1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12 #ifndef _ASM_S390_PGTABLE_H 13 #define _ASM_S390_PGTABLE_H 14 15 #include <linux/sched.h> 16 #include <linux/mm_types.h> 17 #include <linux/page-flags.h> 18 #include <linux/radix-tree.h> 19 #include <linux/atomic.h> 20 #include <asm/sections.h> 21 #include <asm/bug.h> 22 #include <asm/page.h> 23 #include <asm/uv.h> 24 25 extern pgd_t swapper_pg_dir[]; 26 extern void paging_init(void); 27 extern unsigned long s390_invalid_asce; 28 29 enum { 30 PG_DIRECT_MAP_4K = 0, 31 PG_DIRECT_MAP_1M, 32 PG_DIRECT_MAP_2G, 33 PG_DIRECT_MAP_MAX 34 }; 35 36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX]; 37 38 static inline void update_page_count(int level, long count) 39 { 40 if (IS_ENABLED(CONFIG_PROC_FS)) 41 atomic_long_add(count, &direct_pages_count[level]); 42 } 43 44 struct seq_file; 45 void arch_report_meminfo(struct seq_file *m); 46 47 /* 48 * The S390 doesn't have any external MMU info: the kernel page 49 * tables contain all the necessary information. 50 */ 51 #define update_mmu_cache(vma, address, ptep) do { } while (0) 52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 53 54 /* 55 * ZERO_PAGE is a global shared page that is always zero; used 56 * for zero-mapped memory areas etc.. 57 */ 58 59 extern unsigned long empty_zero_page; 60 extern unsigned long zero_page_mask; 61 62 #define ZERO_PAGE(vaddr) \ 63 (virt_to_page((void *)(empty_zero_page + \ 64 (((unsigned long)(vaddr)) &zero_page_mask)))) 65 #define __HAVE_COLOR_ZERO_PAGE 66 67 /* TODO: s390 cannot support io_remap_pfn_range... */ 68 69 #define pte_ERROR(e) \ 70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 71 #define pmd_ERROR(e) \ 72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 73 #define pud_ERROR(e) \ 74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 75 #define p4d_ERROR(e) \ 76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e)) 77 #define pgd_ERROR(e) \ 78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 79 80 /* 81 * The vmalloc and module area will always be on the topmost area of the 82 * kernel mapping. 512GB are reserved for vmalloc by default. 83 * At the top of the vmalloc area a 2GB area is reserved where modules 84 * will reside. That makes sure that inter module branches always 85 * happen without trampolines and in addition the placement within a 86 * 2GB frame is branch prediction unit friendly. 87 */ 88 extern unsigned long __bootdata_preserved(VMALLOC_START); 89 extern unsigned long __bootdata_preserved(VMALLOC_END); 90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN) 91 extern struct page *__bootdata_preserved(vmemmap); 92 extern unsigned long __bootdata_preserved(vmemmap_size); 93 94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap) 95 96 extern unsigned long __bootdata_preserved(MODULES_VADDR); 97 extern unsigned long __bootdata_preserved(MODULES_END); 98 #define MODULES_VADDR MODULES_VADDR 99 #define MODULES_END MODULES_END 100 #define MODULES_LEN (1UL << 31) 101 102 static inline int is_module_addr(void *addr) 103 { 104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 105 if (addr < (void *)MODULES_VADDR) 106 return 0; 107 if (addr > (void *)MODULES_END) 108 return 0; 109 return 1; 110 } 111 112 /* 113 * A 64 bit pagetable entry of S390 has following format: 114 * | PFRA |0IPC| OS | 115 * 0000000000111111111122222222223333333333444444444455555555556666 116 * 0123456789012345678901234567890123456789012345678901234567890123 117 * 118 * I Page-Invalid Bit: Page is not available for address-translation 119 * P Page-Protection Bit: Store access not possible for page 120 * C Change-bit override: HW is not required to set change bit 121 * 122 * A 64 bit segmenttable entry of S390 has following format: 123 * | P-table origin | TT 124 * 0000000000111111111122222222223333333333444444444455555555556666 125 * 0123456789012345678901234567890123456789012345678901234567890123 126 * 127 * I Segment-Invalid Bit: Segment is not available for address-translation 128 * C Common-Segment Bit: Segment is not private (PoP 3-30) 129 * P Page-Protection Bit: Store access not possible for page 130 * TT Type 00 131 * 132 * A 64 bit region table entry of S390 has following format: 133 * | S-table origin | TF TTTL 134 * 0000000000111111111122222222223333333333444444444455555555556666 135 * 0123456789012345678901234567890123456789012345678901234567890123 136 * 137 * I Segment-Invalid Bit: Segment is not available for address-translation 138 * TT Type 01 139 * TF 140 * TL Table length 141 * 142 * The 64 bit regiontable origin of S390 has following format: 143 * | region table origon | DTTL 144 * 0000000000111111111122222222223333333333444444444455555555556666 145 * 0123456789012345678901234567890123456789012345678901234567890123 146 * 147 * X Space-Switch event: 148 * G Segment-Invalid Bit: 149 * P Private-Space Bit: 150 * S Storage-Alteration: 151 * R Real space 152 * TL Table-Length: 153 * 154 * A storage key has the following format: 155 * | ACC |F|R|C|0| 156 * 0 3 4 5 6 7 157 * ACC: access key 158 * F : fetch protection bit 159 * R : referenced bit 160 * C : changed bit 161 */ 162 163 /* Hardware bits in the page table entry */ 164 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 165 #define _PAGE_PROTECT 0x200 /* HW read-only bit */ 166 #define _PAGE_INVALID 0x400 /* HW invalid bit */ 167 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 168 169 /* Software bits in the page table entry */ 170 #define _PAGE_PRESENT 0x001 /* SW pte present bit */ 171 #define _PAGE_YOUNG 0x004 /* SW pte young bit */ 172 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 173 #define _PAGE_READ 0x010 /* SW pte read bit */ 174 #define _PAGE_WRITE 0x020 /* SW pte write bit */ 175 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 176 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 177 178 #ifdef CONFIG_MEM_SOFT_DIRTY 179 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 180 #else 181 #define _PAGE_SOFT_DIRTY 0x000 182 #endif 183 184 #define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */ 185 186 /* Set of bits not changed in pte_modify */ 187 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 188 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 189 190 /* 191 * handle_pte_fault uses pte_present and pte_none to find out the pte type 192 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 193 * distinguish present from not-present ptes. It is changed only with the page 194 * table lock held. 195 * 196 * The following table gives the different possible bit combinations for 197 * the pte hardware and software bits in the last 12 bits of a pte 198 * (. unassigned bit, x don't care, t swap type): 199 * 200 * 842100000000 201 * 000084210000 202 * 000000008421 203 * .IR.uswrdy.p 204 * empty .10.00000000 205 * swap .11..ttttt.0 206 * prot-none, clean, old .11.xx0000.1 207 * prot-none, clean, young .11.xx0001.1 208 * prot-none, dirty, old .11.xx0010.1 209 * prot-none, dirty, young .11.xx0011.1 210 * read-only, clean, old .11.xx0100.1 211 * read-only, clean, young .01.xx0101.1 212 * read-only, dirty, old .11.xx0110.1 213 * read-only, dirty, young .01.xx0111.1 214 * read-write, clean, old .11.xx1100.1 215 * read-write, clean, young .01.xx1101.1 216 * read-write, dirty, old .10.xx1110.1 217 * read-write, dirty, young .00.xx1111.1 218 * HW-bits: R read-only, I invalid 219 * SW-bits: p present, y young, d dirty, r read, w write, s special, 220 * u unused, l large 221 * 222 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 223 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 224 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 225 */ 226 227 /* Bits in the segment/region table address-space-control-element */ 228 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 229 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 230 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 231 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 232 #define _ASCE_REAL_SPACE 0x20 /* real space control */ 233 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 234 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 235 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 236 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 237 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 238 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 239 240 /* Bits in the region table entry */ 241 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 242 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 243 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 244 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 245 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 246 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 247 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 248 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 249 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 250 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 251 252 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 253 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 254 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 255 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 256 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 257 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 258 259 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 260 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 261 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 262 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 263 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 264 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 265 266 #ifdef CONFIG_MEM_SOFT_DIRTY 267 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 268 #else 269 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 270 #endif 271 272 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 273 274 /* Bits in the segment table entry */ 275 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 276 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 277 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 278 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 279 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 280 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 281 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 283 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 284 285 #define _SEGMENT_ENTRY (0) 286 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 287 288 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 289 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 290 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 291 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 292 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 293 294 #ifdef CONFIG_MEM_SOFT_DIRTY 295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 296 #else 297 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 298 #endif 299 300 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 301 #define _PAGE_ENTRIES 256 /* number of page table entries */ 302 303 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 304 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 305 306 #define _REGION1_SHIFT 53 307 #define _REGION2_SHIFT 42 308 #define _REGION3_SHIFT 31 309 #define _SEGMENT_SHIFT 20 310 311 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 312 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 313 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 314 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 315 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 316 317 #define _REGION1_SIZE (1UL << _REGION1_SHIFT) 318 #define _REGION2_SIZE (1UL << _REGION2_SHIFT) 319 #define _REGION3_SIZE (1UL << _REGION3_SHIFT) 320 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 321 322 #define _REGION1_MASK (~(_REGION1_SIZE - 1)) 323 #define _REGION2_MASK (~(_REGION2_SIZE - 1)) 324 #define _REGION3_MASK (~(_REGION3_SIZE - 1)) 325 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 326 327 #define PMD_SHIFT _SEGMENT_SHIFT 328 #define PUD_SHIFT _REGION3_SHIFT 329 #define P4D_SHIFT _REGION2_SHIFT 330 #define PGDIR_SHIFT _REGION1_SHIFT 331 332 #define PMD_SIZE _SEGMENT_SIZE 333 #define PUD_SIZE _REGION3_SIZE 334 #define P4D_SIZE _REGION2_SIZE 335 #define PGDIR_SIZE _REGION1_SIZE 336 337 #define PMD_MASK _SEGMENT_MASK 338 #define PUD_MASK _REGION3_MASK 339 #define P4D_MASK _REGION2_MASK 340 #define PGDIR_MASK _REGION1_MASK 341 342 #define PTRS_PER_PTE _PAGE_ENTRIES 343 #define PTRS_PER_PMD _CRST_ENTRIES 344 #define PTRS_PER_PUD _CRST_ENTRIES 345 #define PTRS_PER_P4D _CRST_ENTRIES 346 #define PTRS_PER_PGD _CRST_ENTRIES 347 348 /* 349 * Segment table and region3 table entry encoding 350 * (R = read-only, I = invalid, y = young bit): 351 * dy..R...I...wr 352 * prot-none, clean, old 00..1...1...00 353 * prot-none, clean, young 01..1...1...00 354 * prot-none, dirty, old 10..1...1...00 355 * prot-none, dirty, young 11..1...1...00 356 * read-only, clean, old 00..1...1...01 357 * read-only, clean, young 01..1...0...01 358 * read-only, dirty, old 10..1...1...01 359 * read-only, dirty, young 11..1...0...01 360 * read-write, clean, old 00..1...1...11 361 * read-write, clean, young 01..1...0...11 362 * read-write, dirty, old 10..0...1...11 363 * read-write, dirty, young 11..0...0...11 364 * The segment table origin is used to distinguish empty (origin==0) from 365 * read-write, old segment table entries (origin!=0) 366 * HW-bits: R read-only, I invalid 367 * SW-bits: y young, d dirty, r read, w write 368 */ 369 370 /* Page status table bits for virtualization */ 371 #define PGSTE_ACC_BITS 0xf000000000000000UL 372 #define PGSTE_FP_BIT 0x0800000000000000UL 373 #define PGSTE_PCL_BIT 0x0080000000000000UL 374 #define PGSTE_HR_BIT 0x0040000000000000UL 375 #define PGSTE_HC_BIT 0x0020000000000000UL 376 #define PGSTE_GR_BIT 0x0004000000000000UL 377 #define PGSTE_GC_BIT 0x0002000000000000UL 378 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 379 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 380 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 381 382 /* Guest Page State used for virtualization */ 383 #define _PGSTE_GPS_ZERO 0x0000000080000000UL 384 #define _PGSTE_GPS_NODAT 0x0000000040000000UL 385 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 386 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 387 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 388 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 389 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 390 391 /* 392 * A user page table pointer has the space-switch-event bit, the 393 * private-space-control bit and the storage-alteration-event-control 394 * bit set. A kernel page table pointer doesn't need them. 395 */ 396 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 397 _ASCE_ALT_EVENT) 398 399 /* 400 * Page protection definitions. 401 */ 402 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 403 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 404 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 405 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 406 _PAGE_INVALID | _PAGE_PROTECT) 407 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 408 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 409 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 410 _PAGE_INVALID | _PAGE_PROTECT) 411 412 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 414 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 415 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 416 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 417 _PAGE_PROTECT | _PAGE_NOEXEC) 418 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 419 _PAGE_YOUNG | _PAGE_DIRTY) 420 421 /* 422 * On s390 the page table entry has an invalid bit and a read-only bit. 423 * Read permission implies execute permission and write permission 424 * implies read permission. 425 */ 426 /*xwr*/ 427 428 /* 429 * Segment entry (large page) protection definitions. 430 */ 431 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 432 _SEGMENT_ENTRY_PROTECT) 433 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 434 _SEGMENT_ENTRY_READ | \ 435 _SEGMENT_ENTRY_NOEXEC) 436 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 437 _SEGMENT_ENTRY_READ) 438 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 439 _SEGMENT_ENTRY_WRITE | \ 440 _SEGMENT_ENTRY_NOEXEC) 441 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 442 _SEGMENT_ENTRY_WRITE) 443 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 444 _SEGMENT_ENTRY_LARGE | \ 445 _SEGMENT_ENTRY_READ | \ 446 _SEGMENT_ENTRY_WRITE | \ 447 _SEGMENT_ENTRY_YOUNG | \ 448 _SEGMENT_ENTRY_DIRTY | \ 449 _SEGMENT_ENTRY_NOEXEC) 450 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 451 _SEGMENT_ENTRY_LARGE | \ 452 _SEGMENT_ENTRY_READ | \ 453 _SEGMENT_ENTRY_YOUNG | \ 454 _SEGMENT_ENTRY_PROTECT | \ 455 _SEGMENT_ENTRY_NOEXEC) 456 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 457 _SEGMENT_ENTRY_LARGE | \ 458 _SEGMENT_ENTRY_READ | \ 459 _SEGMENT_ENTRY_WRITE | \ 460 _SEGMENT_ENTRY_YOUNG | \ 461 _SEGMENT_ENTRY_DIRTY) 462 463 /* 464 * Region3 entry (large page) protection definitions. 465 */ 466 467 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 468 _REGION3_ENTRY_LARGE | \ 469 _REGION3_ENTRY_READ | \ 470 _REGION3_ENTRY_WRITE | \ 471 _REGION3_ENTRY_YOUNG | \ 472 _REGION3_ENTRY_DIRTY | \ 473 _REGION_ENTRY_NOEXEC) 474 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 475 _REGION3_ENTRY_LARGE | \ 476 _REGION3_ENTRY_READ | \ 477 _REGION3_ENTRY_YOUNG | \ 478 _REGION_ENTRY_PROTECT | \ 479 _REGION_ENTRY_NOEXEC) 480 481 static inline bool mm_p4d_folded(struct mm_struct *mm) 482 { 483 return mm->context.asce_limit <= _REGION1_SIZE; 484 } 485 #define mm_p4d_folded(mm) mm_p4d_folded(mm) 486 487 static inline bool mm_pud_folded(struct mm_struct *mm) 488 { 489 return mm->context.asce_limit <= _REGION2_SIZE; 490 } 491 #define mm_pud_folded(mm) mm_pud_folded(mm) 492 493 static inline bool mm_pmd_folded(struct mm_struct *mm) 494 { 495 return mm->context.asce_limit <= _REGION3_SIZE; 496 } 497 #define mm_pmd_folded(mm) mm_pmd_folded(mm) 498 499 static inline int mm_has_pgste(struct mm_struct *mm) 500 { 501 #ifdef CONFIG_PGSTE 502 if (unlikely(mm->context.has_pgste)) 503 return 1; 504 #endif 505 return 0; 506 } 507 508 static inline int mm_is_protected(struct mm_struct *mm) 509 { 510 #ifdef CONFIG_PGSTE 511 if (unlikely(atomic_read(&mm->context.protected_count))) 512 return 1; 513 #endif 514 return 0; 515 } 516 517 static inline int mm_alloc_pgste(struct mm_struct *mm) 518 { 519 #ifdef CONFIG_PGSTE 520 if (unlikely(mm->context.alloc_pgste)) 521 return 1; 522 #endif 523 return 0; 524 } 525 526 static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 527 { 528 return __pte(pte_val(pte) & ~pgprot_val(prot)); 529 } 530 531 static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 532 { 533 return __pte(pte_val(pte) | pgprot_val(prot)); 534 } 535 536 static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 537 { 538 return __pmd(pmd_val(pmd) & ~pgprot_val(prot)); 539 } 540 541 static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 542 { 543 return __pmd(pmd_val(pmd) | pgprot_val(prot)); 544 } 545 546 static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot) 547 { 548 return __pud(pud_val(pud) & ~pgprot_val(prot)); 549 } 550 551 static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot) 552 { 553 return __pud(pud_val(pud) | pgprot_val(prot)); 554 } 555 556 /* 557 * In the case that a guest uses storage keys 558 * faults should no longer be backed by zero pages 559 */ 560 #define mm_forbids_zeropage mm_has_pgste 561 static inline int mm_uses_skeys(struct mm_struct *mm) 562 { 563 #ifdef CONFIG_PGSTE 564 if (mm->context.uses_skeys) 565 return 1; 566 #endif 567 return 0; 568 } 569 570 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 571 { 572 union register_pair r1 = { .even = old, .odd = new, }; 573 unsigned long address = (unsigned long)ptr | 1; 574 575 asm volatile( 576 " csp %[r1],%[address]" 577 : [r1] "+&d" (r1.pair), "+m" (*ptr) 578 : [address] "d" (address) 579 : "cc"); 580 } 581 582 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 583 { 584 union register_pair r1 = { .even = old, .odd = new, }; 585 unsigned long address = (unsigned long)ptr | 1; 586 587 asm volatile( 588 " cspg %[r1],%[address]" 589 : [r1] "+&d" (r1.pair), "+m" (*ptr) 590 : [address] "d" (address) 591 : "cc"); 592 } 593 594 #define CRDTE_DTT_PAGE 0x00UL 595 #define CRDTE_DTT_SEGMENT 0x10UL 596 #define CRDTE_DTT_REGION3 0x14UL 597 #define CRDTE_DTT_REGION2 0x18UL 598 #define CRDTE_DTT_REGION1 0x1cUL 599 600 static inline void crdte(unsigned long old, unsigned long new, 601 unsigned long *table, unsigned long dtt, 602 unsigned long address, unsigned long asce) 603 { 604 union register_pair r1 = { .even = old, .odd = new, }; 605 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, }; 606 607 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0" 608 : [r1] "+&d" (r1.pair) 609 : [r2] "d" (r2.pair), [asce] "a" (asce) 610 : "memory", "cc"); 611 } 612 613 /* 614 * pgd/p4d/pud/pmd/pte query functions 615 */ 616 static inline int pgd_folded(pgd_t pgd) 617 { 618 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 619 } 620 621 static inline int pgd_present(pgd_t pgd) 622 { 623 if (pgd_folded(pgd)) 624 return 1; 625 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 626 } 627 628 static inline int pgd_none(pgd_t pgd) 629 { 630 if (pgd_folded(pgd)) 631 return 0; 632 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 633 } 634 635 static inline int pgd_bad(pgd_t pgd) 636 { 637 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 638 return 0; 639 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 640 } 641 642 static inline unsigned long pgd_pfn(pgd_t pgd) 643 { 644 unsigned long origin_mask; 645 646 origin_mask = _REGION_ENTRY_ORIGIN; 647 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 648 } 649 650 static inline int p4d_folded(p4d_t p4d) 651 { 652 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 653 } 654 655 static inline int p4d_present(p4d_t p4d) 656 { 657 if (p4d_folded(p4d)) 658 return 1; 659 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 660 } 661 662 static inline int p4d_none(p4d_t p4d) 663 { 664 if (p4d_folded(p4d)) 665 return 0; 666 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 667 } 668 669 static inline unsigned long p4d_pfn(p4d_t p4d) 670 { 671 unsigned long origin_mask; 672 673 origin_mask = _REGION_ENTRY_ORIGIN; 674 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 675 } 676 677 static inline int pud_folded(pud_t pud) 678 { 679 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 680 } 681 682 static inline int pud_present(pud_t pud) 683 { 684 if (pud_folded(pud)) 685 return 1; 686 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 687 } 688 689 static inline int pud_none(pud_t pud) 690 { 691 if (pud_folded(pud)) 692 return 0; 693 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 694 } 695 696 #define pud_leaf pud_large 697 static inline int pud_large(pud_t pud) 698 { 699 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 700 return 0; 701 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 702 } 703 704 #define pmd_leaf pmd_large 705 static inline int pmd_large(pmd_t pmd) 706 { 707 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 708 } 709 710 static inline int pmd_bad(pmd_t pmd) 711 { 712 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd)) 713 return 1; 714 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 715 } 716 717 static inline int pud_bad(pud_t pud) 718 { 719 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 720 721 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud)) 722 return 1; 723 if (type < _REGION_ENTRY_TYPE_R3) 724 return 0; 725 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 726 } 727 728 static inline int p4d_bad(p4d_t p4d) 729 { 730 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 731 732 if (type > _REGION_ENTRY_TYPE_R2) 733 return 1; 734 if (type < _REGION_ENTRY_TYPE_R2) 735 return 0; 736 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 737 } 738 739 static inline int pmd_present(pmd_t pmd) 740 { 741 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 742 } 743 744 static inline int pmd_none(pmd_t pmd) 745 { 746 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 747 } 748 749 #define pmd_write pmd_write 750 static inline int pmd_write(pmd_t pmd) 751 { 752 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 753 } 754 755 #define pud_write pud_write 756 static inline int pud_write(pud_t pud) 757 { 758 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0; 759 } 760 761 static inline int pmd_dirty(pmd_t pmd) 762 { 763 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 764 } 765 766 #define pmd_young pmd_young 767 static inline int pmd_young(pmd_t pmd) 768 { 769 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 770 } 771 772 static inline int pte_present(pte_t pte) 773 { 774 /* Bit pattern: (pte & 0x001) == 0x001 */ 775 return (pte_val(pte) & _PAGE_PRESENT) != 0; 776 } 777 778 static inline int pte_none(pte_t pte) 779 { 780 /* Bit pattern: pte == 0x400 */ 781 return pte_val(pte) == _PAGE_INVALID; 782 } 783 784 static inline int pte_swap(pte_t pte) 785 { 786 /* Bit pattern: (pte & 0x201) == 0x200 */ 787 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 788 == _PAGE_PROTECT; 789 } 790 791 static inline int pte_special(pte_t pte) 792 { 793 return (pte_val(pte) & _PAGE_SPECIAL); 794 } 795 796 #define __HAVE_ARCH_PTE_SAME 797 static inline int pte_same(pte_t a, pte_t b) 798 { 799 return pte_val(a) == pte_val(b); 800 } 801 802 #ifdef CONFIG_NUMA_BALANCING 803 static inline int pte_protnone(pte_t pte) 804 { 805 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 806 } 807 808 static inline int pmd_protnone(pmd_t pmd) 809 { 810 /* pmd_large(pmd) implies pmd_present(pmd) */ 811 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 812 } 813 #endif 814 815 static inline int pte_swp_exclusive(pte_t pte) 816 { 817 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 818 } 819 820 static inline pte_t pte_swp_mkexclusive(pte_t pte) 821 { 822 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 823 } 824 825 static inline pte_t pte_swp_clear_exclusive(pte_t pte) 826 { 827 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 828 } 829 830 static inline int pte_soft_dirty(pte_t pte) 831 { 832 return pte_val(pte) & _PAGE_SOFT_DIRTY; 833 } 834 #define pte_swp_soft_dirty pte_soft_dirty 835 836 static inline pte_t pte_mksoft_dirty(pte_t pte) 837 { 838 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 839 } 840 #define pte_swp_mksoft_dirty pte_mksoft_dirty 841 842 static inline pte_t pte_clear_soft_dirty(pte_t pte) 843 { 844 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 845 } 846 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty 847 848 static inline int pmd_soft_dirty(pmd_t pmd) 849 { 850 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 851 } 852 853 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 854 { 855 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 856 } 857 858 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 859 { 860 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 861 } 862 863 /* 864 * query functions pte_write/pte_dirty/pte_young only work if 865 * pte_present() is true. Undefined behaviour if not.. 866 */ 867 static inline int pte_write(pte_t pte) 868 { 869 return (pte_val(pte) & _PAGE_WRITE) != 0; 870 } 871 872 static inline int pte_dirty(pte_t pte) 873 { 874 return (pte_val(pte) & _PAGE_DIRTY) != 0; 875 } 876 877 static inline int pte_young(pte_t pte) 878 { 879 return (pte_val(pte) & _PAGE_YOUNG) != 0; 880 } 881 882 #define __HAVE_ARCH_PTE_UNUSED 883 static inline int pte_unused(pte_t pte) 884 { 885 return pte_val(pte) & _PAGE_UNUSED; 886 } 887 888 /* 889 * Extract the pgprot value from the given pte while at the same time making it 890 * usable for kernel address space mappings where fault driven dirty and 891 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID 892 * must not be set. 893 */ 894 static inline pgprot_t pte_pgprot(pte_t pte) 895 { 896 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK; 897 898 if (pte_write(pte)) 899 pte_flags |= pgprot_val(PAGE_KERNEL); 900 else 901 pte_flags |= pgprot_val(PAGE_KERNEL_RO); 902 pte_flags |= pte_val(pte) & mio_wb_bit_mask; 903 904 return __pgprot(pte_flags); 905 } 906 907 /* 908 * pgd/pmd/pte modification functions 909 */ 910 911 static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 912 { 913 WRITE_ONCE(*pgdp, pgd); 914 } 915 916 static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 917 { 918 WRITE_ONCE(*p4dp, p4d); 919 } 920 921 static inline void set_pud(pud_t *pudp, pud_t pud) 922 { 923 WRITE_ONCE(*pudp, pud); 924 } 925 926 static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 927 { 928 WRITE_ONCE(*pmdp, pmd); 929 } 930 931 static inline void set_pte(pte_t *ptep, pte_t pte) 932 { 933 WRITE_ONCE(*ptep, pte); 934 } 935 936 static inline void pgd_clear(pgd_t *pgd) 937 { 938 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 939 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY)); 940 } 941 942 static inline void p4d_clear(p4d_t *p4d) 943 { 944 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 945 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY)); 946 } 947 948 static inline void pud_clear(pud_t *pud) 949 { 950 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 951 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY)); 952 } 953 954 static inline void pmd_clear(pmd_t *pmdp) 955 { 956 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 957 } 958 959 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 960 { 961 set_pte(ptep, __pte(_PAGE_INVALID)); 962 } 963 964 /* 965 * The following pte modification functions only work if 966 * pte_present() is true. Undefined behaviour if not.. 967 */ 968 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 969 { 970 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK)); 971 pte = set_pte_bit(pte, newprot); 972 /* 973 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 974 * has the invalid bit set, clear it again for readable, young pages 975 */ 976 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 977 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 978 /* 979 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 980 * protection bit set, clear it again for writable, dirty pages 981 */ 982 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 983 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 984 return pte; 985 } 986 987 static inline pte_t pte_wrprotect(pte_t pte) 988 { 989 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE)); 990 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 991 } 992 993 static inline pte_t pte_mkwrite(pte_t pte) 994 { 995 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE)); 996 if (pte_val(pte) & _PAGE_DIRTY) 997 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 998 return pte; 999 } 1000 1001 static inline pte_t pte_mkclean(pte_t pte) 1002 { 1003 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY)); 1004 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1005 } 1006 1007 static inline pte_t pte_mkdirty(pte_t pte) 1008 { 1009 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); 1010 if (pte_val(pte) & _PAGE_WRITE) 1011 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1012 return pte; 1013 } 1014 1015 static inline pte_t pte_mkold(pte_t pte) 1016 { 1017 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1018 return set_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1019 } 1020 1021 static inline pte_t pte_mkyoung(pte_t pte) 1022 { 1023 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1024 if (pte_val(pte) & _PAGE_READ) 1025 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1026 return pte; 1027 } 1028 1029 static inline pte_t pte_mkspecial(pte_t pte) 1030 { 1031 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL)); 1032 } 1033 1034 #ifdef CONFIG_HUGETLB_PAGE 1035 static inline pte_t pte_mkhuge(pte_t pte) 1036 { 1037 return set_pte_bit(pte, __pgprot(_PAGE_LARGE)); 1038 } 1039 #endif 1040 1041 #define IPTE_GLOBAL 0 1042 #define IPTE_LOCAL 1 1043 1044 #define IPTE_NODAT 0x400 1045 #define IPTE_GUEST_ASCE 0x800 1046 1047 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, 1048 unsigned long opt, unsigned long asce, 1049 int local) 1050 { 1051 unsigned long pto = __pa(ptep); 1052 1053 if (__builtin_constant_p(opt) && opt == 0) { 1054 /* Invalidation + TLB flush for the pte */ 1055 asm volatile( 1056 " ipte %[r1],%[r2],0,%[m4]" 1057 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1058 [m4] "i" (local)); 1059 return; 1060 } 1061 1062 /* Invalidate ptes with options + TLB flush of the ptes */ 1063 opt = opt | (asce & _ASCE_ORIGIN); 1064 asm volatile( 1065 " ipte %[r1],%[r2],%[r3],%[m4]" 1066 : [r2] "+a" (address), [r3] "+a" (opt) 1067 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1068 } 1069 1070 static __always_inline void __ptep_ipte_range(unsigned long address, int nr, 1071 pte_t *ptep, int local) 1072 { 1073 unsigned long pto = __pa(ptep); 1074 1075 /* Invalidate a range of ptes + TLB flush of the ptes */ 1076 do { 1077 asm volatile( 1078 " ipte %[r1],%[r2],%[r3],%[m4]" 1079 : [r2] "+a" (address), [r3] "+a" (nr) 1080 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1081 } while (nr != 255); 1082 } 1083 1084 /* 1085 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1086 * both clear the TLB for the unmapped pte. The reason is that 1087 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1088 * to modify an active pte. The sequence is 1089 * 1) ptep_get_and_clear 1090 * 2) set_pte_at 1091 * 3) flush_tlb_range 1092 * On s390 the tlb needs to get flushed with the modification of the pte 1093 * if the pte is active. The only way how this can be implemented is to 1094 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1095 * is a nop. 1096 */ 1097 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1098 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1099 1100 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1101 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1102 unsigned long addr, pte_t *ptep) 1103 { 1104 pte_t pte = *ptep; 1105 1106 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1107 return pte_young(pte); 1108 } 1109 1110 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1111 static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1112 unsigned long address, pte_t *ptep) 1113 { 1114 return ptep_test_and_clear_young(vma, address, ptep); 1115 } 1116 1117 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1118 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1119 unsigned long addr, pte_t *ptep) 1120 { 1121 pte_t res; 1122 1123 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1124 /* At this point the reference through the mapping is still present */ 1125 if (mm_is_protected(mm) && pte_present(res)) 1126 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1127 return res; 1128 } 1129 1130 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1131 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1132 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1133 pte_t *, pte_t, pte_t); 1134 1135 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1136 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1137 unsigned long addr, pte_t *ptep) 1138 { 1139 pte_t res; 1140 1141 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1142 /* At this point the reference through the mapping is still present */ 1143 if (mm_is_protected(vma->vm_mm) && pte_present(res)) 1144 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1145 return res; 1146 } 1147 1148 /* 1149 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1150 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1151 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1152 * cannot be accessed while the batched unmap is running. In this case 1153 * full==1 and a simple pte_clear is enough. See tlb.h. 1154 */ 1155 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1156 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1157 unsigned long addr, 1158 pte_t *ptep, int full) 1159 { 1160 pte_t res; 1161 1162 if (full) { 1163 res = *ptep; 1164 set_pte(ptep, __pte(_PAGE_INVALID)); 1165 } else { 1166 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1167 } 1168 /* Nothing to do */ 1169 if (!mm_is_protected(mm) || !pte_present(res)) 1170 return res; 1171 /* 1172 * At this point the reference through the mapping is still present. 1173 * The notifier should have destroyed all protected vCPUs at this 1174 * point, so the destroy should be successful. 1175 */ 1176 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK)) 1177 return res; 1178 /* 1179 * If something went wrong and the page could not be destroyed, or 1180 * if this is not a mm teardown, the slower export is used as 1181 * fallback instead. 1182 */ 1183 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1184 return res; 1185 } 1186 1187 #define __HAVE_ARCH_PTEP_SET_WRPROTECT 1188 static inline void ptep_set_wrprotect(struct mm_struct *mm, 1189 unsigned long addr, pte_t *ptep) 1190 { 1191 pte_t pte = *ptep; 1192 1193 if (pte_write(pte)) 1194 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1195 } 1196 1197 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1198 static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1199 unsigned long addr, pte_t *ptep, 1200 pte_t entry, int dirty) 1201 { 1202 if (pte_same(*ptep, entry)) 1203 return 0; 1204 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1205 return 1; 1206 } 1207 1208 /* 1209 * Additional functions to handle KVM guest page tables 1210 */ 1211 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1212 pte_t *ptep, pte_t entry); 1213 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1214 void ptep_notify(struct mm_struct *mm, unsigned long addr, 1215 pte_t *ptep, unsigned long bits); 1216 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1217 pte_t *ptep, int prot, unsigned long bit); 1218 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1219 pte_t *ptep , int reset); 1220 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1221 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1222 pte_t *sptep, pte_t *tptep, pte_t pte); 1223 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1224 1225 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1226 pte_t *ptep); 1227 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1228 unsigned char key, bool nq); 1229 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1230 unsigned char key, unsigned char *oldkey, 1231 bool nq, bool mr, bool mc); 1232 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1233 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1234 unsigned char *key); 1235 1236 int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1237 unsigned long bits, unsigned long value); 1238 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1239 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1240 unsigned long *oldpte, unsigned long *oldpgste); 1241 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1242 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1243 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1244 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1245 1246 #define pgprot_writecombine pgprot_writecombine 1247 pgprot_t pgprot_writecombine(pgprot_t prot); 1248 1249 #define pgprot_writethrough pgprot_writethrough 1250 pgprot_t pgprot_writethrough(pgprot_t prot); 1251 1252 /* 1253 * Certain architectures need to do special things when PTEs 1254 * within a page table are directly modified. Thus, the following 1255 * hook is made available. 1256 */ 1257 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1258 pte_t *ptep, pte_t entry) 1259 { 1260 if (pte_present(entry)) 1261 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED)); 1262 if (mm_has_pgste(mm)) 1263 ptep_set_pte_at(mm, addr, ptep, entry); 1264 else 1265 set_pte(ptep, entry); 1266 } 1267 1268 /* 1269 * Conversion functions: convert a page and protection to a page entry, 1270 * and a page entry and page directory to the page they refer to. 1271 */ 1272 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1273 { 1274 pte_t __pte; 1275 1276 __pte = __pte(physpage | pgprot_val(pgprot)); 1277 if (!MACHINE_HAS_NX) 1278 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC)); 1279 return pte_mkyoung(__pte); 1280 } 1281 1282 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1283 { 1284 unsigned long physpage = page_to_phys(page); 1285 pte_t __pte = mk_pte_phys(physpage, pgprot); 1286 1287 if (pte_write(__pte) && PageDirty(page)) 1288 __pte = pte_mkdirty(__pte); 1289 return __pte; 1290 } 1291 1292 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1293 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1294 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1295 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1296 1297 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN)) 1298 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN)) 1299 1300 static inline unsigned long pmd_deref(pmd_t pmd) 1301 { 1302 unsigned long origin_mask; 1303 1304 origin_mask = _SEGMENT_ENTRY_ORIGIN; 1305 if (pmd_large(pmd)) 1306 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1307 return (unsigned long)__va(pmd_val(pmd) & origin_mask); 1308 } 1309 1310 static inline unsigned long pmd_pfn(pmd_t pmd) 1311 { 1312 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT; 1313 } 1314 1315 static inline unsigned long pud_deref(pud_t pud) 1316 { 1317 unsigned long origin_mask; 1318 1319 origin_mask = _REGION_ENTRY_ORIGIN; 1320 if (pud_large(pud)) 1321 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 1322 return (unsigned long)__va(pud_val(pud) & origin_mask); 1323 } 1324 1325 static inline unsigned long pud_pfn(pud_t pud) 1326 { 1327 return __pa(pud_deref(pud)) >> PAGE_SHIFT; 1328 } 1329 1330 /* 1331 * The pgd_offset function *always* adds the index for the top-level 1332 * region/segment table. This is done to get a sequence like the 1333 * following to work: 1334 * pgdp = pgd_offset(current->mm, addr); 1335 * pgd = READ_ONCE(*pgdp); 1336 * p4dp = p4d_offset(&pgd, addr); 1337 * ... 1338 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1339 * only add an index if they dereferenced the pointer. 1340 */ 1341 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1342 { 1343 unsigned long rste; 1344 unsigned int shift; 1345 1346 /* Get the first entry of the top level table */ 1347 rste = pgd_val(*pgd); 1348 /* Pick up the shift from the table type of the first entry */ 1349 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1350 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1351 } 1352 1353 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1354 1355 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address) 1356 { 1357 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1358 return (p4d_t *) pgd_deref(pgd) + p4d_index(address); 1359 return (p4d_t *) pgdp; 1360 } 1361 #define p4d_offset_lockless p4d_offset_lockless 1362 1363 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address) 1364 { 1365 return p4d_offset_lockless(pgdp, *pgdp, address); 1366 } 1367 1368 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address) 1369 { 1370 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1371 return (pud_t *) p4d_deref(p4d) + pud_index(address); 1372 return (pud_t *) p4dp; 1373 } 1374 #define pud_offset_lockless pud_offset_lockless 1375 1376 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address) 1377 { 1378 return pud_offset_lockless(p4dp, *p4dp, address); 1379 } 1380 #define pud_offset pud_offset 1381 1382 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address) 1383 { 1384 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1385 return (pmd_t *) pud_deref(pud) + pmd_index(address); 1386 return (pmd_t *) pudp; 1387 } 1388 #define pmd_offset_lockless pmd_offset_lockless 1389 1390 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address) 1391 { 1392 return pmd_offset_lockless(pudp, *pudp, address); 1393 } 1394 #define pmd_offset pmd_offset 1395 1396 static inline unsigned long pmd_page_vaddr(pmd_t pmd) 1397 { 1398 return (unsigned long) pmd_deref(pmd); 1399 } 1400 1401 static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1402 { 1403 return end <= current->mm->context.asce_limit; 1404 } 1405 #define gup_fast_permitted gup_fast_permitted 1406 1407 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1408 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1409 #define pte_page(x) pfn_to_page(pte_pfn(x)) 1410 1411 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1412 #define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1413 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1414 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1415 1416 static inline pmd_t pmd_wrprotect(pmd_t pmd) 1417 { 1418 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1419 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1420 } 1421 1422 static inline pmd_t pmd_mkwrite(pmd_t pmd) 1423 { 1424 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1425 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) 1426 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1427 return pmd; 1428 } 1429 1430 static inline pmd_t pmd_mkclean(pmd_t pmd) 1431 { 1432 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY)); 1433 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1434 } 1435 1436 static inline pmd_t pmd_mkdirty(pmd_t pmd) 1437 { 1438 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY)); 1439 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1440 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1441 return pmd; 1442 } 1443 1444 static inline pud_t pud_wrprotect(pud_t pud) 1445 { 1446 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1447 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1448 } 1449 1450 static inline pud_t pud_mkwrite(pud_t pud) 1451 { 1452 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1453 if (pud_val(pud) & _REGION3_ENTRY_DIRTY) 1454 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1455 return pud; 1456 } 1457 1458 static inline pud_t pud_mkclean(pud_t pud) 1459 { 1460 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY)); 1461 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1462 } 1463 1464 static inline pud_t pud_mkdirty(pud_t pud) 1465 { 1466 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY)); 1467 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1468 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1469 return pud; 1470 } 1471 1472 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1473 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1474 { 1475 /* 1476 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1477 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1478 */ 1479 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1480 return pgprot_val(SEGMENT_NONE); 1481 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1482 return pgprot_val(SEGMENT_RO); 1483 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1484 return pgprot_val(SEGMENT_RX); 1485 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1486 return pgprot_val(SEGMENT_RW); 1487 return pgprot_val(SEGMENT_RWX); 1488 } 1489 1490 static inline pmd_t pmd_mkyoung(pmd_t pmd) 1491 { 1492 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1493 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1494 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1495 return pmd; 1496 } 1497 1498 static inline pmd_t pmd_mkold(pmd_t pmd) 1499 { 1500 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1501 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1502 } 1503 1504 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1505 { 1506 unsigned long mask; 1507 1508 mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1509 mask |= _SEGMENT_ENTRY_DIRTY; 1510 mask |= _SEGMENT_ENTRY_YOUNG; 1511 mask |= _SEGMENT_ENTRY_LARGE; 1512 mask |= _SEGMENT_ENTRY_SOFT_DIRTY; 1513 pmd = __pmd(pmd_val(pmd) & mask); 1514 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot))); 1515 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1516 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1517 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1518 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1519 return pmd; 1520 } 1521 1522 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1523 { 1524 return __pmd(physpage + massage_pgprot_pmd(pgprot)); 1525 } 1526 1527 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1528 1529 static inline void __pmdp_csp(pmd_t *pmdp) 1530 { 1531 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1532 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1533 } 1534 1535 #define IDTE_GLOBAL 0 1536 #define IDTE_LOCAL 1 1537 1538 #define IDTE_PTOA 0x0800 1539 #define IDTE_NODAT 0x1000 1540 #define IDTE_GUEST_ASCE 0x2000 1541 1542 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1543 unsigned long opt, unsigned long asce, 1544 int local) 1545 { 1546 unsigned long sto; 1547 1548 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t); 1549 if (__builtin_constant_p(opt) && opt == 0) { 1550 /* flush without guest asce */ 1551 asm volatile( 1552 " idte %[r1],0,%[r2],%[m4]" 1553 : "+m" (*pmdp) 1554 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1555 [m4] "i" (local) 1556 : "cc" ); 1557 } else { 1558 /* flush with guest asce */ 1559 asm volatile( 1560 " idte %[r1],%[r3],%[r2],%[m4]" 1561 : "+m" (*pmdp) 1562 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1563 [r3] "a" (asce), [m4] "i" (local) 1564 : "cc" ); 1565 } 1566 } 1567 1568 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1569 unsigned long opt, unsigned long asce, 1570 int local) 1571 { 1572 unsigned long r3o; 1573 1574 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t); 1575 r3o |= _ASCE_TYPE_REGION3; 1576 if (__builtin_constant_p(opt) && opt == 0) { 1577 /* flush without guest asce */ 1578 asm volatile( 1579 " idte %[r1],0,%[r2],%[m4]" 1580 : "+m" (*pudp) 1581 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1582 [m4] "i" (local) 1583 : "cc"); 1584 } else { 1585 /* flush with guest asce */ 1586 asm volatile( 1587 " idte %[r1],%[r3],%[r2],%[m4]" 1588 : "+m" (*pudp) 1589 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1590 [r3] "a" (asce), [m4] "i" (local) 1591 : "cc" ); 1592 } 1593 } 1594 1595 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1596 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1597 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1598 1599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1600 1601 #define __HAVE_ARCH_PGTABLE_DEPOSIT 1602 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1603 pgtable_t pgtable); 1604 1605 #define __HAVE_ARCH_PGTABLE_WITHDRAW 1606 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1607 1608 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1609 static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1610 unsigned long addr, pmd_t *pmdp, 1611 pmd_t entry, int dirty) 1612 { 1613 VM_BUG_ON(addr & ~HPAGE_MASK); 1614 1615 entry = pmd_mkyoung(entry); 1616 if (dirty) 1617 entry = pmd_mkdirty(entry); 1618 if (pmd_val(*pmdp) == pmd_val(entry)) 1619 return 0; 1620 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1621 return 1; 1622 } 1623 1624 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1625 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1626 unsigned long addr, pmd_t *pmdp) 1627 { 1628 pmd_t pmd = *pmdp; 1629 1630 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1631 return pmd_young(pmd); 1632 } 1633 1634 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1635 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1636 unsigned long addr, pmd_t *pmdp) 1637 { 1638 VM_BUG_ON(addr & ~HPAGE_MASK); 1639 return pmdp_test_and_clear_young(vma, addr, pmdp); 1640 } 1641 1642 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1643 pmd_t *pmdp, pmd_t entry) 1644 { 1645 if (!MACHINE_HAS_NX) 1646 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC)); 1647 set_pmd(pmdp, entry); 1648 } 1649 1650 static inline pmd_t pmd_mkhuge(pmd_t pmd) 1651 { 1652 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE)); 1653 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1654 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1655 } 1656 1657 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1658 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1659 unsigned long addr, pmd_t *pmdp) 1660 { 1661 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1662 } 1663 1664 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1665 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 1666 unsigned long addr, 1667 pmd_t *pmdp, int full) 1668 { 1669 if (full) { 1670 pmd_t pmd = *pmdp; 1671 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1672 return pmd; 1673 } 1674 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1675 } 1676 1677 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1678 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1679 unsigned long addr, pmd_t *pmdp) 1680 { 1681 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1682 } 1683 1684 #define __HAVE_ARCH_PMDP_INVALIDATE 1685 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1686 unsigned long addr, pmd_t *pmdp) 1687 { 1688 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1689 1690 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1691 } 1692 1693 #define __HAVE_ARCH_PMDP_SET_WRPROTECT 1694 static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1695 unsigned long addr, pmd_t *pmdp) 1696 { 1697 pmd_t pmd = *pmdp; 1698 1699 if (pmd_write(pmd)) 1700 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1701 } 1702 1703 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1704 unsigned long address, 1705 pmd_t *pmdp) 1706 { 1707 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1708 } 1709 #define pmdp_collapse_flush pmdp_collapse_flush 1710 1711 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1712 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1713 1714 static inline int pmd_trans_huge(pmd_t pmd) 1715 { 1716 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1717 } 1718 1719 #define has_transparent_hugepage has_transparent_hugepage 1720 static inline int has_transparent_hugepage(void) 1721 { 1722 return MACHINE_HAS_EDAT1 ? 1 : 0; 1723 } 1724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1725 1726 /* 1727 * 64 bit swap entry format: 1728 * A page-table entry has some bits we have to treat in a special way. 1729 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte 1730 * as invalid. 1731 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1732 * | offset |E11XX|type |S0| 1733 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1734 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1735 * 1736 * Bits 0-51 store the offset. 1737 * Bit 52 (E) is used to remember PG_anon_exclusive. 1738 * Bits 57-61 store the type. 1739 * Bit 62 (S) is used for softdirty tracking. 1740 * Bits 55 and 56 (X) are unused. 1741 */ 1742 1743 #define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1744 #define __SWP_OFFSET_SHIFT 12 1745 #define __SWP_TYPE_MASK ((1UL << 5) - 1) 1746 #define __SWP_TYPE_SHIFT 2 1747 1748 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1749 { 1750 unsigned long pteval; 1751 1752 pteval = _PAGE_INVALID | _PAGE_PROTECT; 1753 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1754 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1755 return __pte(pteval); 1756 } 1757 1758 static inline unsigned long __swp_type(swp_entry_t entry) 1759 { 1760 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1761 } 1762 1763 static inline unsigned long __swp_offset(swp_entry_t entry) 1764 { 1765 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1766 } 1767 1768 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1769 { 1770 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1771 } 1772 1773 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1774 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1775 1776 extern int vmem_add_mapping(unsigned long start, unsigned long size); 1777 extern void vmem_remove_mapping(unsigned long start, unsigned long size); 1778 extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc); 1779 extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot); 1780 extern void vmem_unmap_4k_page(unsigned long addr); 1781 extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc); 1782 extern int s390_enable_sie(void); 1783 extern int s390_enable_skey(void); 1784 extern void s390_reset_cmma(struct mm_struct *mm); 1785 1786 /* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1787 #define HAVE_ARCH_UNMAPPED_AREA 1788 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1789 1790 #define pmd_pgtable(pmd) \ 1791 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE)) 1792 1793 #endif /* _S390_PAGE_H */ 1794