xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision 26721b02)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 #include <asm/uv.h>
23 
24 extern pgd_t swapper_pg_dir[];
25 extern void paging_init(void);
26 
27 enum {
28 	PG_DIRECT_MAP_4K = 0,
29 	PG_DIRECT_MAP_1M,
30 	PG_DIRECT_MAP_2G,
31 	PG_DIRECT_MAP_MAX
32 };
33 
34 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
35 
36 static inline void update_page_count(int level, long count)
37 {
38 	if (IS_ENABLED(CONFIG_PROC_FS))
39 		atomic_long_add(count, &direct_pages_count[level]);
40 }
41 
42 struct seq_file;
43 void arch_report_meminfo(struct seq_file *m);
44 
45 /*
46  * The S390 doesn't have any external MMU info: the kernel page
47  * tables contain all the necessary information.
48  */
49 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
50 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
51 
52 /*
53  * ZERO_PAGE is a global shared page that is always zero; used
54  * for zero-mapped memory areas etc..
55  */
56 
57 extern unsigned long empty_zero_page;
58 extern unsigned long zero_page_mask;
59 
60 #define ZERO_PAGE(vaddr) \
61 	(virt_to_page((void *)(empty_zero_page + \
62 	 (((unsigned long)(vaddr)) &zero_page_mask))))
63 #define __HAVE_COLOR_ZERO_PAGE
64 
65 /* TODO: s390 cannot support io_remap_pfn_range... */
66 
67 #define FIRST_USER_ADDRESS  0UL
68 
69 #define pte_ERROR(e) \
70 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
71 #define pmd_ERROR(e) \
72 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
73 #define pud_ERROR(e) \
74 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
75 #define p4d_ERROR(e) \
76 	printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
77 #define pgd_ERROR(e) \
78 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
79 
80 /*
81  * The vmalloc and module area will always be on the topmost area of the
82  * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
83  * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
84  * modules will reside. That makes sure that inter module branches always
85  * happen without trampolines and in addition the placement within a 2GB frame
86  * is branch prediction unit friendly.
87  */
88 extern unsigned long VMALLOC_START;
89 extern unsigned long VMALLOC_END;
90 #define VMALLOC_DEFAULT_SIZE	((128UL << 30) - MODULES_LEN)
91 extern struct page *vmemmap;
92 
93 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
94 
95 extern unsigned long MODULES_VADDR;
96 extern unsigned long MODULES_END;
97 #define MODULES_VADDR	MODULES_VADDR
98 #define MODULES_END	MODULES_END
99 #define MODULES_LEN	(1UL << 31)
100 
101 static inline int is_module_addr(void *addr)
102 {
103 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
104 	if (addr < (void *)MODULES_VADDR)
105 		return 0;
106 	if (addr > (void *)MODULES_END)
107 		return 0;
108 	return 1;
109 }
110 
111 /*
112  * A 64 bit pagetable entry of S390 has following format:
113  * |			 PFRA			      |0IPC|  OS  |
114  * 0000000000111111111122222222223333333333444444444455555555556666
115  * 0123456789012345678901234567890123456789012345678901234567890123
116  *
117  * I Page-Invalid Bit:    Page is not available for address-translation
118  * P Page-Protection Bit: Store access not possible for page
119  * C Change-bit override: HW is not required to set change bit
120  *
121  * A 64 bit segmenttable entry of S390 has following format:
122  * |        P-table origin                              |      TT
123  * 0000000000111111111122222222223333333333444444444455555555556666
124  * 0123456789012345678901234567890123456789012345678901234567890123
125  *
126  * I Segment-Invalid Bit:    Segment is not available for address-translation
127  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
128  * P Page-Protection Bit: Store access not possible for page
129  * TT Type 00
130  *
131  * A 64 bit region table entry of S390 has following format:
132  * |        S-table origin                             |   TF  TTTL
133  * 0000000000111111111122222222223333333333444444444455555555556666
134  * 0123456789012345678901234567890123456789012345678901234567890123
135  *
136  * I Segment-Invalid Bit:    Segment is not available for address-translation
137  * TT Type 01
138  * TF
139  * TL Table length
140  *
141  * The 64 bit regiontable origin of S390 has following format:
142  * |      region table origon                          |       DTTL
143  * 0000000000111111111122222222223333333333444444444455555555556666
144  * 0123456789012345678901234567890123456789012345678901234567890123
145  *
146  * X Space-Switch event:
147  * G Segment-Invalid Bit:
148  * P Private-Space Bit:
149  * S Storage-Alteration:
150  * R Real space
151  * TL Table-Length:
152  *
153  * A storage key has the following format:
154  * | ACC |F|R|C|0|
155  *  0   3 4 5 6 7
156  * ACC: access key
157  * F  : fetch protection bit
158  * R  : referenced bit
159  * C  : changed bit
160  */
161 
162 /* Hardware bits in the page table entry */
163 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
164 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
165 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
166 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
167 
168 /* Software bits in the page table entry */
169 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
170 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
171 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
172 #define _PAGE_READ	0x010		/* SW pte read bit */
173 #define _PAGE_WRITE	0x020		/* SW pte write bit */
174 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
175 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
176 
177 #ifdef CONFIG_MEM_SOFT_DIRTY
178 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
179 #else
180 #define _PAGE_SOFT_DIRTY 0x000
181 #endif
182 
183 /* Set of bits not changed in pte_modify */
184 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
185 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
186 
187 /*
188  * handle_pte_fault uses pte_present and pte_none to find out the pte type
189  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
190  * distinguish present from not-present ptes. It is changed only with the page
191  * table lock held.
192  *
193  * The following table gives the different possible bit combinations for
194  * the pte hardware and software bits in the last 12 bits of a pte
195  * (. unassigned bit, x don't care, t swap type):
196  *
197  *				842100000000
198  *				000084210000
199  *				000000008421
200  *				.IR.uswrdy.p
201  * empty			.10.00000000
202  * swap				.11..ttttt.0
203  * prot-none, clean, old	.11.xx0000.1
204  * prot-none, clean, young	.11.xx0001.1
205  * prot-none, dirty, old	.11.xx0010.1
206  * prot-none, dirty, young	.11.xx0011.1
207  * read-only, clean, old	.11.xx0100.1
208  * read-only, clean, young	.01.xx0101.1
209  * read-only, dirty, old	.11.xx0110.1
210  * read-only, dirty, young	.01.xx0111.1
211  * read-write, clean, old	.11.xx1100.1
212  * read-write, clean, young	.01.xx1101.1
213  * read-write, dirty, old	.10.xx1110.1
214  * read-write, dirty, young	.00.xx1111.1
215  * HW-bits: R read-only, I invalid
216  * SW-bits: p present, y young, d dirty, r read, w write, s special,
217  *	    u unused, l large
218  *
219  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
220  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
221  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
222  */
223 
224 /* Bits in the segment/region table address-space-control-element */
225 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
226 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
227 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
228 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
229 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
230 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
231 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
232 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
233 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
234 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
235 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
236 
237 /* Bits in the region table entry */
238 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
239 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
240 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
241 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
242 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
243 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
244 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
245 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
246 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
247 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
248 
249 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
250 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
251 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
252 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
253 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
254 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
255 
256 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
257 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
258 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
259 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
260 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
261 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
262 
263 #ifdef CONFIG_MEM_SOFT_DIRTY
264 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
265 #else
266 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
267 #endif
268 
269 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
270 
271 /* Bits in the segment table entry */
272 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
273 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
275 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
276 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
277 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
278 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
279 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
280 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
281 
282 #define _SEGMENT_ENTRY		(0)
283 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
284 
285 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
286 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
287 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
288 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
289 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
290 
291 #ifdef CONFIG_MEM_SOFT_DIRTY
292 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
293 #else
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
295 #endif
296 
297 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
298 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
299 
300 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
301 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
302 
303 #define _REGION1_SHIFT	53
304 #define _REGION2_SHIFT	42
305 #define _REGION3_SHIFT	31
306 #define _SEGMENT_SHIFT	20
307 
308 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
309 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
310 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
311 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
312 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
313 
314 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
315 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
316 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
317 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
318 
319 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
320 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
321 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
322 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
323 
324 #define PMD_SHIFT	_SEGMENT_SHIFT
325 #define PUD_SHIFT	_REGION3_SHIFT
326 #define P4D_SHIFT	_REGION2_SHIFT
327 #define PGDIR_SHIFT	_REGION1_SHIFT
328 
329 #define PMD_SIZE	_SEGMENT_SIZE
330 #define PUD_SIZE	_REGION3_SIZE
331 #define P4D_SIZE	_REGION2_SIZE
332 #define PGDIR_SIZE	_REGION1_SIZE
333 
334 #define PMD_MASK	_SEGMENT_MASK
335 #define PUD_MASK	_REGION3_MASK
336 #define P4D_MASK	_REGION2_MASK
337 #define PGDIR_MASK	_REGION1_MASK
338 
339 #define PTRS_PER_PTE	_PAGE_ENTRIES
340 #define PTRS_PER_PMD	_CRST_ENTRIES
341 #define PTRS_PER_PUD	_CRST_ENTRIES
342 #define PTRS_PER_P4D	_CRST_ENTRIES
343 #define PTRS_PER_PGD	_CRST_ENTRIES
344 
345 #define MAX_PTRS_PER_P4D	PTRS_PER_P4D
346 
347 /*
348  * Segment table and region3 table entry encoding
349  * (R = read-only, I = invalid, y = young bit):
350  *				dy..R...I...wr
351  * prot-none, clean, old	00..1...1...00
352  * prot-none, clean, young	01..1...1...00
353  * prot-none, dirty, old	10..1...1...00
354  * prot-none, dirty, young	11..1...1...00
355  * read-only, clean, old	00..1...1...01
356  * read-only, clean, young	01..1...0...01
357  * read-only, dirty, old	10..1...1...01
358  * read-only, dirty, young	11..1...0...01
359  * read-write, clean, old	00..1...1...11
360  * read-write, clean, young	01..1...0...11
361  * read-write, dirty, old	10..0...1...11
362  * read-write, dirty, young	11..0...0...11
363  * The segment table origin is used to distinguish empty (origin==0) from
364  * read-write, old segment table entries (origin!=0)
365  * HW-bits: R read-only, I invalid
366  * SW-bits: y young, d dirty, r read, w write
367  */
368 
369 /* Page status table bits for virtualization */
370 #define PGSTE_ACC_BITS	0xf000000000000000UL
371 #define PGSTE_FP_BIT	0x0800000000000000UL
372 #define PGSTE_PCL_BIT	0x0080000000000000UL
373 #define PGSTE_HR_BIT	0x0040000000000000UL
374 #define PGSTE_HC_BIT	0x0020000000000000UL
375 #define PGSTE_GR_BIT	0x0004000000000000UL
376 #define PGSTE_GC_BIT	0x0002000000000000UL
377 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
378 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
379 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
380 
381 /* Guest Page State used for virtualization */
382 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
383 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
384 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
385 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
386 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
387 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
388 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
389 
390 /*
391  * A user page table pointer has the space-switch-event bit, the
392  * private-space-control bit and the storage-alteration-event-control
393  * bit set. A kernel page table pointer doesn't need them.
394  */
395 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
396 				 _ASCE_ALT_EVENT)
397 
398 /*
399  * Page protection definitions.
400  */
401 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
402 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
403 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
405 				 _PAGE_INVALID | _PAGE_PROTECT)
406 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
407 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
408 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 				 _PAGE_INVALID | _PAGE_PROTECT)
410 
411 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
412 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
413 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
415 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
416 				 _PAGE_PROTECT | _PAGE_NOEXEC)
417 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
418 				  _PAGE_YOUNG |	_PAGE_DIRTY)
419 
420 /*
421  * On s390 the page table entry has an invalid bit and a read-only bit.
422  * Read permission implies execute permission and write permission
423  * implies read permission.
424  */
425          /*xwr*/
426 #define __P000	PAGE_NONE
427 #define __P001	PAGE_RO
428 #define __P010	PAGE_RO
429 #define __P011	PAGE_RO
430 #define __P100	PAGE_RX
431 #define __P101	PAGE_RX
432 #define __P110	PAGE_RX
433 #define __P111	PAGE_RX
434 
435 #define __S000	PAGE_NONE
436 #define __S001	PAGE_RO
437 #define __S010	PAGE_RW
438 #define __S011	PAGE_RW
439 #define __S100	PAGE_RX
440 #define __S101	PAGE_RX
441 #define __S110	PAGE_RWX
442 #define __S111	PAGE_RWX
443 
444 /*
445  * Segment entry (large page) protection definitions.
446  */
447 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
448 				 _SEGMENT_ENTRY_PROTECT)
449 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
450 				 _SEGMENT_ENTRY_READ | \
451 				 _SEGMENT_ENTRY_NOEXEC)
452 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
453 				 _SEGMENT_ENTRY_READ)
454 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
455 				 _SEGMENT_ENTRY_WRITE | \
456 				 _SEGMENT_ENTRY_NOEXEC)
457 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
458 				 _SEGMENT_ENTRY_WRITE)
459 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
460 				 _SEGMENT_ENTRY_LARGE |	\
461 				 _SEGMENT_ENTRY_READ |	\
462 				 _SEGMENT_ENTRY_WRITE | \
463 				 _SEGMENT_ENTRY_YOUNG | \
464 				 _SEGMENT_ENTRY_DIRTY | \
465 				 _SEGMENT_ENTRY_NOEXEC)
466 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
467 				 _SEGMENT_ENTRY_LARGE |	\
468 				 _SEGMENT_ENTRY_READ |	\
469 				 _SEGMENT_ENTRY_YOUNG |	\
470 				 _SEGMENT_ENTRY_PROTECT | \
471 				 _SEGMENT_ENTRY_NOEXEC)
472 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
473 				 _SEGMENT_ENTRY_LARGE |	\
474 				 _SEGMENT_ENTRY_READ |	\
475 				 _SEGMENT_ENTRY_WRITE | \
476 				 _SEGMENT_ENTRY_YOUNG |	\
477 				 _SEGMENT_ENTRY_DIRTY)
478 
479 /*
480  * Region3 entry (large page) protection definitions.
481  */
482 
483 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
484 				 _REGION3_ENTRY_LARGE |	 \
485 				 _REGION3_ENTRY_READ |	 \
486 				 _REGION3_ENTRY_WRITE |	 \
487 				 _REGION3_ENTRY_YOUNG |	 \
488 				 _REGION3_ENTRY_DIRTY | \
489 				 _REGION_ENTRY_NOEXEC)
490 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
491 				   _REGION3_ENTRY_LARGE |  \
492 				   _REGION3_ENTRY_READ |   \
493 				   _REGION3_ENTRY_YOUNG |  \
494 				   _REGION_ENTRY_PROTECT | \
495 				   _REGION_ENTRY_NOEXEC)
496 
497 static inline bool mm_p4d_folded(struct mm_struct *mm)
498 {
499 	return mm->context.asce_limit <= _REGION1_SIZE;
500 }
501 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
502 
503 static inline bool mm_pud_folded(struct mm_struct *mm)
504 {
505 	return mm->context.asce_limit <= _REGION2_SIZE;
506 }
507 #define mm_pud_folded(mm) mm_pud_folded(mm)
508 
509 static inline bool mm_pmd_folded(struct mm_struct *mm)
510 {
511 	return mm->context.asce_limit <= _REGION3_SIZE;
512 }
513 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
514 
515 static inline int mm_has_pgste(struct mm_struct *mm)
516 {
517 #ifdef CONFIG_PGSTE
518 	if (unlikely(mm->context.has_pgste))
519 		return 1;
520 #endif
521 	return 0;
522 }
523 
524 static inline int mm_is_protected(struct mm_struct *mm)
525 {
526 #ifdef CONFIG_PGSTE
527 	if (unlikely(atomic_read(&mm->context.is_protected)))
528 		return 1;
529 #endif
530 	return 0;
531 }
532 
533 static inline int mm_alloc_pgste(struct mm_struct *mm)
534 {
535 #ifdef CONFIG_PGSTE
536 	if (unlikely(mm->context.alloc_pgste))
537 		return 1;
538 #endif
539 	return 0;
540 }
541 
542 /*
543  * In the case that a guest uses storage keys
544  * faults should no longer be backed by zero pages
545  */
546 #define mm_forbids_zeropage mm_has_pgste
547 static inline int mm_uses_skeys(struct mm_struct *mm)
548 {
549 #ifdef CONFIG_PGSTE
550 	if (mm->context.uses_skeys)
551 		return 1;
552 #endif
553 	return 0;
554 }
555 
556 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
557 {
558 	register unsigned long reg2 asm("2") = old;
559 	register unsigned long reg3 asm("3") = new;
560 	unsigned long address = (unsigned long)ptr | 1;
561 
562 	asm volatile(
563 		"	csp	%0,%3"
564 		: "+d" (reg2), "+m" (*ptr)
565 		: "d" (reg3), "d" (address)
566 		: "cc");
567 }
568 
569 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
570 {
571 	register unsigned long reg2 asm("2") = old;
572 	register unsigned long reg3 asm("3") = new;
573 	unsigned long address = (unsigned long)ptr | 1;
574 
575 	asm volatile(
576 		"	.insn	rre,0xb98a0000,%0,%3"
577 		: "+d" (reg2), "+m" (*ptr)
578 		: "d" (reg3), "d" (address)
579 		: "cc");
580 }
581 
582 #define CRDTE_DTT_PAGE		0x00UL
583 #define CRDTE_DTT_SEGMENT	0x10UL
584 #define CRDTE_DTT_REGION3	0x14UL
585 #define CRDTE_DTT_REGION2	0x18UL
586 #define CRDTE_DTT_REGION1	0x1cUL
587 
588 static inline void crdte(unsigned long old, unsigned long new,
589 			 unsigned long table, unsigned long dtt,
590 			 unsigned long address, unsigned long asce)
591 {
592 	register unsigned long reg2 asm("2") = old;
593 	register unsigned long reg3 asm("3") = new;
594 	register unsigned long reg4 asm("4") = table | dtt;
595 	register unsigned long reg5 asm("5") = address;
596 
597 	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
598 		     : "+d" (reg2)
599 		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
600 		     : "memory", "cc");
601 }
602 
603 /*
604  * pgd/p4d/pud/pmd/pte query functions
605  */
606 static inline int pgd_folded(pgd_t pgd)
607 {
608 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
609 }
610 
611 static inline int pgd_present(pgd_t pgd)
612 {
613 	if (pgd_folded(pgd))
614 		return 1;
615 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
616 }
617 
618 static inline int pgd_none(pgd_t pgd)
619 {
620 	if (pgd_folded(pgd))
621 		return 0;
622 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
623 }
624 
625 static inline int pgd_bad(pgd_t pgd)
626 {
627 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
628 		return 0;
629 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
630 }
631 
632 static inline unsigned long pgd_pfn(pgd_t pgd)
633 {
634 	unsigned long origin_mask;
635 
636 	origin_mask = _REGION_ENTRY_ORIGIN;
637 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
638 }
639 
640 static inline int p4d_folded(p4d_t p4d)
641 {
642 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
643 }
644 
645 static inline int p4d_present(p4d_t p4d)
646 {
647 	if (p4d_folded(p4d))
648 		return 1;
649 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
650 }
651 
652 static inline int p4d_none(p4d_t p4d)
653 {
654 	if (p4d_folded(p4d))
655 		return 0;
656 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
657 }
658 
659 static inline unsigned long p4d_pfn(p4d_t p4d)
660 {
661 	unsigned long origin_mask;
662 
663 	origin_mask = _REGION_ENTRY_ORIGIN;
664 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
665 }
666 
667 static inline int pud_folded(pud_t pud)
668 {
669 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
670 }
671 
672 static inline int pud_present(pud_t pud)
673 {
674 	if (pud_folded(pud))
675 		return 1;
676 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
677 }
678 
679 static inline int pud_none(pud_t pud)
680 {
681 	if (pud_folded(pud))
682 		return 0;
683 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
684 }
685 
686 #define pud_leaf	pud_large
687 static inline int pud_large(pud_t pud)
688 {
689 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
690 		return 0;
691 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
692 }
693 
694 static inline unsigned long pud_pfn(pud_t pud)
695 {
696 	unsigned long origin_mask;
697 
698 	origin_mask = _REGION_ENTRY_ORIGIN;
699 	if (pud_large(pud))
700 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
701 	return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
702 }
703 
704 #define pmd_leaf	pmd_large
705 static inline int pmd_large(pmd_t pmd)
706 {
707 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
708 }
709 
710 static inline int pmd_bad(pmd_t pmd)
711 {
712 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
713 		return 1;
714 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
715 }
716 
717 static inline int pud_bad(pud_t pud)
718 {
719 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
720 
721 	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
722 		return 1;
723 	if (type < _REGION_ENTRY_TYPE_R3)
724 		return 0;
725 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
726 }
727 
728 static inline int p4d_bad(p4d_t p4d)
729 {
730 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
731 
732 	if (type > _REGION_ENTRY_TYPE_R2)
733 		return 1;
734 	if (type < _REGION_ENTRY_TYPE_R2)
735 		return 0;
736 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
737 }
738 
739 static inline int pmd_present(pmd_t pmd)
740 {
741 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
742 }
743 
744 static inline int pmd_none(pmd_t pmd)
745 {
746 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
747 }
748 
749 static inline unsigned long pmd_pfn(pmd_t pmd)
750 {
751 	unsigned long origin_mask;
752 
753 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
754 	if (pmd_large(pmd))
755 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
756 	return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
757 }
758 
759 #define pmd_write pmd_write
760 static inline int pmd_write(pmd_t pmd)
761 {
762 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
763 }
764 
765 #define pud_write pud_write
766 static inline int pud_write(pud_t pud)
767 {
768 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
769 }
770 
771 static inline int pmd_dirty(pmd_t pmd)
772 {
773 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
774 }
775 
776 static inline int pmd_young(pmd_t pmd)
777 {
778 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
779 }
780 
781 static inline int pte_present(pte_t pte)
782 {
783 	/* Bit pattern: (pte & 0x001) == 0x001 */
784 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
785 }
786 
787 static inline int pte_none(pte_t pte)
788 {
789 	/* Bit pattern: pte == 0x400 */
790 	return pte_val(pte) == _PAGE_INVALID;
791 }
792 
793 static inline int pte_swap(pte_t pte)
794 {
795 	/* Bit pattern: (pte & 0x201) == 0x200 */
796 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
797 		== _PAGE_PROTECT;
798 }
799 
800 static inline int pte_special(pte_t pte)
801 {
802 	return (pte_val(pte) & _PAGE_SPECIAL);
803 }
804 
805 #define __HAVE_ARCH_PTE_SAME
806 static inline int pte_same(pte_t a, pte_t b)
807 {
808 	return pte_val(a) == pte_val(b);
809 }
810 
811 #ifdef CONFIG_NUMA_BALANCING
812 static inline int pte_protnone(pte_t pte)
813 {
814 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
815 }
816 
817 static inline int pmd_protnone(pmd_t pmd)
818 {
819 	/* pmd_large(pmd) implies pmd_present(pmd) */
820 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
821 }
822 #endif
823 
824 static inline int pte_soft_dirty(pte_t pte)
825 {
826 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
827 }
828 #define pte_swp_soft_dirty pte_soft_dirty
829 
830 static inline pte_t pte_mksoft_dirty(pte_t pte)
831 {
832 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
833 	return pte;
834 }
835 #define pte_swp_mksoft_dirty pte_mksoft_dirty
836 
837 static inline pte_t pte_clear_soft_dirty(pte_t pte)
838 {
839 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
840 	return pte;
841 }
842 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
843 
844 static inline int pmd_soft_dirty(pmd_t pmd)
845 {
846 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
847 }
848 
849 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
850 {
851 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
852 	return pmd;
853 }
854 
855 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
856 {
857 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
858 	return pmd;
859 }
860 
861 /*
862  * query functions pte_write/pte_dirty/pte_young only work if
863  * pte_present() is true. Undefined behaviour if not..
864  */
865 static inline int pte_write(pte_t pte)
866 {
867 	return (pte_val(pte) & _PAGE_WRITE) != 0;
868 }
869 
870 static inline int pte_dirty(pte_t pte)
871 {
872 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
873 }
874 
875 static inline int pte_young(pte_t pte)
876 {
877 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
878 }
879 
880 #define __HAVE_ARCH_PTE_UNUSED
881 static inline int pte_unused(pte_t pte)
882 {
883 	return pte_val(pte) & _PAGE_UNUSED;
884 }
885 
886 /*
887  * pgd/pmd/pte modification functions
888  */
889 
890 static inline void pgd_clear(pgd_t *pgd)
891 {
892 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
893 		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
894 }
895 
896 static inline void p4d_clear(p4d_t *p4d)
897 {
898 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
899 		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
900 }
901 
902 static inline void pud_clear(pud_t *pud)
903 {
904 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
905 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
906 }
907 
908 static inline void pmd_clear(pmd_t *pmdp)
909 {
910 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
911 }
912 
913 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
914 {
915 	pte_val(*ptep) = _PAGE_INVALID;
916 }
917 
918 /*
919  * The following pte modification functions only work if
920  * pte_present() is true. Undefined behaviour if not..
921  */
922 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
923 {
924 	pte_val(pte) &= _PAGE_CHG_MASK;
925 	pte_val(pte) |= pgprot_val(newprot);
926 	/*
927 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
928 	 * has the invalid bit set, clear it again for readable, young pages
929 	 */
930 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
931 		pte_val(pte) &= ~_PAGE_INVALID;
932 	/*
933 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
934 	 * protection bit set, clear it again for writable, dirty pages
935 	 */
936 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
937 		pte_val(pte) &= ~_PAGE_PROTECT;
938 	return pte;
939 }
940 
941 static inline pte_t pte_wrprotect(pte_t pte)
942 {
943 	pte_val(pte) &= ~_PAGE_WRITE;
944 	pte_val(pte) |= _PAGE_PROTECT;
945 	return pte;
946 }
947 
948 static inline pte_t pte_mkwrite(pte_t pte)
949 {
950 	pte_val(pte) |= _PAGE_WRITE;
951 	if (pte_val(pte) & _PAGE_DIRTY)
952 		pte_val(pte) &= ~_PAGE_PROTECT;
953 	return pte;
954 }
955 
956 static inline pte_t pte_mkclean(pte_t pte)
957 {
958 	pte_val(pte) &= ~_PAGE_DIRTY;
959 	pte_val(pte) |= _PAGE_PROTECT;
960 	return pte;
961 }
962 
963 static inline pte_t pte_mkdirty(pte_t pte)
964 {
965 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
966 	if (pte_val(pte) & _PAGE_WRITE)
967 		pte_val(pte) &= ~_PAGE_PROTECT;
968 	return pte;
969 }
970 
971 static inline pte_t pte_mkold(pte_t pte)
972 {
973 	pte_val(pte) &= ~_PAGE_YOUNG;
974 	pte_val(pte) |= _PAGE_INVALID;
975 	return pte;
976 }
977 
978 static inline pte_t pte_mkyoung(pte_t pte)
979 {
980 	pte_val(pte) |= _PAGE_YOUNG;
981 	if (pte_val(pte) & _PAGE_READ)
982 		pte_val(pte) &= ~_PAGE_INVALID;
983 	return pte;
984 }
985 
986 static inline pte_t pte_mkspecial(pte_t pte)
987 {
988 	pte_val(pte) |= _PAGE_SPECIAL;
989 	return pte;
990 }
991 
992 #ifdef CONFIG_HUGETLB_PAGE
993 static inline pte_t pte_mkhuge(pte_t pte)
994 {
995 	pte_val(pte) |= _PAGE_LARGE;
996 	return pte;
997 }
998 #endif
999 
1000 #define IPTE_GLOBAL	0
1001 #define	IPTE_LOCAL	1
1002 
1003 #define IPTE_NODAT	0x400
1004 #define IPTE_GUEST_ASCE	0x800
1005 
1006 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1007 					unsigned long opt, unsigned long asce,
1008 					int local)
1009 {
1010 	unsigned long pto = (unsigned long) ptep;
1011 
1012 	if (__builtin_constant_p(opt) && opt == 0) {
1013 		/* Invalidation + TLB flush for the pte */
1014 		asm volatile(
1015 			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1016 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1017 			  [m4] "i" (local));
1018 		return;
1019 	}
1020 
1021 	/* Invalidate ptes with options + TLB flush of the ptes */
1022 	opt = opt | (asce & _ASCE_ORIGIN);
1023 	asm volatile(
1024 		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1025 		: [r2] "+a" (address), [r3] "+a" (opt)
1026 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1027 }
1028 
1029 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1030 					      pte_t *ptep, int local)
1031 {
1032 	unsigned long pto = (unsigned long) ptep;
1033 
1034 	/* Invalidate a range of ptes + TLB flush of the ptes */
1035 	do {
1036 		asm volatile(
1037 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1038 			: [r2] "+a" (address), [r3] "+a" (nr)
1039 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1040 	} while (nr != 255);
1041 }
1042 
1043 /*
1044  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1045  * both clear the TLB for the unmapped pte. The reason is that
1046  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1047  * to modify an active pte. The sequence is
1048  *   1) ptep_get_and_clear
1049  *   2) set_pte_at
1050  *   3) flush_tlb_range
1051  * On s390 the tlb needs to get flushed with the modification of the pte
1052  * if the pte is active. The only way how this can be implemented is to
1053  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1054  * is a nop.
1055  */
1056 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1057 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1058 
1059 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1060 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1061 					    unsigned long addr, pte_t *ptep)
1062 {
1063 	pte_t pte = *ptep;
1064 
1065 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1066 	return pte_young(pte);
1067 }
1068 
1069 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1070 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1071 					 unsigned long address, pte_t *ptep)
1072 {
1073 	return ptep_test_and_clear_young(vma, address, ptep);
1074 }
1075 
1076 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1077 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1078 				       unsigned long addr, pte_t *ptep)
1079 {
1080 	pte_t res;
1081 
1082 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1083 	if (mm_is_protected(mm) && pte_present(res))
1084 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1085 	return res;
1086 }
1087 
1088 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1089 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1090 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1091 			     pte_t *, pte_t, pte_t);
1092 
1093 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1094 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1095 				     unsigned long addr, pte_t *ptep)
1096 {
1097 	pte_t res;
1098 
1099 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1100 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1101 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1102 	return res;
1103 }
1104 
1105 /*
1106  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1107  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1108  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1109  * cannot be accessed while the batched unmap is running. In this case
1110  * full==1 and a simple pte_clear is enough. See tlb.h.
1111  */
1112 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1113 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1114 					    unsigned long addr,
1115 					    pte_t *ptep, int full)
1116 {
1117 	pte_t res;
1118 
1119 	if (full) {
1120 		res = *ptep;
1121 		*ptep = __pte(_PAGE_INVALID);
1122 	} else {
1123 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1124 	}
1125 	if (mm_is_protected(mm) && pte_present(res))
1126 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1127 	return res;
1128 }
1129 
1130 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1131 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1132 				      unsigned long addr, pte_t *ptep)
1133 {
1134 	pte_t pte = *ptep;
1135 
1136 	if (pte_write(pte))
1137 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1138 }
1139 
1140 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1141 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1142 					unsigned long addr, pte_t *ptep,
1143 					pte_t entry, int dirty)
1144 {
1145 	if (pte_same(*ptep, entry))
1146 		return 0;
1147 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1148 	return 1;
1149 }
1150 
1151 /*
1152  * Additional functions to handle KVM guest page tables
1153  */
1154 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1155 		     pte_t *ptep, pte_t entry);
1156 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1157 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1158 		 pte_t *ptep, unsigned long bits);
1159 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1160 		    pte_t *ptep, int prot, unsigned long bit);
1161 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1162 		     pte_t *ptep , int reset);
1163 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1164 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1165 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1166 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1167 
1168 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1169 			    pte_t *ptep);
1170 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1171 			  unsigned char key, bool nq);
1172 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1173 			       unsigned char key, unsigned char *oldkey,
1174 			       bool nq, bool mr, bool mc);
1175 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1176 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1177 			  unsigned char *key);
1178 
1179 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1180 				unsigned long bits, unsigned long value);
1181 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1182 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1183 			unsigned long *oldpte, unsigned long *oldpgste);
1184 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1185 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1186 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1187 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1188 
1189 /*
1190  * Certain architectures need to do special things when PTEs
1191  * within a page table are directly modified.  Thus, the following
1192  * hook is made available.
1193  */
1194 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1195 			      pte_t *ptep, pte_t entry)
1196 {
1197 	if (pte_present(entry))
1198 		pte_val(entry) &= ~_PAGE_UNUSED;
1199 	if (mm_has_pgste(mm))
1200 		ptep_set_pte_at(mm, addr, ptep, entry);
1201 	else
1202 		*ptep = entry;
1203 }
1204 
1205 /*
1206  * Conversion functions: convert a page and protection to a page entry,
1207  * and a page entry and page directory to the page they refer to.
1208  */
1209 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1210 {
1211 	pte_t __pte;
1212 	pte_val(__pte) = physpage + pgprot_val(pgprot);
1213 	if (!MACHINE_HAS_NX)
1214 		pte_val(__pte) &= ~_PAGE_NOEXEC;
1215 	return pte_mkyoung(__pte);
1216 }
1217 
1218 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1219 {
1220 	unsigned long physpage = page_to_phys(page);
1221 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1222 
1223 	if (pte_write(__pte) && PageDirty(page))
1224 		__pte = pte_mkdirty(__pte);
1225 	return __pte;
1226 }
1227 
1228 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1229 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1230 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1231 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1232 
1233 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1234 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1235 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1236 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1237 
1238 /*
1239  * The pgd_offset function *always* adds the index for the top-level
1240  * region/segment table. This is done to get a sequence like the
1241  * following to work:
1242  *	pgdp = pgd_offset(current->mm, addr);
1243  *	pgd = READ_ONCE(*pgdp);
1244  *	p4dp = p4d_offset(&pgd, addr);
1245  *	...
1246  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1247  * only add an index if they dereferenced the pointer.
1248  */
1249 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1250 {
1251 	unsigned long rste;
1252 	unsigned int shift;
1253 
1254 	/* Get the first entry of the top level table */
1255 	rste = pgd_val(*pgd);
1256 	/* Pick up the shift from the table type of the first entry */
1257 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1258 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1259 }
1260 
1261 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1262 
1263 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1264 {
1265 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1266 		return (p4d_t *) pgd_deref(*pgd) + p4d_index(address);
1267 	return (p4d_t *) pgd;
1268 }
1269 
1270 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1271 {
1272 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1273 		return (pud_t *) p4d_deref(*p4d) + pud_index(address);
1274 	return (pud_t *) p4d;
1275 }
1276 #define pud_offset pud_offset
1277 
1278 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1279 {
1280 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1281 		return (pmd_t *) pud_deref(*pud) + pmd_index(address);
1282 	return (pmd_t *) pud;
1283 }
1284 #define pmd_offset pmd_offset
1285 
1286 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1287 {
1288 	return (unsigned long) pmd_deref(pmd);
1289 }
1290 
1291 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1292 {
1293 	return end <= current->mm->context.asce_limit;
1294 }
1295 #define gup_fast_permitted gup_fast_permitted
1296 
1297 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1298 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1299 #define pte_page(x) pfn_to_page(pte_pfn(x))
1300 
1301 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1302 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1303 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1304 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1305 
1306 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1307 {
1308 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1309 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1310 	return pmd;
1311 }
1312 
1313 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1314 {
1315 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1316 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1317 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1318 	return pmd;
1319 }
1320 
1321 static inline pmd_t pmd_mkclean(pmd_t pmd)
1322 {
1323 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1324 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1325 	return pmd;
1326 }
1327 
1328 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1329 {
1330 	pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1331 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1332 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1333 	return pmd;
1334 }
1335 
1336 static inline pud_t pud_wrprotect(pud_t pud)
1337 {
1338 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1339 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1340 	return pud;
1341 }
1342 
1343 static inline pud_t pud_mkwrite(pud_t pud)
1344 {
1345 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1346 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1347 		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1348 	return pud;
1349 }
1350 
1351 static inline pud_t pud_mkclean(pud_t pud)
1352 {
1353 	pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1354 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1355 	return pud;
1356 }
1357 
1358 static inline pud_t pud_mkdirty(pud_t pud)
1359 {
1360 	pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1361 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1362 		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1363 	return pud;
1364 }
1365 
1366 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1367 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1368 {
1369 	/*
1370 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1371 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1372 	 */
1373 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1374 		return pgprot_val(SEGMENT_NONE);
1375 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1376 		return pgprot_val(SEGMENT_RO);
1377 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1378 		return pgprot_val(SEGMENT_RX);
1379 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1380 		return pgprot_val(SEGMENT_RW);
1381 	return pgprot_val(SEGMENT_RWX);
1382 }
1383 
1384 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1385 {
1386 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1387 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1388 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1389 	return pmd;
1390 }
1391 
1392 static inline pmd_t pmd_mkold(pmd_t pmd)
1393 {
1394 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1395 	pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1396 	return pmd;
1397 }
1398 
1399 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1400 {
1401 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1402 		_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1403 		_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1404 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1405 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1406 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1407 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1408 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1409 	return pmd;
1410 }
1411 
1412 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1413 {
1414 	pmd_t __pmd;
1415 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1416 	return __pmd;
1417 }
1418 
1419 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1420 
1421 static inline void __pmdp_csp(pmd_t *pmdp)
1422 {
1423 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1424 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1425 }
1426 
1427 #define IDTE_GLOBAL	0
1428 #define IDTE_LOCAL	1
1429 
1430 #define IDTE_PTOA	0x0800
1431 #define IDTE_NODAT	0x1000
1432 #define IDTE_GUEST_ASCE	0x2000
1433 
1434 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1435 					unsigned long opt, unsigned long asce,
1436 					int local)
1437 {
1438 	unsigned long sto;
1439 
1440 	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1441 	if (__builtin_constant_p(opt) && opt == 0) {
1442 		/* flush without guest asce */
1443 		asm volatile(
1444 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1445 			: "+m" (*pmdp)
1446 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1447 			  [m4] "i" (local)
1448 			: "cc" );
1449 	} else {
1450 		/* flush with guest asce */
1451 		asm volatile(
1452 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1453 			: "+m" (*pmdp)
1454 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1455 			  [r3] "a" (asce), [m4] "i" (local)
1456 			: "cc" );
1457 	}
1458 }
1459 
1460 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1461 					unsigned long opt, unsigned long asce,
1462 					int local)
1463 {
1464 	unsigned long r3o;
1465 
1466 	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1467 	r3o |= _ASCE_TYPE_REGION3;
1468 	if (__builtin_constant_p(opt) && opt == 0) {
1469 		/* flush without guest asce */
1470 		asm volatile(
1471 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1472 			: "+m" (*pudp)
1473 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1474 			  [m4] "i" (local)
1475 			: "cc");
1476 	} else {
1477 		/* flush with guest asce */
1478 		asm volatile(
1479 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1480 			: "+m" (*pudp)
1481 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1482 			  [r3] "a" (asce), [m4] "i" (local)
1483 			: "cc" );
1484 	}
1485 }
1486 
1487 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1488 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1489 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1490 
1491 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1492 
1493 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1494 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1495 				pgtable_t pgtable);
1496 
1497 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1498 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1499 
1500 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1501 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1502 					unsigned long addr, pmd_t *pmdp,
1503 					pmd_t entry, int dirty)
1504 {
1505 	VM_BUG_ON(addr & ~HPAGE_MASK);
1506 
1507 	entry = pmd_mkyoung(entry);
1508 	if (dirty)
1509 		entry = pmd_mkdirty(entry);
1510 	if (pmd_val(*pmdp) == pmd_val(entry))
1511 		return 0;
1512 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1513 	return 1;
1514 }
1515 
1516 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1517 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1518 					    unsigned long addr, pmd_t *pmdp)
1519 {
1520 	pmd_t pmd = *pmdp;
1521 
1522 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1523 	return pmd_young(pmd);
1524 }
1525 
1526 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1527 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1528 					 unsigned long addr, pmd_t *pmdp)
1529 {
1530 	VM_BUG_ON(addr & ~HPAGE_MASK);
1531 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1532 }
1533 
1534 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1535 			      pmd_t *pmdp, pmd_t entry)
1536 {
1537 	if (!MACHINE_HAS_NX)
1538 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1539 	*pmdp = entry;
1540 }
1541 
1542 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1543 {
1544 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1545 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1546 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1547 	return pmd;
1548 }
1549 
1550 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1551 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1552 					    unsigned long addr, pmd_t *pmdp)
1553 {
1554 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1555 }
1556 
1557 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1558 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1559 						 unsigned long addr,
1560 						 pmd_t *pmdp, int full)
1561 {
1562 	if (full) {
1563 		pmd_t pmd = *pmdp;
1564 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1565 		return pmd;
1566 	}
1567 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1568 }
1569 
1570 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1571 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1572 					  unsigned long addr, pmd_t *pmdp)
1573 {
1574 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1575 }
1576 
1577 #define __HAVE_ARCH_PMDP_INVALIDATE
1578 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1579 				   unsigned long addr, pmd_t *pmdp)
1580 {
1581 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1582 
1583 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1584 }
1585 
1586 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1587 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1588 				      unsigned long addr, pmd_t *pmdp)
1589 {
1590 	pmd_t pmd = *pmdp;
1591 
1592 	if (pmd_write(pmd))
1593 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1594 }
1595 
1596 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1597 					unsigned long address,
1598 					pmd_t *pmdp)
1599 {
1600 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1601 }
1602 #define pmdp_collapse_flush pmdp_collapse_flush
1603 
1604 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1605 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1606 
1607 static inline int pmd_trans_huge(pmd_t pmd)
1608 {
1609 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1610 }
1611 
1612 #define has_transparent_hugepage has_transparent_hugepage
1613 static inline int has_transparent_hugepage(void)
1614 {
1615 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1616 }
1617 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1618 
1619 /*
1620  * 64 bit swap entry format:
1621  * A page-table entry has some bits we have to treat in a special way.
1622  * Bits 52 and bit 55 have to be zero, otherwise a specification
1623  * exception will occur instead of a page translation exception. The
1624  * specification exception has the bad habit not to store necessary
1625  * information in the lowcore.
1626  * Bits 54 and 63 are used to indicate the page type.
1627  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1628  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1629  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1630  * for the offset.
1631  * |			  offset			|01100|type |00|
1632  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1633  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1634  */
1635 
1636 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1637 #define __SWP_OFFSET_SHIFT	12
1638 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1639 #define __SWP_TYPE_SHIFT	2
1640 
1641 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1642 {
1643 	pte_t pte;
1644 
1645 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1646 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1647 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1648 	return pte;
1649 }
1650 
1651 static inline unsigned long __swp_type(swp_entry_t entry)
1652 {
1653 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1654 }
1655 
1656 static inline unsigned long __swp_offset(swp_entry_t entry)
1657 {
1658 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1659 }
1660 
1661 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1662 {
1663 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1664 }
1665 
1666 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1667 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1668 
1669 #define kern_addr_valid(addr)   (1)
1670 
1671 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1672 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1673 extern int s390_enable_sie(void);
1674 extern int s390_enable_skey(void);
1675 extern void s390_reset_cmma(struct mm_struct *mm);
1676 
1677 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1678 #define HAVE_ARCH_UNMAPPED_AREA
1679 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1680 
1681 #endif /* _S390_PAGE_H */
1682