xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision 36bccb11)
1 /*
2  *  S390 version
3  *    Copyright IBM Corp. 1999, 2000
4  *    Author(s): Hartmut Penner (hp@de.ibm.com)
5  *               Ulrich Weigand (weigand@de.ibm.com)
6  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
7  *
8  *  Derived from "include/asm-i386/pgtable.h"
9  */
10 
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13 
14 /*
15  * The Linux memory management assumes a three-level page table setup. For
16  * s390 31 bit we "fold" the mid level into the top-level page table, so
17  * that we physically have the same two-level page table as the s390 mmu
18  * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19  * the hardware provides (region first and region second tables are not
20  * used).
21  *
22  * The "pgd_xxx()" functions are trivial for a folded two-level
23  * setup: the pgd is never bad, and a pmd always exists (as it's folded
24  * into the pgd entry)
25  *
26  * This file contains the functions and defines necessary to modify and use
27  * the S390 page table tree.
28  */
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
35 
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39 
40 /*
41  * The S390 doesn't have any external MMU info: the kernel page
42  * tables contain all the necessary information.
43  */
44 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46 
47 /*
48  * ZERO_PAGE is a global shared page that is always zero; used
49  * for zero-mapped memory areas etc..
50  */
51 
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
54 
55 #define ZERO_PAGE(vaddr) \
56 	(virt_to_page((void *)(empty_zero_page + \
57 	 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
59 
60 /* TODO: s390 cannot support io_remap_pfn_range... */
61 #endif /* !__ASSEMBLY__ */
62 
63 /*
64  * PMD_SHIFT determines the size of the area a second-level page
65  * table can map
66  * PGDIR_SHIFT determines what a third-level page table entry can map
67  */
68 #ifndef CONFIG_64BIT
69 # define PMD_SHIFT	20
70 # define PUD_SHIFT	20
71 # define PGDIR_SHIFT	20
72 #else /* CONFIG_64BIT */
73 # define PMD_SHIFT	20
74 # define PUD_SHIFT	31
75 # define PGDIR_SHIFT	42
76 #endif /* CONFIG_64BIT */
77 
78 #define PMD_SIZE        (1UL << PMD_SHIFT)
79 #define PMD_MASK        (~(PMD_SIZE-1))
80 #define PUD_SIZE	(1UL << PUD_SHIFT)
81 #define PUD_MASK	(~(PUD_SIZE-1))
82 #define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
83 #define PGDIR_MASK	(~(PGDIR_SIZE-1))
84 
85 /*
86  * entries per page directory level: the S390 is two-level, so
87  * we don't really have any PMD directory physically.
88  * for S390 segment-table entries are combined to one PGD
89  * that leads to 1024 pte per pgd
90  */
91 #define PTRS_PER_PTE	256
92 #ifndef CONFIG_64BIT
93 #define PTRS_PER_PMD	1
94 #define PTRS_PER_PUD	1
95 #else /* CONFIG_64BIT */
96 #define PTRS_PER_PMD	2048
97 #define PTRS_PER_PUD	2048
98 #endif /* CONFIG_64BIT */
99 #define PTRS_PER_PGD	2048
100 
101 #define FIRST_USER_ADDRESS  0
102 
103 #define pte_ERROR(e) \
104 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
105 #define pmd_ERROR(e) \
106 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
107 #define pud_ERROR(e) \
108 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
109 #define pgd_ERROR(e) \
110 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
111 
112 #ifndef __ASSEMBLY__
113 /*
114  * The vmalloc and module area will always be on the topmost area of the kernel
115  * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
116  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
117  * modules will reside. That makes sure that inter module branches always
118  * happen without trampolines and in addition the placement within a 2GB frame
119  * is branch prediction unit friendly.
120  */
121 extern unsigned long VMALLOC_START;
122 extern unsigned long VMALLOC_END;
123 extern struct page *vmemmap;
124 
125 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
126 
127 #ifdef CONFIG_64BIT
128 extern unsigned long MODULES_VADDR;
129 extern unsigned long MODULES_END;
130 #define MODULES_VADDR	MODULES_VADDR
131 #define MODULES_END	MODULES_END
132 #define MODULES_LEN	(1UL << 31)
133 #endif
134 
135 /*
136  * A 31 bit pagetable entry of S390 has following format:
137  *  |   PFRA          |    |  OS  |
138  * 0                   0IP0
139  * 00000000001111111111222222222233
140  * 01234567890123456789012345678901
141  *
142  * I Page-Invalid Bit:    Page is not available for address-translation
143  * P Page-Protection Bit: Store access not possible for page
144  *
145  * A 31 bit segmenttable entry of S390 has following format:
146  *  |   P-table origin      |  |PTL
147  * 0                         IC
148  * 00000000001111111111222222222233
149  * 01234567890123456789012345678901
150  *
151  * I Segment-Invalid Bit:    Segment is not available for address-translation
152  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
153  * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
154  *
155  * The 31 bit segmenttable origin of S390 has following format:
156  *
157  *  |S-table origin   |     | STL |
158  * X                   **GPS
159  * 00000000001111111111222222222233
160  * 01234567890123456789012345678901
161  *
162  * X Space-Switch event:
163  * G Segment-Invalid Bit:     *
164  * P Private-Space Bit:       Segment is not private (PoP 3-30)
165  * S Storage-Alteration:
166  * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
167  *
168  * A 64 bit pagetable entry of S390 has following format:
169  * |			 PFRA			      |0IPC|  OS  |
170  * 0000000000111111111122222222223333333333444444444455555555556666
171  * 0123456789012345678901234567890123456789012345678901234567890123
172  *
173  * I Page-Invalid Bit:    Page is not available for address-translation
174  * P Page-Protection Bit: Store access not possible for page
175  * C Change-bit override: HW is not required to set change bit
176  *
177  * A 64 bit segmenttable entry of S390 has following format:
178  * |        P-table origin                              |      TT
179  * 0000000000111111111122222222223333333333444444444455555555556666
180  * 0123456789012345678901234567890123456789012345678901234567890123
181  *
182  * I Segment-Invalid Bit:    Segment is not available for address-translation
183  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
184  * P Page-Protection Bit: Store access not possible for page
185  * TT Type 00
186  *
187  * A 64 bit region table entry of S390 has following format:
188  * |        S-table origin                             |   TF  TTTL
189  * 0000000000111111111122222222223333333333444444444455555555556666
190  * 0123456789012345678901234567890123456789012345678901234567890123
191  *
192  * I Segment-Invalid Bit:    Segment is not available for address-translation
193  * TT Type 01
194  * TF
195  * TL Table length
196  *
197  * The 64 bit regiontable origin of S390 has following format:
198  * |      region table origon                          |       DTTL
199  * 0000000000111111111122222222223333333333444444444455555555556666
200  * 0123456789012345678901234567890123456789012345678901234567890123
201  *
202  * X Space-Switch event:
203  * G Segment-Invalid Bit:
204  * P Private-Space Bit:
205  * S Storage-Alteration:
206  * R Real space
207  * TL Table-Length:
208  *
209  * A storage key has the following format:
210  * | ACC |F|R|C|0|
211  *  0   3 4 5 6 7
212  * ACC: access key
213  * F  : fetch protection bit
214  * R  : referenced bit
215  * C  : changed bit
216  */
217 
218 /* Hardware bits in the page table entry */
219 #define _PAGE_CO	0x100		/* HW Change-bit override */
220 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
221 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
222 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
223 
224 /* Software bits in the page table entry */
225 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
226 #define _PAGE_TYPE	0x002		/* SW pte type bit */
227 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
228 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
229 #define _PAGE_READ	0x010		/* SW pte read bit */
230 #define _PAGE_WRITE	0x020		/* SW pte write bit */
231 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
232 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
233 #define __HAVE_ARCH_PTE_SPECIAL
234 
235 /* Set of bits not changed in pte_modify */
236 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
237 				 _PAGE_DIRTY | _PAGE_YOUNG)
238 
239 /*
240  * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
241  * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
242  * is used to distinguish present from not-present ptes. It is changed only
243  * with the page table lock held.
244  *
245  * The following table gives the different possible bit combinations for
246  * the pte hardware and software bits in the last 12 bits of a pte:
247  *
248  *				842100000000
249  *				000084210000
250  *				000000008421
251  *				.IR...wrdytp
252  * empty			.10...000000
253  * swap				.10...xxxx10
254  * file				.11...xxxxx0
255  * prot-none, clean, old	.11...000001
256  * prot-none, clean, young	.11...000101
257  * prot-none, dirty, old	.10...001001
258  * prot-none, dirty, young	.10...001101
259  * read-only, clean, old	.11...010001
260  * read-only, clean, young	.01...010101
261  * read-only, dirty, old	.11...011001
262  * read-only, dirty, young	.01...011101
263  * read-write, clean, old	.11...110001
264  * read-write, clean, young	.01...110101
265  * read-write, dirty, old	.10...111001
266  * read-write, dirty, young	.00...111101
267  *
268  * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
269  * pte_none    is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
270  * pte_file    is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
271  * pte_swap    is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
272  */
273 
274 #ifndef CONFIG_64BIT
275 
276 /* Bits in the segment table address-space-control-element */
277 #define _ASCE_SPACE_SWITCH	0x80000000UL	/* space switch event	    */
278 #define _ASCE_ORIGIN_MASK	0x7ffff000UL	/* segment table origin	    */
279 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
280 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
281 #define _ASCE_TABLE_LENGTH	0x7f	/* 128 x 64 entries = 8k	    */
282 
283 /* Bits in the segment table entry */
284 #define _SEGMENT_ENTRY_BITS	0x7fffffffUL	/* Valid segment table bits */
285 #define _SEGMENT_ENTRY_ORIGIN	0x7fffffc0UL	/* page table origin	    */
286 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
287 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
288 #define _SEGMENT_ENTRY_COMMON	0x10	/* common segment bit		    */
289 #define _SEGMENT_ENTRY_PTL	0x0f	/* page table length		    */
290 #define _SEGMENT_ENTRY_NONE	_SEGMENT_ENTRY_PROTECT
291 
292 #define _SEGMENT_ENTRY		(_SEGMENT_ENTRY_PTL)
293 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
294 
295 /*
296  * Segment table entry encoding (I = invalid, R = read-only bit):
297  *		..R...I.....
298  * prot-none	..1...1.....
299  * read-only	..1...0.....
300  * read-write	..0...0.....
301  * empty	..0...1.....
302  */
303 
304 /* Page status table bits for virtualization */
305 #define PGSTE_ACC_BITS	0xf0000000UL
306 #define PGSTE_FP_BIT	0x08000000UL
307 #define PGSTE_PCL_BIT	0x00800000UL
308 #define PGSTE_HR_BIT	0x00400000UL
309 #define PGSTE_HC_BIT	0x00200000UL
310 #define PGSTE_GR_BIT	0x00040000UL
311 #define PGSTE_GC_BIT	0x00020000UL
312 #define PGSTE_IN_BIT	0x00008000UL	/* IPTE notify bit */
313 
314 #else /* CONFIG_64BIT */
315 
316 /* Bits in the segment/region table address-space-control-element */
317 #define _ASCE_ORIGIN		~0xfffUL/* segment table origin		    */
318 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
319 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
320 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
321 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
322 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
323 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
324 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
325 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
326 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
327 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
328 
329 /* Bits in the region table entry */
330 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
331 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
332 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
333 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region/segment table type mask   */
334 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
335 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
336 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
337 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
338 
339 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
340 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
341 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
342 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
343 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
344 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
345 
346 #define _REGION3_ENTRY_LARGE	0x400	/* RTTE-format control, large page  */
347 #define _REGION3_ENTRY_RO	0x200	/* page protection bit		    */
348 #define _REGION3_ENTRY_CO	0x100	/* change-recording override	    */
349 
350 /* Bits in the segment table entry */
351 #define _SEGMENT_ENTRY_BITS	0xfffffffffffffe33UL
352 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff1ff33UL
353 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
354 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* segment table origin		    */
355 #define _SEGMENT_ENTRY_PROTECT	0x200	/* page protection bit		    */
356 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
357 
358 #define _SEGMENT_ENTRY		(0)
359 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
360 
361 #define _SEGMENT_ENTRY_LARGE	0x400	/* STE-format control, large page   */
362 #define _SEGMENT_ENTRY_CO	0x100	/* change-recording override   */
363 #define _SEGMENT_ENTRY_SPLIT	0x001	/* THP splitting bit */
364 #define _SEGMENT_ENTRY_YOUNG	0x002	/* SW segment young bit */
365 #define _SEGMENT_ENTRY_NONE	_SEGMENT_ENTRY_YOUNG
366 
367 /*
368  * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
369  *			..R...I...y.
370  * prot-none, old	..0...1...1.
371  * prot-none, young	..1...1...1.
372  * read-only, old	..1...1...0.
373  * read-only, young	..1...0...1.
374  * read-write, old	..0...1...0.
375  * read-write, young	..0...0...1.
376  * The segment table origin is used to distinguish empty (origin==0) from
377  * read-write, old segment table entries (origin!=0)
378  */
379 
380 #define _SEGMENT_ENTRY_SPLIT_BIT 0	/* THP splitting bit number */
381 
382 /* Set of bits not changed in pmd_modify */
383 #define _SEGMENT_CHG_MASK	(_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
384 				 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
385 
386 /* Page status table bits for virtualization */
387 #define PGSTE_ACC_BITS	0xf000000000000000UL
388 #define PGSTE_FP_BIT	0x0800000000000000UL
389 #define PGSTE_PCL_BIT	0x0080000000000000UL
390 #define PGSTE_HR_BIT	0x0040000000000000UL
391 #define PGSTE_HC_BIT	0x0020000000000000UL
392 #define PGSTE_GR_BIT	0x0004000000000000UL
393 #define PGSTE_GC_BIT	0x0002000000000000UL
394 #define PGSTE_IN_BIT	0x0000800000000000UL	/* IPTE notify bit */
395 
396 #endif /* CONFIG_64BIT */
397 
398 /* Guest Page State used for virtualization */
399 #define _PGSTE_GPS_ZERO		0x0000000080000000UL
400 #define _PGSTE_GPS_USAGE_MASK	0x0000000003000000UL
401 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
402 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
403 
404 /*
405  * A user page table pointer has the space-switch-event bit, the
406  * private-space-control bit and the storage-alteration-event-control
407  * bit set. A kernel page table pointer doesn't need them.
408  */
409 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
410 				 _ASCE_ALT_EVENT)
411 
412 /*
413  * Page protection definitions.
414  */
415 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID)
416 #define PAGE_READ	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
417 				 _PAGE_INVALID | _PAGE_PROTECT)
418 #define PAGE_WRITE	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 				 _PAGE_INVALID | _PAGE_PROTECT)
420 
421 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
422 				 _PAGE_YOUNG | _PAGE_DIRTY)
423 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
424 				 _PAGE_YOUNG | _PAGE_DIRTY)
425 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
426 				 _PAGE_PROTECT)
427 
428 /*
429  * On s390 the page table entry has an invalid bit and a read-only bit.
430  * Read permission implies execute permission and write permission
431  * implies read permission.
432  */
433          /*xwr*/
434 #define __P000	PAGE_NONE
435 #define __P001	PAGE_READ
436 #define __P010	PAGE_READ
437 #define __P011	PAGE_READ
438 #define __P100	PAGE_READ
439 #define __P101	PAGE_READ
440 #define __P110	PAGE_READ
441 #define __P111	PAGE_READ
442 
443 #define __S000	PAGE_NONE
444 #define __S001	PAGE_READ
445 #define __S010	PAGE_WRITE
446 #define __S011	PAGE_WRITE
447 #define __S100	PAGE_READ
448 #define __S101	PAGE_READ
449 #define __S110	PAGE_WRITE
450 #define __S111	PAGE_WRITE
451 
452 /*
453  * Segment entry (large page) protection definitions.
454  */
455 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
456 				 _SEGMENT_ENTRY_NONE)
457 #define SEGMENT_READ	__pgprot(_SEGMENT_ENTRY_INVALID | \
458 				 _SEGMENT_ENTRY_PROTECT)
459 #define SEGMENT_WRITE	__pgprot(_SEGMENT_ENTRY_INVALID)
460 
461 static inline int mm_has_pgste(struct mm_struct *mm)
462 {
463 #ifdef CONFIG_PGSTE
464 	if (unlikely(mm->context.has_pgste))
465 		return 1;
466 #endif
467 	return 0;
468 }
469 /*
470  * pgd/pmd/pte query functions
471  */
472 #ifndef CONFIG_64BIT
473 
474 static inline int pgd_present(pgd_t pgd) { return 1; }
475 static inline int pgd_none(pgd_t pgd)    { return 0; }
476 static inline int pgd_bad(pgd_t pgd)     { return 0; }
477 
478 static inline int pud_present(pud_t pud) { return 1; }
479 static inline int pud_none(pud_t pud)	 { return 0; }
480 static inline int pud_large(pud_t pud)	 { return 0; }
481 static inline int pud_bad(pud_t pud)	 { return 0; }
482 
483 #else /* CONFIG_64BIT */
484 
485 static inline int pgd_present(pgd_t pgd)
486 {
487 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
488 		return 1;
489 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
490 }
491 
492 static inline int pgd_none(pgd_t pgd)
493 {
494 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
495 		return 0;
496 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
497 }
498 
499 static inline int pgd_bad(pgd_t pgd)
500 {
501 	/*
502 	 * With dynamic page table levels the pgd can be a region table
503 	 * entry or a segment table entry. Check for the bit that are
504 	 * invalid for either table entry.
505 	 */
506 	unsigned long mask =
507 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
508 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
509 	return (pgd_val(pgd) & mask) != 0;
510 }
511 
512 static inline int pud_present(pud_t pud)
513 {
514 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
515 		return 1;
516 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
517 }
518 
519 static inline int pud_none(pud_t pud)
520 {
521 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
522 		return 0;
523 	return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
524 }
525 
526 static inline int pud_large(pud_t pud)
527 {
528 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
529 		return 0;
530 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
531 }
532 
533 static inline int pud_bad(pud_t pud)
534 {
535 	/*
536 	 * With dynamic page table levels the pud can be a region table
537 	 * entry or a segment table entry. Check for the bit that are
538 	 * invalid for either table entry.
539 	 */
540 	unsigned long mask =
541 		~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
542 		~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
543 	return (pud_val(pud) & mask) != 0;
544 }
545 
546 #endif /* CONFIG_64BIT */
547 
548 static inline int pmd_present(pmd_t pmd)
549 {
550 	return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
551 }
552 
553 static inline int pmd_none(pmd_t pmd)
554 {
555 	return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
556 }
557 
558 static inline int pmd_large(pmd_t pmd)
559 {
560 #ifdef CONFIG_64BIT
561 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
562 #else
563 	return 0;
564 #endif
565 }
566 
567 static inline int pmd_prot_none(pmd_t pmd)
568 {
569 	return (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID) &&
570 		(pmd_val(pmd) & _SEGMENT_ENTRY_NONE);
571 }
572 
573 static inline int pmd_bad(pmd_t pmd)
574 {
575 #ifdef CONFIG_64BIT
576 	if (pmd_large(pmd))
577 		return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
578 #endif
579 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
580 }
581 
582 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
583 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
584 				 unsigned long addr, pmd_t *pmdp);
585 
586 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
587 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
588 				 unsigned long address, pmd_t *pmdp,
589 				 pmd_t entry, int dirty);
590 
591 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
592 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
593 				  unsigned long address, pmd_t *pmdp);
594 
595 #define __HAVE_ARCH_PMD_WRITE
596 static inline int pmd_write(pmd_t pmd)
597 {
598 	if (pmd_prot_none(pmd))
599 		return 0;
600 	return (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) == 0;
601 }
602 
603 static inline int pmd_young(pmd_t pmd)
604 {
605 	int young = 0;
606 #ifdef CONFIG_64BIT
607 	if (pmd_prot_none(pmd))
608 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT) != 0;
609 	else
610 		young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
611 #endif
612 	return young;
613 }
614 
615 static inline int pte_present(pte_t pte)
616 {
617 	/* Bit pattern: (pte & 0x001) == 0x001 */
618 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
619 }
620 
621 static inline int pte_none(pte_t pte)
622 {
623 	/* Bit pattern: pte == 0x400 */
624 	return pte_val(pte) == _PAGE_INVALID;
625 }
626 
627 static inline int pte_swap(pte_t pte)
628 {
629 	/* Bit pattern: (pte & 0x603) == 0x402 */
630 	return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
631 				_PAGE_TYPE | _PAGE_PRESENT))
632 		== (_PAGE_INVALID | _PAGE_TYPE);
633 }
634 
635 static inline int pte_file(pte_t pte)
636 {
637 	/* Bit pattern: (pte & 0x601) == 0x600 */
638 	return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
639 		== (_PAGE_INVALID | _PAGE_PROTECT);
640 }
641 
642 static inline int pte_special(pte_t pte)
643 {
644 	return (pte_val(pte) & _PAGE_SPECIAL);
645 }
646 
647 #define __HAVE_ARCH_PTE_SAME
648 static inline int pte_same(pte_t a, pte_t b)
649 {
650 	return pte_val(a) == pte_val(b);
651 }
652 
653 static inline pgste_t pgste_get_lock(pte_t *ptep)
654 {
655 	unsigned long new = 0;
656 #ifdef CONFIG_PGSTE
657 	unsigned long old;
658 
659 	preempt_disable();
660 	asm(
661 		"	lg	%0,%2\n"
662 		"0:	lgr	%1,%0\n"
663 		"	nihh	%0,0xff7f\n"	/* clear PCL bit in old */
664 		"	oihh	%1,0x0080\n"	/* set PCL bit in new */
665 		"	csg	%0,%1,%2\n"
666 		"	jl	0b\n"
667 		: "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
668 		: "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
669 #endif
670 	return __pgste(new);
671 }
672 
673 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
674 {
675 #ifdef CONFIG_PGSTE
676 	asm(
677 		"	nihh	%1,0xff7f\n"	/* clear PCL bit */
678 		"	stg	%1,%0\n"
679 		: "=Q" (ptep[PTRS_PER_PTE])
680 		: "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
681 		: "cc", "memory");
682 	preempt_enable();
683 #endif
684 }
685 
686 static inline pgste_t pgste_get(pte_t *ptep)
687 {
688 	unsigned long pgste = 0;
689 #ifdef CONFIG_PGSTE
690 	pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
691 #endif
692 	return __pgste(pgste);
693 }
694 
695 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
696 {
697 #ifdef CONFIG_PGSTE
698 	*(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
699 #endif
700 }
701 
702 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
703 {
704 #ifdef CONFIG_PGSTE
705 	unsigned long address, bits, skey;
706 
707 	if (pte_val(*ptep) & _PAGE_INVALID)
708 		return pgste;
709 	address = pte_val(*ptep) & PAGE_MASK;
710 	skey = (unsigned long) page_get_storage_key(address);
711 	bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
712 	if (!(pgste_val(pgste) & PGSTE_HC_BIT) && (bits & _PAGE_CHANGED)) {
713 		/* Transfer dirty + referenced bit to host bits in pgste */
714 		pgste_val(pgste) |= bits << 52;
715 		page_set_storage_key(address, skey ^ bits, 0);
716 	} else if (!(pgste_val(pgste) & PGSTE_HR_BIT) &&
717 		   (bits & _PAGE_REFERENCED)) {
718 		/* Transfer referenced bit to host bit in pgste */
719 		pgste_val(pgste) |= PGSTE_HR_BIT;
720 		page_reset_referenced(address);
721 	}
722 	/* Transfer page changed & referenced bit to guest bits in pgste */
723 	pgste_val(pgste) |= bits << 48;		/* GR bit & GC bit */
724 	/* Copy page access key and fetch protection bit to pgste */
725 	pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
726 	pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
727 #endif
728 	return pgste;
729 
730 }
731 
732 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
733 {
734 #ifdef CONFIG_PGSTE
735 	if (pte_val(*ptep) & _PAGE_INVALID)
736 		return pgste;
737 	/* Get referenced bit from storage key */
738 	if (page_reset_referenced(pte_val(*ptep) & PAGE_MASK))
739 		pgste_val(pgste) |= PGSTE_HR_BIT | PGSTE_GR_BIT;
740 #endif
741 	return pgste;
742 }
743 
744 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
745 {
746 #ifdef CONFIG_PGSTE
747 	unsigned long address;
748 	unsigned long nkey;
749 
750 	if (pte_val(entry) & _PAGE_INVALID)
751 		return;
752 	VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
753 	address = pte_val(entry) & PAGE_MASK;
754 	/*
755 	 * Set page access key and fetch protection bit from pgste.
756 	 * The guest C/R information is still in the PGSTE, set real
757 	 * key C/R to 0.
758 	 */
759 	nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
760 	page_set_storage_key(address, nkey, 0);
761 #endif
762 }
763 
764 static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
765 {
766 	if (!MACHINE_HAS_ESOP &&
767 	    (pte_val(entry) & _PAGE_PRESENT) &&
768 	    (pte_val(entry) & _PAGE_WRITE)) {
769 		/*
770 		 * Without enhanced suppression-on-protection force
771 		 * the dirty bit on for all writable ptes.
772 		 */
773 		pte_val(entry) |= _PAGE_DIRTY;
774 		pte_val(entry) &= ~_PAGE_PROTECT;
775 	}
776 	*ptep = entry;
777 }
778 
779 /**
780  * struct gmap_struct - guest address space
781  * @mm: pointer to the parent mm_struct
782  * @table: pointer to the page directory
783  * @asce: address space control element for gmap page table
784  * @crst_list: list of all crst tables used in the guest address space
785  * @pfault_enabled: defines if pfaults are applicable for the guest
786  */
787 struct gmap {
788 	struct list_head list;
789 	struct mm_struct *mm;
790 	unsigned long *table;
791 	unsigned long asce;
792 	void *private;
793 	struct list_head crst_list;
794 	bool pfault_enabled;
795 };
796 
797 /**
798  * struct gmap_rmap - reverse mapping for segment table entries
799  * @gmap: pointer to the gmap_struct
800  * @entry: pointer to a segment table entry
801  * @vmaddr: virtual address in the guest address space
802  */
803 struct gmap_rmap {
804 	struct list_head list;
805 	struct gmap *gmap;
806 	unsigned long *entry;
807 	unsigned long vmaddr;
808 };
809 
810 /**
811  * struct gmap_pgtable - gmap information attached to a page table
812  * @vmaddr: address of the 1MB segment in the process virtual memory
813  * @mapper: list of segment table entries mapping a page table
814  */
815 struct gmap_pgtable {
816 	unsigned long vmaddr;
817 	struct list_head mapper;
818 };
819 
820 /**
821  * struct gmap_notifier - notify function block for page invalidation
822  * @notifier_call: address of callback function
823  */
824 struct gmap_notifier {
825 	struct list_head list;
826 	void (*notifier_call)(struct gmap *gmap, unsigned long address);
827 };
828 
829 struct gmap *gmap_alloc(struct mm_struct *mm);
830 void gmap_free(struct gmap *gmap);
831 void gmap_enable(struct gmap *gmap);
832 void gmap_disable(struct gmap *gmap);
833 int gmap_map_segment(struct gmap *gmap, unsigned long from,
834 		     unsigned long to, unsigned long len);
835 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
836 unsigned long __gmap_translate(unsigned long address, struct gmap *);
837 unsigned long gmap_translate(unsigned long address, struct gmap *);
838 unsigned long __gmap_fault(unsigned long address, struct gmap *);
839 unsigned long gmap_fault(unsigned long address, struct gmap *);
840 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
841 void __gmap_zap(unsigned long address, struct gmap *);
842 
843 void gmap_register_ipte_notifier(struct gmap_notifier *);
844 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
845 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
846 void gmap_do_ipte_notify(struct mm_struct *, pte_t *);
847 
848 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
849 					pte_t *ptep, pgste_t pgste)
850 {
851 #ifdef CONFIG_PGSTE
852 	if (pgste_val(pgste) & PGSTE_IN_BIT) {
853 		pgste_val(pgste) &= ~PGSTE_IN_BIT;
854 		gmap_do_ipte_notify(mm, ptep);
855 	}
856 #endif
857 	return pgste;
858 }
859 
860 /*
861  * Certain architectures need to do special things when PTEs
862  * within a page table are directly modified.  Thus, the following
863  * hook is made available.
864  */
865 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
866 			      pte_t *ptep, pte_t entry)
867 {
868 	pgste_t pgste;
869 
870 	if (mm_has_pgste(mm)) {
871 		pgste = pgste_get_lock(ptep);
872 		pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
873 		pgste_set_key(ptep, pgste, entry);
874 		pgste_set_pte(ptep, entry);
875 		pgste_set_unlock(ptep, pgste);
876 	} else {
877 		if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
878 			pte_val(entry) |= _PAGE_CO;
879 		*ptep = entry;
880 	}
881 }
882 
883 /*
884  * query functions pte_write/pte_dirty/pte_young only work if
885  * pte_present() is true. Undefined behaviour if not..
886  */
887 static inline int pte_write(pte_t pte)
888 {
889 	return (pte_val(pte) & _PAGE_WRITE) != 0;
890 }
891 
892 static inline int pte_dirty(pte_t pte)
893 {
894 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
895 }
896 
897 static inline int pte_young(pte_t pte)
898 {
899 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
900 }
901 
902 #define __HAVE_ARCH_PTE_UNUSED
903 static inline int pte_unused(pte_t pte)
904 {
905 	return pte_val(pte) & _PAGE_UNUSED;
906 }
907 
908 /*
909  * pgd/pmd/pte modification functions
910  */
911 
912 static inline void pgd_clear(pgd_t *pgd)
913 {
914 #ifdef CONFIG_64BIT
915 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
916 		pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
917 #endif
918 }
919 
920 static inline void pud_clear(pud_t *pud)
921 {
922 #ifdef CONFIG_64BIT
923 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
924 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
925 #endif
926 }
927 
928 static inline void pmd_clear(pmd_t *pmdp)
929 {
930 	pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
931 }
932 
933 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
934 {
935 	pte_val(*ptep) = _PAGE_INVALID;
936 }
937 
938 /*
939  * The following pte modification functions only work if
940  * pte_present() is true. Undefined behaviour if not..
941  */
942 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
943 {
944 	pte_val(pte) &= _PAGE_CHG_MASK;
945 	pte_val(pte) |= pgprot_val(newprot);
946 	/*
947 	 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
948 	 * invalid bit set, clear it again for readable, young pages
949 	 */
950 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
951 		pte_val(pte) &= ~_PAGE_INVALID;
952 	/*
953 	 * newprot for PAGE_READ and PAGE_WRITE has the page protection
954 	 * bit set, clear it again for writable, dirty pages
955 	 */
956 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
957 		pte_val(pte) &= ~_PAGE_PROTECT;
958 	return pte;
959 }
960 
961 static inline pte_t pte_wrprotect(pte_t pte)
962 {
963 	pte_val(pte) &= ~_PAGE_WRITE;
964 	pte_val(pte) |= _PAGE_PROTECT;
965 	return pte;
966 }
967 
968 static inline pte_t pte_mkwrite(pte_t pte)
969 {
970 	pte_val(pte) |= _PAGE_WRITE;
971 	if (pte_val(pte) & _PAGE_DIRTY)
972 		pte_val(pte) &= ~_PAGE_PROTECT;
973 	return pte;
974 }
975 
976 static inline pte_t pte_mkclean(pte_t pte)
977 {
978 	pte_val(pte) &= ~_PAGE_DIRTY;
979 	pte_val(pte) |= _PAGE_PROTECT;
980 	return pte;
981 }
982 
983 static inline pte_t pte_mkdirty(pte_t pte)
984 {
985 	pte_val(pte) |= _PAGE_DIRTY;
986 	if (pte_val(pte) & _PAGE_WRITE)
987 		pte_val(pte) &= ~_PAGE_PROTECT;
988 	return pte;
989 }
990 
991 static inline pte_t pte_mkold(pte_t pte)
992 {
993 	pte_val(pte) &= ~_PAGE_YOUNG;
994 	pte_val(pte) |= _PAGE_INVALID;
995 	return pte;
996 }
997 
998 static inline pte_t pte_mkyoung(pte_t pte)
999 {
1000 	pte_val(pte) |= _PAGE_YOUNG;
1001 	if (pte_val(pte) & _PAGE_READ)
1002 		pte_val(pte) &= ~_PAGE_INVALID;
1003 	return pte;
1004 }
1005 
1006 static inline pte_t pte_mkspecial(pte_t pte)
1007 {
1008 	pte_val(pte) |= _PAGE_SPECIAL;
1009 	return pte;
1010 }
1011 
1012 #ifdef CONFIG_HUGETLB_PAGE
1013 static inline pte_t pte_mkhuge(pte_t pte)
1014 {
1015 	pte_val(pte) |= _PAGE_LARGE;
1016 	return pte;
1017 }
1018 #endif
1019 
1020 /*
1021  * Get (and clear) the user dirty bit for a pte.
1022  */
1023 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1024 						 pte_t *ptep)
1025 {
1026 	pgste_t pgste;
1027 	int dirty = 0;
1028 
1029 	if (mm_has_pgste(mm)) {
1030 		pgste = pgste_get_lock(ptep);
1031 		pgste = pgste_update_all(ptep, pgste);
1032 		dirty = !!(pgste_val(pgste) & PGSTE_HC_BIT);
1033 		pgste_val(pgste) &= ~PGSTE_HC_BIT;
1034 		pgste_set_unlock(ptep, pgste);
1035 		return dirty;
1036 	}
1037 	return dirty;
1038 }
1039 
1040 /*
1041  * Get (and clear) the user referenced bit for a pte.
1042  */
1043 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
1044 						 pte_t *ptep)
1045 {
1046 	pgste_t pgste;
1047 	int young = 0;
1048 
1049 	if (mm_has_pgste(mm)) {
1050 		pgste = pgste_get_lock(ptep);
1051 		pgste = pgste_update_young(ptep, pgste);
1052 		young = !!(pgste_val(pgste) & PGSTE_HR_BIT);
1053 		pgste_val(pgste) &= ~PGSTE_HR_BIT;
1054 		pgste_set_unlock(ptep, pgste);
1055 	}
1056 	return young;
1057 }
1058 
1059 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1060 {
1061 	unsigned long pto = (unsigned long) ptep;
1062 
1063 #ifndef CONFIG_64BIT
1064 	/* pto in ESA mode must point to the start of the segment table */
1065 	pto &= 0x7ffffc00;
1066 #endif
1067 	/* Invalidation + global TLB flush for the pte */
1068 	asm volatile(
1069 		"	ipte	%2,%3"
1070 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1071 }
1072 
1073 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1074 {
1075 	unsigned long pto = (unsigned long) ptep;
1076 
1077 #ifndef CONFIG_64BIT
1078 	/* pto in ESA mode must point to the start of the segment table */
1079 	pto &= 0x7ffffc00;
1080 #endif
1081 	/* Invalidation + local TLB flush for the pte */
1082 	asm volatile(
1083 		"	.insn rrf,0xb2210000,%2,%3,0,1"
1084 		: "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1085 }
1086 
1087 static inline void ptep_flush_direct(struct mm_struct *mm,
1088 				     unsigned long address, pte_t *ptep)
1089 {
1090 	int active, count;
1091 
1092 	if (pte_val(*ptep) & _PAGE_INVALID)
1093 		return;
1094 	active = (mm == current->active_mm) ? 1 : 0;
1095 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1096 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1097 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1098 		__ptep_ipte_local(address, ptep);
1099 	else
1100 		__ptep_ipte(address, ptep);
1101 	atomic_sub(0x10000, &mm->context.attach_count);
1102 }
1103 
1104 static inline void ptep_flush_lazy(struct mm_struct *mm,
1105 				   unsigned long address, pte_t *ptep)
1106 {
1107 	int active, count;
1108 
1109 	if (pte_val(*ptep) & _PAGE_INVALID)
1110 		return;
1111 	active = (mm == current->active_mm) ? 1 : 0;
1112 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1113 	if ((count & 0xffff) <= active) {
1114 		pte_val(*ptep) |= _PAGE_INVALID;
1115 		mm->context.flush_mm = 1;
1116 	} else
1117 		__ptep_ipte(address, ptep);
1118 	atomic_sub(0x10000, &mm->context.attach_count);
1119 }
1120 
1121 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1122 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1123 					    unsigned long addr, pte_t *ptep)
1124 {
1125 	pgste_t pgste;
1126 	pte_t pte;
1127 	int young;
1128 
1129 	if (mm_has_pgste(vma->vm_mm)) {
1130 		pgste = pgste_get_lock(ptep);
1131 		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1132 	}
1133 
1134 	pte = *ptep;
1135 	ptep_flush_direct(vma->vm_mm, addr, ptep);
1136 	young = pte_young(pte);
1137 	pte = pte_mkold(pte);
1138 
1139 	if (mm_has_pgste(vma->vm_mm)) {
1140 		pgste_set_pte(ptep, pte);
1141 		pgste_set_unlock(ptep, pgste);
1142 	} else
1143 		*ptep = pte;
1144 
1145 	return young;
1146 }
1147 
1148 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1149 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1150 					 unsigned long address, pte_t *ptep)
1151 {
1152 	return ptep_test_and_clear_young(vma, address, ptep);
1153 }
1154 
1155 /*
1156  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1157  * both clear the TLB for the unmapped pte. The reason is that
1158  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1159  * to modify an active pte. The sequence is
1160  *   1) ptep_get_and_clear
1161  *   2) set_pte_at
1162  *   3) flush_tlb_range
1163  * On s390 the tlb needs to get flushed with the modification of the pte
1164  * if the pte is active. The only way how this can be implemented is to
1165  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1166  * is a nop.
1167  */
1168 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1169 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1170 				       unsigned long address, pte_t *ptep)
1171 {
1172 	pgste_t pgste;
1173 	pte_t pte;
1174 
1175 	if (mm_has_pgste(mm)) {
1176 		pgste = pgste_get_lock(ptep);
1177 		pgste = pgste_ipte_notify(mm, ptep, pgste);
1178 	}
1179 
1180 	pte = *ptep;
1181 	ptep_flush_lazy(mm, address, ptep);
1182 	pte_val(*ptep) = _PAGE_INVALID;
1183 
1184 	if (mm_has_pgste(mm)) {
1185 		pgste = pgste_update_all(&pte, pgste);
1186 		pgste_set_unlock(ptep, pgste);
1187 	}
1188 	return pte;
1189 }
1190 
1191 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1192 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1193 					   unsigned long address,
1194 					   pte_t *ptep)
1195 {
1196 	pgste_t pgste;
1197 	pte_t pte;
1198 
1199 	if (mm_has_pgste(mm)) {
1200 		pgste = pgste_get_lock(ptep);
1201 		pgste_ipte_notify(mm, ptep, pgste);
1202 	}
1203 
1204 	pte = *ptep;
1205 	ptep_flush_lazy(mm, address, ptep);
1206 
1207 	if (mm_has_pgste(mm)) {
1208 		pgste = pgste_update_all(&pte, pgste);
1209 		pgste_set(ptep, pgste);
1210 	}
1211 	return pte;
1212 }
1213 
1214 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1215 					   unsigned long address,
1216 					   pte_t *ptep, pte_t pte)
1217 {
1218 	pgste_t pgste;
1219 
1220 	if (mm_has_pgste(mm)) {
1221 		pgste = pgste_get(ptep);
1222 		pgste_set_key(ptep, pgste, pte);
1223 		pgste_set_pte(ptep, pte);
1224 		pgste_set_unlock(ptep, pgste);
1225 	} else
1226 		*ptep = pte;
1227 }
1228 
1229 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1230 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1231 				     unsigned long address, pte_t *ptep)
1232 {
1233 	pgste_t pgste;
1234 	pte_t pte;
1235 
1236 	if (mm_has_pgste(vma->vm_mm)) {
1237 		pgste = pgste_get_lock(ptep);
1238 		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1239 	}
1240 
1241 	pte = *ptep;
1242 	ptep_flush_direct(vma->vm_mm, address, ptep);
1243 	pte_val(*ptep) = _PAGE_INVALID;
1244 
1245 	if (mm_has_pgste(vma->vm_mm)) {
1246 		if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1247 		    _PGSTE_GPS_USAGE_UNUSED)
1248 			pte_val(pte) |= _PAGE_UNUSED;
1249 		pgste = pgste_update_all(&pte, pgste);
1250 		pgste_set_unlock(ptep, pgste);
1251 	}
1252 	return pte;
1253 }
1254 
1255 /*
1256  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1257  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1258  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1259  * cannot be accessed while the batched unmap is running. In this case
1260  * full==1 and a simple pte_clear is enough. See tlb.h.
1261  */
1262 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1263 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1264 					    unsigned long address,
1265 					    pte_t *ptep, int full)
1266 {
1267 	pgste_t pgste;
1268 	pte_t pte;
1269 
1270 	if (!full && mm_has_pgste(mm)) {
1271 		pgste = pgste_get_lock(ptep);
1272 		pgste = pgste_ipte_notify(mm, ptep, pgste);
1273 	}
1274 
1275 	pte = *ptep;
1276 	if (!full)
1277 		ptep_flush_lazy(mm, address, ptep);
1278 	pte_val(*ptep) = _PAGE_INVALID;
1279 
1280 	if (!full && mm_has_pgste(mm)) {
1281 		pgste = pgste_update_all(&pte, pgste);
1282 		pgste_set_unlock(ptep, pgste);
1283 	}
1284 	return pte;
1285 }
1286 
1287 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1288 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1289 				       unsigned long address, pte_t *ptep)
1290 {
1291 	pgste_t pgste;
1292 	pte_t pte = *ptep;
1293 
1294 	if (pte_write(pte)) {
1295 		if (mm_has_pgste(mm)) {
1296 			pgste = pgste_get_lock(ptep);
1297 			pgste = pgste_ipte_notify(mm, ptep, pgste);
1298 		}
1299 
1300 		ptep_flush_lazy(mm, address, ptep);
1301 		pte = pte_wrprotect(pte);
1302 
1303 		if (mm_has_pgste(mm)) {
1304 			pgste_set_pte(ptep, pte);
1305 			pgste_set_unlock(ptep, pgste);
1306 		} else
1307 			*ptep = pte;
1308 	}
1309 	return pte;
1310 }
1311 
1312 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1313 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1314 					unsigned long address, pte_t *ptep,
1315 					pte_t entry, int dirty)
1316 {
1317 	pgste_t pgste;
1318 
1319 	if (pte_same(*ptep, entry))
1320 		return 0;
1321 	if (mm_has_pgste(vma->vm_mm)) {
1322 		pgste = pgste_get_lock(ptep);
1323 		pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1324 	}
1325 
1326 	ptep_flush_direct(vma->vm_mm, address, ptep);
1327 
1328 	if (mm_has_pgste(vma->vm_mm)) {
1329 		pgste_set_pte(ptep, entry);
1330 		pgste_set_unlock(ptep, pgste);
1331 	} else
1332 		*ptep = entry;
1333 	return 1;
1334 }
1335 
1336 /*
1337  * Conversion functions: convert a page and protection to a page entry,
1338  * and a page entry and page directory to the page they refer to.
1339  */
1340 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1341 {
1342 	pte_t __pte;
1343 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1344 	return pte_mkyoung(__pte);
1345 }
1346 
1347 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1348 {
1349 	unsigned long physpage = page_to_phys(page);
1350 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1351 
1352 	if (pte_write(__pte) && PageDirty(page))
1353 		__pte = pte_mkdirty(__pte);
1354 	return __pte;
1355 }
1356 
1357 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1358 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1359 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1360 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1361 
1362 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1363 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1364 
1365 #ifndef CONFIG_64BIT
1366 
1367 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1368 #define pud_deref(pmd) ({ BUG(); 0UL; })
1369 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1370 
1371 #define pud_offset(pgd, address) ((pud_t *) pgd)
1372 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1373 
1374 #else /* CONFIG_64BIT */
1375 
1376 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1377 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1378 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1379 
1380 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1381 {
1382 	pud_t *pud = (pud_t *) pgd;
1383 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1384 		pud = (pud_t *) pgd_deref(*pgd);
1385 	return pud  + pud_index(address);
1386 }
1387 
1388 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1389 {
1390 	pmd_t *pmd = (pmd_t *) pud;
1391 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1392 		pmd = (pmd_t *) pud_deref(*pud);
1393 	return pmd + pmd_index(address);
1394 }
1395 
1396 #endif /* CONFIG_64BIT */
1397 
1398 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1399 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1400 #define pte_page(x) pfn_to_page(pte_pfn(x))
1401 
1402 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1403 
1404 /* Find an entry in the lowest level page table.. */
1405 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1406 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1407 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1408 #define pte_unmap(pte) do { } while (0)
1409 
1410 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1411 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1412 {
1413 	/*
1414 	 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1415 	 * Convert to segment table entry format.
1416 	 */
1417 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1418 		return pgprot_val(SEGMENT_NONE);
1419 	if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1420 		return pgprot_val(SEGMENT_READ);
1421 	return pgprot_val(SEGMENT_WRITE);
1422 }
1423 
1424 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1425 {
1426 #ifdef CONFIG_64BIT
1427 	if (pmd_prot_none(pmd)) {
1428 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1429 	} else {
1430 		pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1431 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1432 	}
1433 #endif
1434 	return pmd;
1435 }
1436 
1437 static inline pmd_t pmd_mkold(pmd_t pmd)
1438 {
1439 #ifdef CONFIG_64BIT
1440 	if (pmd_prot_none(pmd)) {
1441 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1442 	} else {
1443 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1444 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1445 	}
1446 #endif
1447 	return pmd;
1448 }
1449 
1450 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1451 {
1452 	int young;
1453 
1454 	young = pmd_young(pmd);
1455 	pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1456 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1457 	if (young)
1458 		pmd = pmd_mkyoung(pmd);
1459 	return pmd;
1460 }
1461 
1462 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1463 {
1464 	pmd_t __pmd;
1465 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1466 	return pmd_mkyoung(__pmd);
1467 }
1468 
1469 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1470 {
1471 	/* Do not clobber PROT_NONE segments! */
1472 	if (!pmd_prot_none(pmd))
1473 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1474 	return pmd;
1475 }
1476 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1477 
1478 static inline void __pmdp_csp(pmd_t *pmdp)
1479 {
1480 	register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1481 	register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1482 					       _SEGMENT_ENTRY_INVALID;
1483 	register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1484 
1485 	asm volatile(
1486 		"	csp %1,%3"
1487 		: "=m" (*pmdp)
1488 		: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1489 }
1490 
1491 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1492 {
1493 	unsigned long sto;
1494 
1495 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1496 	asm volatile(
1497 		"	.insn	rrf,0xb98e0000,%2,%3,0,0"
1498 		: "=m" (*pmdp)
1499 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1500 		: "cc" );
1501 }
1502 
1503 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1504 {
1505 	unsigned long sto;
1506 
1507 	sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1508 	asm volatile(
1509 		"	.insn	rrf,0xb98e0000,%2,%3,0,1"
1510 		: "=m" (*pmdp)
1511 		: "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1512 		: "cc" );
1513 }
1514 
1515 static inline void pmdp_flush_direct(struct mm_struct *mm,
1516 				     unsigned long address, pmd_t *pmdp)
1517 {
1518 	int active, count;
1519 
1520 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1521 		return;
1522 	if (!MACHINE_HAS_IDTE) {
1523 		__pmdp_csp(pmdp);
1524 		return;
1525 	}
1526 	active = (mm == current->active_mm) ? 1 : 0;
1527 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1528 	if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1529 	    cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1530 		__pmdp_idte_local(address, pmdp);
1531 	else
1532 		__pmdp_idte(address, pmdp);
1533 	atomic_sub(0x10000, &mm->context.attach_count);
1534 }
1535 
1536 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1537 				   unsigned long address, pmd_t *pmdp)
1538 {
1539 	int active, count;
1540 
1541 	if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1542 		return;
1543 	active = (mm == current->active_mm) ? 1 : 0;
1544 	count = atomic_add_return(0x10000, &mm->context.attach_count);
1545 	if ((count & 0xffff) <= active) {
1546 		pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1547 		mm->context.flush_mm = 1;
1548 	} else if (MACHINE_HAS_IDTE)
1549 		__pmdp_idte(address, pmdp);
1550 	else
1551 		__pmdp_csp(pmdp);
1552 	atomic_sub(0x10000, &mm->context.attach_count);
1553 }
1554 
1555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1556 
1557 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1558 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1559 				       pgtable_t pgtable);
1560 
1561 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1562 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1563 
1564 static inline int pmd_trans_splitting(pmd_t pmd)
1565 {
1566 	return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1567 }
1568 
1569 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1570 			      pmd_t *pmdp, pmd_t entry)
1571 {
1572 	if (!(pmd_val(entry) & _SEGMENT_ENTRY_INVALID) && MACHINE_HAS_EDAT1)
1573 		pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1574 	*pmdp = entry;
1575 }
1576 
1577 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1578 {
1579 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1580 	return pmd;
1581 }
1582 
1583 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1584 {
1585 	/* Do not clobber PROT_NONE segments! */
1586 	if (!pmd_prot_none(pmd))
1587 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1588 	return pmd;
1589 }
1590 
1591 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1592 {
1593 	/* No dirty bit in the segment table entry. */
1594 	return pmd;
1595 }
1596 
1597 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1598 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1599 					    unsigned long address, pmd_t *pmdp)
1600 {
1601 	pmd_t pmd;
1602 
1603 	pmd = *pmdp;
1604 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1605 	*pmdp = pmd_mkold(pmd);
1606 	return pmd_young(pmd);
1607 }
1608 
1609 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1610 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1611 				       unsigned long address, pmd_t *pmdp)
1612 {
1613 	pmd_t pmd = *pmdp;
1614 
1615 	pmdp_flush_direct(mm, address, pmdp);
1616 	pmd_clear(pmdp);
1617 	return pmd;
1618 }
1619 
1620 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1621 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1622 				     unsigned long address, pmd_t *pmdp)
1623 {
1624 	return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1625 }
1626 
1627 #define __HAVE_ARCH_PMDP_INVALIDATE
1628 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1629 				   unsigned long address, pmd_t *pmdp)
1630 {
1631 	pmdp_flush_direct(vma->vm_mm, address, pmdp);
1632 }
1633 
1634 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1635 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1636 				      unsigned long address, pmd_t *pmdp)
1637 {
1638 	pmd_t pmd = *pmdp;
1639 
1640 	if (pmd_write(pmd)) {
1641 		pmdp_flush_direct(mm, address, pmdp);
1642 		set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1643 	}
1644 }
1645 
1646 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1647 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1648 
1649 static inline int pmd_trans_huge(pmd_t pmd)
1650 {
1651 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1652 }
1653 
1654 static inline int has_transparent_hugepage(void)
1655 {
1656 	return MACHINE_HAS_HPAGE ? 1 : 0;
1657 }
1658 
1659 static inline unsigned long pmd_pfn(pmd_t pmd)
1660 {
1661 	return pmd_val(pmd) >> PAGE_SHIFT;
1662 }
1663 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1664 
1665 /*
1666  * 31 bit swap entry format:
1667  * A page-table entry has some bits we have to treat in a special way.
1668  * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1669  * exception will occur instead of a page translation exception. The
1670  * specifiation exception has the bad habit not to store necessary
1671  * information in the lowcore.
1672  * Bits 21, 22, 30 and 31 are used to indicate the page type.
1673  * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1674  * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1675  * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1676  * plus 24 for the offset.
1677  * 0|     offset        |0110|o|type |00|
1678  * 0 0000000001111111111 2222 2 22222 33
1679  * 0 1234567890123456789 0123 4 56789 01
1680  *
1681  * 64 bit swap entry format:
1682  * A page-table entry has some bits we have to treat in a special way.
1683  * Bits 52 and bit 55 have to be zero, otherwise an specification
1684  * exception will occur instead of a page translation exception. The
1685  * specifiation exception has the bad habit not to store necessary
1686  * information in the lowcore.
1687  * Bits 53, 54, 62 and 63 are used to indicate the page type.
1688  * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1689  * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1690  * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1691  * plus 56 for the offset.
1692  * |                      offset                        |0110|o|type |00|
1693  *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1694  *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1695  */
1696 #ifndef CONFIG_64BIT
1697 #define __SWP_OFFSET_MASK (~0UL >> 12)
1698 #else
1699 #define __SWP_OFFSET_MASK (~0UL >> 11)
1700 #endif
1701 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1702 {
1703 	pte_t pte;
1704 	offset &= __SWP_OFFSET_MASK;
1705 	pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1706 		((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1707 	return pte;
1708 }
1709 
1710 #define __swp_type(entry)	(((entry).val >> 2) & 0x1f)
1711 #define __swp_offset(entry)	(((entry).val >> 11) | (((entry).val >> 7) & 1))
1712 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1713 
1714 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1715 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1716 
1717 #ifndef CONFIG_64BIT
1718 # define PTE_FILE_MAX_BITS	26
1719 #else /* CONFIG_64BIT */
1720 # define PTE_FILE_MAX_BITS	59
1721 #endif /* CONFIG_64BIT */
1722 
1723 #define pte_to_pgoff(__pte) \
1724 	((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1725 
1726 #define pgoff_to_pte(__off) \
1727 	((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1728 		   | _PAGE_INVALID | _PAGE_PROTECT })
1729 
1730 #endif /* !__ASSEMBLY__ */
1731 
1732 #define kern_addr_valid(addr)   (1)
1733 
1734 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1735 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1736 extern int s390_enable_sie(void);
1737 
1738 /*
1739  * No page table caches to initialise
1740  */
1741 static inline void pgtable_cache_init(void) { }
1742 static inline void check_pgt_cache(void) { }
1743 
1744 #include <asm-generic/pgtable.h>
1745 
1746 #endif /* _S390_PAGE_H */
1747