx0001.1
246  * prot-none, dirty, old	.11.xx0010.1
247  * prot-none, dirty, young	.11.xx0011.1
248  * read-only, clean, old	.11.xx0100.1
249  * read-only, clean, young	.01.xx0101.1
250  * read-only, dirty, old	.11.xx0110.1
251  * read-only, dirty, young	.01.xx0111.1
252  * read-write, clean, old	.11.xx1100.1
253  * read-write, clean, young	.01.xx1101.1
254  * read-write, dirty, old	.10.xx1110.1
255  * read-write, dirty, young	.00.xx1111.1
256  * HW-bits: R read-only, I invalid
257  * SW-bits: p present, y young, d dirty, r read, w write, s special,
258  *	    u unused, l large
259  *
260  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
261  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
262  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
263  */
264 
265 /* Bits in the segment/region table address-space-control-element */
266 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
267 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
268 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
269 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
270 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
271 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
272 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
273 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
274 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
275 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
276 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
277 
278 /* Bits in the region table entry */
279 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
280 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
281 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
282 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
283 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
284 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
285 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
286 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
287 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
288 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
289 
290 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
291 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
292 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
293 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
294 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
295 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
296 
297 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
298 #define _REGION3_ENTRY_ORIGIN  ~0x7ffUL/* region third table origin	     */
299 
300 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
301 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
302 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
303 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
304 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
308 #else
309 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
310 #endif
311 
312 #define _REGION_ENTRY_BITS	 0xfffffffffffff227UL
313 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
314 
315 /* Bits in the segment table entry */
316 #define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
317 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
318 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
319 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
320 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
321 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
322 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
323 
324 #define _SEGMENT_ENTRY		(0)
325 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
326 
327 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
328 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
329 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
330 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
331 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
332 
333 #ifdef CONFIG_MEM_SOFT_DIRTY
334 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
335 #else
336 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
337 #endif
338 
339 /*
340  * Segment table and region3 table entry encoding
341  * (R = read-only, I = invalid, y = young bit):
342  *				dy..R...I...wr
343  * prot-none, clean, old	00..1...1...00
344  * prot-none, clean, young	01..1...1...00
345  * prot-none, dirty, old	10..1...1...00
346  * prot-none, dirty, young	11..1...1...00
347  * read-only, clean, old	00..1...1...01
348  * read-only, clean, young	01..1...0...01
349  * read-only, dirty, old	10..1...1...01
350  * read-only, dirty, young	11..1...0...01
351  * read-write, clean, old	00..1...1...11
352  * read-write, clean, young	01..1...0...11
353  * read-write, dirty, old	10..0...1...11
354  * read-write, dirty, young	11..0...0...11
355  * The segment table origin is used to distinguish empty (origin==0) from
356  * read-write, old segment table entries (origin!=0)
357  * HW-bits: R read-only, I invalid
358  * SW-bits: y young, d dirty, r read, w write
359  */
360 
361 /* Page status table bits for virtualization */
362 #define PGSTE_ACC_BITS	0xf000000000000000UL
363 #define PGSTE_FP_BIT	0x0800000000000000UL
364 #define PGSTE_PCL_BIT	0x0080000000000000UL
365 #define PGSTE_HR_BIT	0x0040000000000000UL
366 #define PGSTE_HC_BIT	0x0020000000000000UL
367 #define PGSTE_GR_BIT	0x0004000000000000UL
368 #define PGSTE_GC_BIT	0x0002000000000000UL
369 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
370 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
371 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
372 
373 /* Guest Page State used for virtualization */
374 #define _PGSTE_GPS_ZERO		0x0000000080000000UL
375 #define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
376 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
377 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
378 
379 /*
380  * A user page table pointer has the space-switch-event bit, the
381  * private-space-control bit and the storage-alteration-event-control
382  * bit set. A kernel page table pointer doesn't need them.
383  */
384 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
385 				 _ASCE_ALT_EVENT)
386 
387 /*
388  * Page protection definitions.
389  */
390 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
391 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
392 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
393 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
394 				 _PAGE_INVALID | _PAGE_PROTECT)
395 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
396 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
397 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
398 				 _PAGE_INVALID | _PAGE_PROTECT)
399 
400 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
401 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
402 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
403 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
404 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
405 				 _PAGE_PROTECT | _PAGE_NOEXEC)
406 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
407 				  _PAGE_YOUNG |	_PAGE_DIRTY)
408 
409 /*
410  * On s390 the page table entry has an invalid bit and a read-only bit.
411  * Read permission implies execute permission and write permission
412  * implies read permission.
413  */
414          /*xwr*/
415 #define __P000	PAGE_NONE
416 #define __P001	PAGE_RO
417 #define __P010	PAGE_RO
418 #define __P011	PAGE_RO
419 #define __P100	PAGE_RX
420 #define __P101	PAGE_RX
421 #define __P110	PAGE_RX
422 #define __P111	PAGE_RX
423 
424 #define __S000	PAGE_NONE
425 #define __S001	PAGE_RO
426 #define __S010	PAGE_RW
427 #define __S011	PAGE_RW
428 #define __S100	PAGE_RX
429 #define __S101	PAGE_RX
430 #define __S110	PAGE_RWX
431 #define __S111	PAGE_RWX
432 
433 /*
434  * Segment entry (large page) protection definitions.
435  */
436 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
437 				 _SEGMENT_ENTRY_PROTECT)
438 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
439 				 _SEGMENT_ENTRY_READ | \
440 				 _SEGMENT_ENTRY_NOEXEC)
441 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
442 				 _SEGMENT_ENTRY_READ)
443 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
444 				 _SEGMENT_ENTRY_WRITE | \
445 				 _SEGMENT_ENTRY_NOEXEC)
446 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
447 				 _SEGMENT_ENTRY_WRITE)
448 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
449 				 _SEGMENT_ENTRY_LARGE |	\
450 				 _SEGMENT_ENTRY_READ |	\
451 				 _SEGMENT_ENTRY_WRITE | \
452 				 _SEGMENT_ENTRY_YOUNG | \
453 				 _SEGMENT_ENTRY_DIRTY | \
454 				 _SEGMENT_ENTRY_NOEXEC)
455 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
456 				 _SEGMENT_ENTRY_LARGE |	\
457 				 _SEGMENT_ENTRY_READ |	\
458 				 _SEGMENT_ENTRY_YOUNG |	\
459 				 _SEGMENT_ENTRY_PROTECT | \
460 				 _SEGMENT_ENTRY_NOEXEC)
461 
462 /*
463  * Region3 entry (large page) protection definitions.
464  */
465 
466 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
467 				 _REGION3_ENTRY_LARGE |	 \
468 				 _REGION3_ENTRY_READ |	 \
469 				 _REGION3_ENTRY_WRITE |	 \
470 				 _REGION3_ENTRY_YOUNG |	 \
471 				 _REGION3_ENTRY_DIRTY | \
472 				 _REGION_ENTRY_NOEXEC)
473 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
474 				   _REGION3_ENTRY_LARGE |  \
475 				   _REGION3_ENTRY_READ |   \
476 				   _REGION3_ENTRY_YOUNG |  \
477 				   _REGION_ENTRY_PROTECT | \
478 				   _REGION_ENTRY_NOEXEC)
479 
480 static inline int mm_has_pgste(struct mm_struct *mm)
481 {
482 #ifdef CONFIG_PGSTE
483 	if (unlikely(mm->context.has_pgste))
484 		return 1;
485 #endif
486 	return 0;
487 }
488 
489 static inline int mm_alloc_pgste(struct mm_struct *mm)
490 {
491 #ifdef CONFIG_PGSTE
492 	if (unlikely(mm->context.alloc_pgste))
493 		return 1;
494 #endif
495 	return 0;
496 }
497 
498 /*
499  * In the case that a guest uses storage keys
500  * faults should no longer be backed by zero pages
501  */
502 #define mm_forbids_zeropage mm_use_skey
503 static inline int mm_use_skey(struct mm_struct *mm)
504 {
505 #ifdef CONFIG_PGSTE
506 	if (mm->context.use_skey)
507 		return 1;
508 #endif
509 	return 0;
510 }
511 
512 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
513 {
514 	register unsigned long reg2 asm("2") = old;
515 	register unsigned long reg3 asm("3") = new;
516 	unsigned long address = (unsigned long)ptr | 1;
517 
518 	asm volatile(
519 		"	csp	%0,%3"
520 		: "+d" (reg2), "+m" (*ptr)
521 		: "d" (reg3), "d" (address)
522 		: "cc");
523 }
524 
525 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
526 {
527 	register unsigned long reg2 asm("2") = old;
528 	register unsigned long reg3 asm("3") = new;
529 	unsigned long address = (unsigned long)ptr | 1;
530 
531 	asm volatile(
532 		"	.insn	rre,0xb98a0000,%0,%3"
533 		: "+d" (reg2), "+m" (*ptr)
534 		: "d" (reg3), "d" (address)
535 		: "cc");
536 }
537 
538 #define CRDTE_DTT_PAGE		0x00UL
539 #define CRDTE_DTT_SEGMENT	0x10UL
540 #define CRDTE_DTT_REGION3	0x14UL
541 #define CRDTE_DTT_REGION2	0x18UL
542 #define CRDTE_DTT_REGION1	0x1cUL
543 
544 static inline void crdte(unsigned long old, unsigned long new,
545 			 unsigned long table, unsigned long dtt,
546 			 unsigned long address, unsigned long asce)
547 {
548 	register unsigned long reg2 asm("2") = old;
549 	register unsigned long reg3 asm("3") = new;
550 	register unsigned long reg4 asm("4") = table | dtt;
551 	register unsigned long reg5 asm("5") = address;
552 
553 	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
554 		     : "+d" (reg2)
555 		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
556 		     : "memory", "cc");
557 }
558 
559 /*
560  * pgd/pmd/pte query functions
561  */
562 static inline int pgd_present(pgd_t pgd)
563 {
564 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
565 		return 1;
566 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
567 }
568 
569 static inline int pgd_none(pgd_t pgd)
570 {
571 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
572 		return 0;
573 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
574 }
575 
576 static inline int pgd_bad(pgd_t pgd)
577 {
578 	/*
579 	 * With dynamic page table levels the pgd can be a region table
580 	 * entry or a segment table entry. Check for the bit that are
581 	 * invalid for either table entry.
582 	 */
583 	unsigned long mask =
584 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
585 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
586 	return (pgd_val(pgd) & mask) != 0;
587 }
588 
589 static inline int pud_present(pud_t pud)
590 {
591 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
592 		return 1;
593 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
594 }
595 
596 static inline int pud_none(pud_t pud)
597 {
598 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
599 		return 0;
600 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
601 }
602 
603 static inline int pud_large(pud_t pud)
604 {
605 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
606 		return 0;
607 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
608 }
609 
610 static inline unsigned long pud_pfn(pud_t pud)
611 {
612 	unsigned long origin_mask;
613 
614 	origin_mask = _REGION3_ENTRY_ORIGIN;
615 	if (pud_large(pud))
616 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
617 	return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
618 }
619 
620 static inline int pmd_large(pmd_t pmd)
621 {
622 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
623 }
624 
625 static inline int pmd_bad(pmd_t pmd)
626 {
627 	if (pmd_large(pmd))
628 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
629 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
630 }
631 
632 static inline int pud_bad(pud_t pud)
633 {
634 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
635 		return pmd_bad(__pmd(pud_val(pud)));
636 	if (pud_large(pud))
637 		return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
638 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
639 }
640 
641 static inline int pmd_present(pmd_t pmd)
642 {
643 	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
644 }
645 
646 static inline int pmd_none(pmd_t pmd)
647 {
648 	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
649 }
650 
651 static inline unsigned long pmd_pfn(pmd_t pmd)
652 {
653 	unsigned long origin_mask;
654 
655 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
656 	if (pmd_large(pmd))
657 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
658 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
659 }
660 
661 #define __HAVE_ARCH_PMD_WRITE
662 static inline int pmd_write(pmd_t pmd)
663 {
664 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
665 }
666 
667 static inline int pmd_dirty(pmd_t pmd)
668 {
669 	int dirty = 1;
670 	if (pmd_large(pmd))
671 		dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
672 	return dirty;
673 }
674 
675 static inline int pmd_young(pmd_t pmd)
676 {
677 	int young = 1;
678 	if (pmd_large(pmd))
679 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
680 	return young;
681 }
682 
683 static inline int pte_present(pte_t pte)
684 {
685 	/* Bit pattern: (pte & 0x001) == 0x001 */
686 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
687 }
688 
689 static inline int pte_none(pte_t pte)
690 {
691 	/* Bit pattern: pte == 0x400 */
692 	return pte_val(pte) == _PAGE_INVALID;
693 }
694 
695 static inline int pte_swap(pte_t pte)
696 {
697 	/* Bit pattern: (pte & 0x201) == 0x200 */
698 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
699 		== _PAGE_PROTECT;
700 }
701 
702 static inline int pte_special(pte_t pte)
703 {
704 	return (pte_val(pte) & _PAGE_SPECIAL);
705 }
706 
707 #define __HAVE_ARCH_PTE_SAME
708 static inline int pte_same(pte_t a, pte_t b)
709 {
710 	return pte_val(a) == pte_val(b);
711 }
712 
713 #ifdef CONFIG_NUMA_BALANCING
714 static inline int pte_protnone(pte_t pte)
715 {
716 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
717 }
718 
719 static inline int pmd_protnone(pmd_t pmd)
720 {
721 	/* pmd_large(pmd) implies pmd_present(pmd) */
722 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
723 }
724 #endif
725 
726 static inline int pte_soft_dirty(pte_t pte)
727 {
728 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
729 }
730 #define pte_swp_soft_dirty pte_soft_dirty
731 
732 static inline pte_t pte_mksoft_dirty(pte_t pte)
733 {
734 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
735 	return pte;
736 }
737 #define pte_swp_mksoft_dirty pte_mksoft_dirty
738 
739 static inline pte_t pte_clear_soft_dirty(pte_t pte)
740 {
741 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
742 	return pte;
743 }
744 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
745 
746 static inline int pmd_soft_dirty(pmd_t pmd)
747 {
748 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
749 }
750 
751 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
752 {
753 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
754 	return pmd;
755 }
756 
757 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
758 {
759 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
760 	return pmd;
761 }
762 
763 /*
764  * query functions pte_write/pte_dirty/pte_young only work if
765  * pte_present() is true. Undefined behaviour if not..
766  */
767 static inline int pte_write(pte_t pte)
768 {
769 	return (pte_val(pte) & _PAGE_WRITE) != 0;
770 }
771 
772 static inline int pte_dirty(pte_t pte)
773 {
774 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
775 }
776 
777 static inline int pte_young(pte_t pte)
778 {
779 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
780 }
781 
782 #define __HAVE_ARCH_PTE_UNUSED
783 static inline int pte_unused(pte_t pte)
784 {
785 	return pte_val(pte) & _PAGE_UNUSED;
786 }
787 
788 /*
789  * pgd/pmd/pte modification functions
790  */
791 
792 static inline void pgd_clear(pgd_t *pgd)
793 {
794 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
795 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
796 }
797 
798 static inline void pud_clear(pud_t *pud)
799 {
800 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
801 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
802 }
803 
804 static inline void pmd_clear(pmd_t *pmdp)
805 {
806 	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
807 }
808 
809 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
810 {
811 	pte_val(*ptep) = _PAGE_INVALID;
812 }
813 
814 /*
815  * The following pte modification functions only work if
816  * pte_present() is true. Undefined behaviour if not..
817  */
818 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
819 {
820 	pte_val(pte) &= _PAGE_CHG_MASK;
821 	pte_val(pte) |= pgprot_val(newprot);
822 	/*
823 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
824 	 * has the invalid bit set, clear it again for readable, young pages
825 	 */
826 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
827 		pte_val(pte) &= ~_PAGE_INVALID;
828 	/*
829 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
830 	 * protection bit set, clear it again for writable, dirty pages
831 	 */
832 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
833 		pte_val(pte) &= ~_PAGE_PROTECT;
834 	return pte;
835 }
836 
837 static inline pte_t pte_wrprotect(pte_t pte)
838 {
839 	pte_val(pte) &= ~_PAGE_WRITE;
840 	pte_val(pte) |= _PAGE_PROTECT;
841 	return pte;
842 }
843 
844 static inline pte_t pte_mkwrite(pte_t pte)
845 {
846 	pte_val(pte) |= _PAGE_WRITE;
847 	if (pte_val(pte) & _PAGE_DIRTY)
848 		pte_val(pte) &= ~_PAGE_PROTECT;
849 	return pte;
850 }
851 
852 static inline pte_t pte_mkclean(pte_t pte)
853 {
854 	pte_val(pte) &= ~_PAGE_DIRTY;
855 	pte_val(pte) |= _PAGE_PROTECT;
856 	return pte;
857 }
858 
859 static inline pte_t pte_mkdirty(pte_t pte)
860 {
861 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
862 	if (pte_val(pte) & _PAGE_WRITE)
863 		pte_val(pte) &= ~_PAGE_PROTECT;
864 	return pte;
865 }
866 
867 static inline pte_t pte_mkold(pte_t pte)
868 {
869 	pte_val(pte) &= ~_PAGE_YOUNG;
870 	pte_val(pte) |= _PAGE_INVALID;
871 	return pte;
872 }
873 
874 static inline pte_t pte_mkyoung(pte_t pte)
875 {
876 	pte_val(pte) |= _PAGE_YOUNG;
877 	if (pte_val(pte) & _PAGE_READ)
878 		pte_val(pte) &= ~_PAGE_INVALID;
879 	return pte;
880 }
881 
882 static inline pte_t pte_mkspecial(pte_t pte)
883 {
884 	pte_val(pte) |= _PAGE_SPECIAL;
885 	return pte;
886 }
887 
888 #ifdef CONFIG_HUGETLB_PAGE
889 static inline pte_t pte_mkhuge(pte_t pte)
890 {
891 	pte_val(pte) |= _PAGE_LARGE;
892 	return pte;
893 }
894 #endif
895 
896 #define IPTE_GLOBAL	0
897 #define	IPTE_LOCAL	1
898 
899 static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
900 {
901 	unsigned long pto = (unsigned long) ptep;
902 
903 	/* Invalidation + TLB flush for the pte */
904 	asm volatile(
905 		"       .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
906 		: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
907 		  [m4] "i" (local));
908 }
909 
910 static inline void __ptep_ipte_range(unsigned long address, int nr,
911 				     pte_t *ptep, int local)
912 {
913 	unsigned long pto = (unsigned long) ptep;
914 
915 	/* Invalidate a range of ptes + TLB flush of the ptes */
916 	do {
917 		asm volatile(
918 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
919 			: [r2] "+a" (address), [r3] "+a" (nr)
920 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
921 	} while (nr != 255);
922 }
923 
924 /*
925  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
926  * both clear the TLB for the unmapped pte. The reason is that
927  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
928  * to modify an active pte. The sequence is
929  *   1) ptep_get_and_clear
930  *   2) set_pte_at
931  *   3) flush_tlb_range
932  * On s390 the tlb needs to get flushed with the modification of the pte
933  * if the pte is active. The only way how this can be implemented is to
934  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
935  * is a nop.
936  */
937 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
938 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
939 
940 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
941 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
942 					    unsigned long addr, pte_t *ptep)
943 {
944 	pte_t pte = *ptep;
945 
946 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
947 	return pte_young(pte);
948 }
949 
950 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
951 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
952 					 unsigned long address, pte_t *ptep)
953 {
954 	return ptep_test_and_clear_young(vma, address, ptep);
955 }
956 
957 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
958 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
959 				       unsigned long addr, pte_t *ptep)
960 {
961 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
962 }
963 
964 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
965 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
966 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
967 
968 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
969 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
970 				     unsigned long addr, pte_t *ptep)
971 {
972 	return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
973 }
974 
975 /*
976  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
977  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
978  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
979  * cannot be accessed while the batched unmap is running. In this case
980  * full==1 and a simple pte_clear is enough. See tlb.h.
981  */
982 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
983 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
984 					    unsigned long addr,
985 					    pte_t *ptep, int full)
986 {
987 	if (full) {
988 		pte_t pte = *ptep;
989 		*ptep = __pte(_PAGE_INVALID);
990 		return pte;
991 	}
992 	return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
993 }
994 
995 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
996 static inline void ptep_set_wrprotect(struct mm_struct *mm,
997 				      unsigned long addr, pte_t *ptep)
998 {
999 	pte_t pte = *ptep;
1000 
1001 	if (pte_write(pte))
1002 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1003 }
1004 
1005 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1006 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1007 					unsigned long addr, pte_t *ptep,
1008 					pte_t entry, int dirty)
1009 {
1010 	if (pte_same(*ptep, entry))
1011 		return 0;
1012 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1013 	return 1;
1014 }
1015 
1016 /*
1017  * Additional functions to handle KVM guest page tables
1018  */
1019 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1020 		     pte_t *ptep, pte_t entry);
1021 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1022 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1023 		 pte_t *ptep, unsigned long bits);
1024 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1025 		    pte_t *ptep, int prot, unsigned long bit);
1026 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1027 		     pte_t *ptep , int reset);
1028 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1029 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1030 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1031 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1032 
1033 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1034 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1035 			  unsigned char key, bool nq);
1036 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1037 			       unsigned char key, unsigned char *oldkey,
1038 			       bool nq, bool mr, bool mc);
1039 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1040 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1041 			  unsigned char *key);
1042 
1043 /*
1044  * Certain architectures need to do special things when PTEs
1045  * within a page table are directly modified.  Thus, the following
1046  * hook is made available.
1047  */
1048 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1049 			      pte_t *ptep, pte_t entry)
1050 {
1051 	if (!MACHINE_HAS_NX)
1052 		pte_val(entry) &= ~_PAGE_NOEXEC;
1053 	if (mm_has_pgste(mm))
1054 		ptep_set_pte_at(mm, addr, ptep, entry);
1055 	else
1056 		*ptep = entry;
1057 }
1058 
1059 /*
1060  * Conversion functions: convert a page and protection to a page entry,
1061  * and a page entry and page directory to the page they refer to.
1062  */
1063 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1064 {
1065 	pte_t __pte;
1066 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1067 	return pte_mkyoung(__pte);
1068 }
1069 
1070 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1071 {
1072 	unsigned long physpage = page_to_phys(page);
1073 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1074 
1075 	if (pte_write(__pte) && PageDirty(page))
1076 		__pte = pte_mkdirty(__pte);
1077 	return __pte;
1078 }
1079 
1080 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1081 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1082 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1083 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1084 
1085 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1086 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1087 
1088 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1089 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1090 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1091 
1092 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1093 {
1094 	pud_t *pud = (pud_t *) pgd;
1095 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1096 		pud = (pud_t *) pgd_deref(*pgd);
1097 	return pud  + pud_index(address);
1098 }
1099 
1100 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1101 {
1102 	pmd_t *pmd = (pmd_t *) pud;
1103 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1104 		pmd = (pmd_t *) pud_deref(*pud);
1105 	return pmd + pmd_index(address);
1106 }
1107 
1108 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1109 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1110 #define pte_page(x) pfn_to_page(pte_pfn(x))
1111 
1112 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1113 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1114 
1115 /* Find an entry in the lowest level page table.. */
1116 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1117 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1118 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1119 #define pte_unmap(pte) do { } while (0)
1120 
1121 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1122 {
1123 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1124 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1125 	return pmd;
1126 }
1127 
1128 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1129 {
1130 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1131 	if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1132 		return pmd;
1133 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1134 	return pmd;
1135 }
1136 
1137 static inline pmd_t pmd_mkclean(pmd_t pmd)
1138 {
1139 	if (pmd_large(pmd)) {
1140 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1141 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1142 	}
1143 	return pmd;
1144 }
1145 
1146 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1147 {
1148 	if (pmd_large(pmd)) {
1149 		pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1150 				_SEGMENT_ENTRY_SOFT_DIRTY;
1151 		if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1152 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1153 	}
1154 	return pmd;
1155 }
1156 
1157 static inline pud_t pud_wrprotect(pud_t pud)
1158 {
1159 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1160 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1161 	return pud;
1162 }
1163 
1164 static inline pud_t pud_mkwrite(pud_t pud)
1165 {
1166 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1167 	if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1168 		return pud;
1169 	pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1170 	return pud;
1171 }
1172 
1173 static inline pud_t pud_mkclean(pud_t pud)
1174 {
1175 	if (pud_large(pud)) {
1176 		pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1177 		pud_val(pud) |= _REGION_ENTRY_PROTECT;
1178 	}
1179 	return pud;
1180 }
1181 
1182 static inline pud_t pud_mkdirty(pud_t pud)
1183 {
1184 	if (pud_large(pud)) {
1185 		pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1186 				_REGION3_ENTRY_SOFT_DIRTY;
1187 		if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1188 			pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1189 	}
1190 	return pud;
1191 }
1192 
1193 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1194 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1195 {
1196 	/*
1197 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1198 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1199 	 */
1200 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1201 		return pgprot_val(SEGMENT_NONE);
1202 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1203 		return pgprot_val(SEGMENT_RO);
1204 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1205 		return pgprot_val(SEGMENT_RX);
1206 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1207 		return pgprot_val(SEGMENT_RW);
1208 	return pgprot_val(SEGMENT_RWX);
1209 }
1210 
1211 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1212 {
1213 	if (pmd_large(pmd)) {
1214 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1215 		if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1216 			pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1217 	}
1218 	return pmd;
1219 }
1220 
1221 static inline pmd_t pmd_mkold(pmd_t pmd)
1222 {
1223 	if (pmd_large(pmd)) {
1224 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1225 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1226 	}
1227 	return pmd;
1228 }
1229 
1230 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1231 {
1232 	if (pmd_large(pmd)) {
1233 		pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1234 			_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1235 			_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1236 		pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1237 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1238 			pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1239 		if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1240 			pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1241 		return pmd;
1242 	}
1243 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1244 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1245 	return pmd;
1246 }
1247 
1248 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1249 {
1250 	pmd_t __pmd;
1251 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1252 	return __pmd;
1253 }
1254 
1255 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1256 
1257 static inline void __pmdp_csp(pmd_t *pmdp)
1258 {
1259 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1260 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1261 }
1262 
1263 #define IDTE_GLOBAL	0
1264 #define IDTE_LOCAL	1
1265 
1266 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
1267 {
1268 	unsigned long sto;
1269 
1270 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1271 	asm volatile(
1272 		"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1273 		: "+m" (*pmdp)
1274 		: [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
1275 		  [m4] "i" (local)
1276 		: "cc" );
1277 }
1278 
1279 static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
1280 {
1281 	unsigned long r3o;
1282 
1283 	r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1284 	r3o |= _ASCE_TYPE_REGION3;
1285 	asm volatile(
1286 		"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1287 		: "+m" (*pudp)
1288 		: [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
1289 		  [m4] "i" (local)
1290 		: "cc");
1291 }
1292 
1293 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1294 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1295 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1296 
1297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298 
1299 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1300 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1301 				pgtable_t pgtable);
1302 
1303 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1304 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1305 
1306 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1307 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1308 					unsigned long addr, pmd_t *pmdp,
1309 					pmd_t entry, int dirty)
1310 {
1311 	VM_BUG_ON(addr & ~HPAGE_MASK);
1312 
1313 	entry = pmd_mkyoung(entry);
1314 	if (dirty)
1315 		entry = pmd_mkdirty(entry);
1316 	if (pmd_val(*pmdp) == pmd_val(entry))
1317 		return 0;
1318 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1319 	return 1;
1320 }
1321 
1322 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1323 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1324 					    unsigned long addr, pmd_t *pmdp)
1325 {
1326 	pmd_t pmd = *pmdp;
1327 
1328 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1329 	return pmd_young(pmd);
1330 }
1331 
1332 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1333 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1334 					 unsigned long addr, pmd_t *pmdp)
1335 {
1336 	VM_BUG_ON(addr & ~HPAGE_MASK);
1337 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1338 }
1339 
1340 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1341 			      pmd_t *pmdp, pmd_t entry)
1342 {
1343 	if (!MACHINE_HAS_NX)
1344 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1345 	*pmdp = entry;
1346 }
1347 
1348 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1349 {
1350 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1351 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1352 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1353 	return pmd;
1354 }
1355 
1356 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1357 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1358 					    unsigned long addr, pmd_t *pmdp)
1359 {
1360 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1361 }
1362 
1363 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1364 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1365 						 unsigned long addr,
1366 						 pmd_t *pmdp, int full)
1367 {
1368 	if (full) {
1369 		pmd_t pmd = *pmdp;
1370 		*pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
1371 		return pmd;
1372 	}
1373 	return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1374 }
1375 
1376 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1377 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1378 					  unsigned long addr, pmd_t *pmdp)
1379 {
1380 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1381 }
1382 
1383 #define __HAVE_ARCH_PMDP_INVALIDATE
1384 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1385 				   unsigned long addr, pmd_t *pmdp)
1386 {
1387 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1388 }
1389 
1390 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1391 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1392 				      unsigned long addr, pmd_t *pmdp)
1393 {
1394 	pmd_t pmd = *pmdp;
1395 
1396 	if (pmd_write(pmd))
1397 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1398 }
1399 
1400 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1401 					unsigned long address,
1402 					pmd_t *pmdp)
1403 {
1404 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1405 }
1406 #define pmdp_collapse_flush pmdp_collapse_flush
1407 
1408 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1409 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1410 
1411 static inline int pmd_trans_huge(pmd_t pmd)
1412 {
1413 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1414 }
1415 
1416 #define has_transparent_hugepage has_transparent_hugepage
1417 static inline int has_transparent_hugepage(void)
1418 {
1419 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1420 }
1421 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1422 
1423 /*
1424  * 64 bit swap entry format:
1425  * A page-table entry has some bits we have to treat in a special way.
1426  * Bits 52 and bit 55 have to be zero, otherwise a specification
1427  * exception will occur instead of a page translation exception. The
1428  * specification exception has the bad habit not to store necessary
1429  * information in the lowcore.
1430  * Bits 54 and 63 are used to indicate the page type.
1431  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1432  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1433  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1434  * for the offset.
1435  * |			  offset			|01100|type |00|
1436  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1437  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1438  */
1439 
1440 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1441 #define __SWP_OFFSET_SHIFT	12
1442 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1443 #define __SWP_TYPE_SHIFT	2
1444 
1445 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1446 {
1447 	pte_t pte;
1448 
1449 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1450 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1451 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1452 	return pte;
1453 }
1454 
1455 static inline unsigned long __swp_type(swp_entry_t entry)
1456 {
1457 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1458 }
1459 
1460 static inline unsigned long __swp_offset(swp_entry_t entry)
1461 {
1462 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1463 }
1464 
1465 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1466 {
1467 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1468 }
1469 
1470 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1471 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1472 
1473 #endif /* !__ASSEMBLY__ */
1474 
1475 #define kern_addr_valid(addr)   (1)
1476 
1477 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1478 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1479 extern int s390_enable_sie(void);
1480 extern int s390_enable_skey(void);
1481 extern void s390_reset_cmma(struct mm_struct *mm);
1482 
1483 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1484 #define HAVE_ARCH_UNMAPPED_AREA
1485 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1486 
1487 /*
1488  * No page table caches to initialise
1489  */
1490 static inline void pgtable_cache_init(void) { }
1491 static inline void check_pgt_cache(void) { }
1492 
1493 #include <asm-generic/pgtable.h>
1494 
1495 #endif /* _S390_PAGE_H */
1496