xref: /openbmc/linux/arch/s390/include/asm/pgtable.h (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  S390 version
4  *    Copyright IBM Corp. 1999, 2000
5  *    Author(s): Hartmut Penner (hp@de.ibm.com)
6  *               Ulrich Weigand (weigand@de.ibm.com)
7  *               Martin Schwidefsky (schwidefsky@de.ibm.com)
8  *
9  *  Derived from "include/asm-i386/pgtable.h"
10  */
11 
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14 
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 #include <asm/uv.h>
23 
24 extern pgd_t swapper_pg_dir[];
25 extern void paging_init(void);
26 extern unsigned long s390_invalid_asce;
27 
28 enum {
29 	PG_DIRECT_MAP_4K = 0,
30 	PG_DIRECT_MAP_1M,
31 	PG_DIRECT_MAP_2G,
32 	PG_DIRECT_MAP_MAX
33 };
34 
35 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
36 
37 static inline void update_page_count(int level, long count)
38 {
39 	if (IS_ENABLED(CONFIG_PROC_FS))
40 		atomic_long_add(count, &direct_pages_count[level]);
41 }
42 
43 struct seq_file;
44 void arch_report_meminfo(struct seq_file *m);
45 
46 /*
47  * The S390 doesn't have any external MMU info: the kernel page
48  * tables contain all the necessary information.
49  */
50 #define update_mmu_cache(vma, address, ptep)     do { } while (0)
51 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
52 
53 /*
54  * ZERO_PAGE is a global shared page that is always zero; used
55  * for zero-mapped memory areas etc..
56  */
57 
58 extern unsigned long empty_zero_page;
59 extern unsigned long zero_page_mask;
60 
61 #define ZERO_PAGE(vaddr) \
62 	(virt_to_page((void *)(empty_zero_page + \
63 	 (((unsigned long)(vaddr)) &zero_page_mask))))
64 #define __HAVE_COLOR_ZERO_PAGE
65 
66 /* TODO: s390 cannot support io_remap_pfn_range... */
67 
68 #define FIRST_USER_ADDRESS  0UL
69 
70 #define pte_ERROR(e) \
71 	printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
72 #define pmd_ERROR(e) \
73 	printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
74 #define pud_ERROR(e) \
75 	printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
76 #define p4d_ERROR(e) \
77 	printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
78 #define pgd_ERROR(e) \
79 	printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
80 
81 /*
82  * The vmalloc and module area will always be on the topmost area of the
83  * kernel mapping. 512GB are reserved for vmalloc by default.
84  * At the top of the vmalloc area a 2GB area is reserved where modules
85  * will reside. That makes sure that inter module branches always
86  * happen without trampolines and in addition the placement within a
87  * 2GB frame is branch prediction unit friendly.
88  */
89 extern unsigned long VMALLOC_START;
90 extern unsigned long VMALLOC_END;
91 #define VMALLOC_DEFAULT_SIZE	((512UL << 30) - MODULES_LEN)
92 extern struct page *vmemmap;
93 extern unsigned long vmemmap_size;
94 
95 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
96 
97 extern unsigned long MODULES_VADDR;
98 extern unsigned long MODULES_END;
99 #define MODULES_VADDR	MODULES_VADDR
100 #define MODULES_END	MODULES_END
101 #define MODULES_LEN	(1UL << 31)
102 
103 static inline int is_module_addr(void *addr)
104 {
105 	BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
106 	if (addr < (void *)MODULES_VADDR)
107 		return 0;
108 	if (addr > (void *)MODULES_END)
109 		return 0;
110 	return 1;
111 }
112 
113 /*
114  * A 64 bit pagetable entry of S390 has following format:
115  * |			 PFRA			      |0IPC|  OS  |
116  * 0000000000111111111122222222223333333333444444444455555555556666
117  * 0123456789012345678901234567890123456789012345678901234567890123
118  *
119  * I Page-Invalid Bit:    Page is not available for address-translation
120  * P Page-Protection Bit: Store access not possible for page
121  * C Change-bit override: HW is not required to set change bit
122  *
123  * A 64 bit segmenttable entry of S390 has following format:
124  * |        P-table origin                              |      TT
125  * 0000000000111111111122222222223333333333444444444455555555556666
126  * 0123456789012345678901234567890123456789012345678901234567890123
127  *
128  * I Segment-Invalid Bit:    Segment is not available for address-translation
129  * C Common-Segment Bit:     Segment is not private (PoP 3-30)
130  * P Page-Protection Bit: Store access not possible for page
131  * TT Type 00
132  *
133  * A 64 bit region table entry of S390 has following format:
134  * |        S-table origin                             |   TF  TTTL
135  * 0000000000111111111122222222223333333333444444444455555555556666
136  * 0123456789012345678901234567890123456789012345678901234567890123
137  *
138  * I Segment-Invalid Bit:    Segment is not available for address-translation
139  * TT Type 01
140  * TF
141  * TL Table length
142  *
143  * The 64 bit regiontable origin of S390 has following format:
144  * |      region table origon                          |       DTTL
145  * 0000000000111111111122222222223333333333444444444455555555556666
146  * 0123456789012345678901234567890123456789012345678901234567890123
147  *
148  * X Space-Switch event:
149  * G Segment-Invalid Bit:
150  * P Private-Space Bit:
151  * S Storage-Alteration:
152  * R Real space
153  * TL Table-Length:
154  *
155  * A storage key has the following format:
156  * | ACC |F|R|C|0|
157  *  0   3 4 5 6 7
158  * ACC: access key
159  * F  : fetch protection bit
160  * R  : referenced bit
161  * C  : changed bit
162  */
163 
164 /* Hardware bits in the page table entry */
165 #define _PAGE_NOEXEC	0x100		/* HW no-execute bit  */
166 #define _PAGE_PROTECT	0x200		/* HW read-only bit  */
167 #define _PAGE_INVALID	0x400		/* HW invalid bit    */
168 #define _PAGE_LARGE	0x800		/* Bit to mark a large pte */
169 
170 /* Software bits in the page table entry */
171 #define _PAGE_PRESENT	0x001		/* SW pte present bit */
172 #define _PAGE_YOUNG	0x004		/* SW pte young bit */
173 #define _PAGE_DIRTY	0x008		/* SW pte dirty bit */
174 #define _PAGE_READ	0x010		/* SW pte read bit */
175 #define _PAGE_WRITE	0x020		/* SW pte write bit */
176 #define _PAGE_SPECIAL	0x040		/* SW associated with special page */
177 #define _PAGE_UNUSED	0x080		/* SW bit for pgste usage state */
178 
179 #ifdef CONFIG_MEM_SOFT_DIRTY
180 #define _PAGE_SOFT_DIRTY 0x002		/* SW pte soft dirty bit */
181 #else
182 #define _PAGE_SOFT_DIRTY 0x000
183 #endif
184 
185 /* Set of bits not changed in pte_modify */
186 #define _PAGE_CHG_MASK		(PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
187 				 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
188 
189 /*
190  * handle_pte_fault uses pte_present and pte_none to find out the pte type
191  * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
192  * distinguish present from not-present ptes. It is changed only with the page
193  * table lock held.
194  *
195  * The following table gives the different possible bit combinations for
196  * the pte hardware and software bits in the last 12 bits of a pte
197  * (. unassigned bit, x don't care, t swap type):
198  *
199  *				842100000000
200  *				000084210000
201  *				000000008421
202  *				.IR.uswrdy.p
203  * empty			.10.00000000
204  * swap				.11..ttttt.0
205  * prot-none, clean, old	.11.xx0000.1
206  * prot-none, clean, young	.11.xx0001.1
207  * prot-none, dirty, old	.11.xx0010.1
208  * prot-none, dirty, young	.11.xx0011.1
209  * read-only, clean, old	.11.xx0100.1
210  * read-only, clean, young	.01.xx0101.1
211  * read-only, dirty, old	.11.xx0110.1
212  * read-only, dirty, young	.01.xx0111.1
213  * read-write, clean, old	.11.xx1100.1
214  * read-write, clean, young	.01.xx1101.1
215  * read-write, dirty, old	.10.xx1110.1
216  * read-write, dirty, young	.00.xx1111.1
217  * HW-bits: R read-only, I invalid
218  * SW-bits: p present, y young, d dirty, r read, w write, s special,
219  *	    u unused, l large
220  *
221  * pte_none    is true for the bit pattern .10.00000000, pte == 0x400
222  * pte_swap    is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
223  * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
224  */
225 
226 /* Bits in the segment/region table address-space-control-element */
227 #define _ASCE_ORIGIN		~0xfffUL/* region/segment table origin	    */
228 #define _ASCE_PRIVATE_SPACE	0x100	/* private space control	    */
229 #define _ASCE_ALT_EVENT		0x80	/* storage alteration event control */
230 #define _ASCE_SPACE_SWITCH	0x40	/* space switch event		    */
231 #define _ASCE_REAL_SPACE	0x20	/* real space control		    */
232 #define _ASCE_TYPE_MASK		0x0c	/* asce table type mask		    */
233 #define _ASCE_TYPE_REGION1	0x0c	/* region first table type	    */
234 #define _ASCE_TYPE_REGION2	0x08	/* region second table type	    */
235 #define _ASCE_TYPE_REGION3	0x04	/* region third table type	    */
236 #define _ASCE_TYPE_SEGMENT	0x00	/* segment table type		    */
237 #define _ASCE_TABLE_LENGTH	0x03	/* region table length		    */
238 
239 /* Bits in the region table entry */
240 #define _REGION_ENTRY_ORIGIN	~0xfffUL/* region/segment table origin	    */
241 #define _REGION_ENTRY_PROTECT	0x200	/* region protection bit	    */
242 #define _REGION_ENTRY_NOEXEC	0x100	/* region no-execute bit	    */
243 #define _REGION_ENTRY_OFFSET	0xc0	/* region table offset		    */
244 #define _REGION_ENTRY_INVALID	0x20	/* invalid region table entry	    */
245 #define _REGION_ENTRY_TYPE_MASK	0x0c	/* region table type mask	    */
246 #define _REGION_ENTRY_TYPE_R1	0x0c	/* region first table type	    */
247 #define _REGION_ENTRY_TYPE_R2	0x08	/* region second table type	    */
248 #define _REGION_ENTRY_TYPE_R3	0x04	/* region third table type	    */
249 #define _REGION_ENTRY_LENGTH	0x03	/* region third length		    */
250 
251 #define _REGION1_ENTRY		(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
252 #define _REGION1_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
253 #define _REGION2_ENTRY		(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
254 #define _REGION2_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
255 #define _REGION3_ENTRY		(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
256 #define _REGION3_ENTRY_EMPTY	(_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
257 
258 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address	     */
259 #define _REGION3_ENTRY_DIRTY	0x2000	/* SW region dirty bit */
260 #define _REGION3_ENTRY_YOUNG	0x1000	/* SW region young bit */
261 #define _REGION3_ENTRY_LARGE	0x0400	/* RTTE-format control, large page  */
262 #define _REGION3_ENTRY_READ	0x0002	/* SW region read bit */
263 #define _REGION3_ENTRY_WRITE	0x0001	/* SW region write bit */
264 
265 #ifdef CONFIG_MEM_SOFT_DIRTY
266 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
267 #else
268 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
269 #endif
270 
271 #define _REGION_ENTRY_BITS	 0xfffffffffffff22fUL
272 
273 /* Bits in the segment table entry */
274 #define _SEGMENT_ENTRY_BITS			0xfffffffffffffe33UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS		0xfffffffffffffe30UL
276 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE	0xfffffffffff00730UL
277 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address	    */
278 #define _SEGMENT_ENTRY_ORIGIN	~0x7ffUL/* page table origin		    */
279 #define _SEGMENT_ENTRY_PROTECT	0x200	/* segment protection bit	    */
280 #define _SEGMENT_ENTRY_NOEXEC	0x100	/* segment no-execute bit	    */
281 #define _SEGMENT_ENTRY_INVALID	0x20	/* invalid segment table entry	    */
282 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c	/* segment table type mask	    */
283 
284 #define _SEGMENT_ENTRY		(0)
285 #define _SEGMENT_ENTRY_EMPTY	(_SEGMENT_ENTRY_INVALID)
286 
287 #define _SEGMENT_ENTRY_DIRTY	0x2000	/* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG	0x1000	/* SW segment young bit */
289 #define _SEGMENT_ENTRY_LARGE	0x0400	/* STE-format control, large page */
290 #define _SEGMENT_ENTRY_WRITE	0x0002	/* SW segment write bit */
291 #define _SEGMENT_ENTRY_READ	0x0001	/* SW segment read bit */
292 
293 #ifdef CONFIG_MEM_SOFT_DIRTY
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295 #else
296 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
297 #endif
298 
299 #define _CRST_ENTRIES	2048	/* number of region/segment table entries */
300 #define _PAGE_ENTRIES	256	/* number of page table entries	*/
301 
302 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
303 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
304 
305 #define _REGION1_SHIFT	53
306 #define _REGION2_SHIFT	42
307 #define _REGION3_SHIFT	31
308 #define _SEGMENT_SHIFT	20
309 
310 #define _REGION1_INDEX	(0x7ffUL << _REGION1_SHIFT)
311 #define _REGION2_INDEX	(0x7ffUL << _REGION2_SHIFT)
312 #define _REGION3_INDEX	(0x7ffUL << _REGION3_SHIFT)
313 #define _SEGMENT_INDEX	(0x7ffUL << _SEGMENT_SHIFT)
314 #define _PAGE_INDEX	(0xffUL  << _PAGE_SHIFT)
315 
316 #define _REGION1_SIZE	(1UL << _REGION1_SHIFT)
317 #define _REGION2_SIZE	(1UL << _REGION2_SHIFT)
318 #define _REGION3_SIZE	(1UL << _REGION3_SHIFT)
319 #define _SEGMENT_SIZE	(1UL << _SEGMENT_SHIFT)
320 
321 #define _REGION1_MASK	(~(_REGION1_SIZE - 1))
322 #define _REGION2_MASK	(~(_REGION2_SIZE - 1))
323 #define _REGION3_MASK	(~(_REGION3_SIZE - 1))
324 #define _SEGMENT_MASK	(~(_SEGMENT_SIZE - 1))
325 
326 #define PMD_SHIFT	_SEGMENT_SHIFT
327 #define PUD_SHIFT	_REGION3_SHIFT
328 #define P4D_SHIFT	_REGION2_SHIFT
329 #define PGDIR_SHIFT	_REGION1_SHIFT
330 
331 #define PMD_SIZE	_SEGMENT_SIZE
332 #define PUD_SIZE	_REGION3_SIZE
333 #define P4D_SIZE	_REGION2_SIZE
334 #define PGDIR_SIZE	_REGION1_SIZE
335 
336 #define PMD_MASK	_SEGMENT_MASK
337 #define PUD_MASK	_REGION3_MASK
338 #define P4D_MASK	_REGION2_MASK
339 #define PGDIR_MASK	_REGION1_MASK
340 
341 #define PTRS_PER_PTE	_PAGE_ENTRIES
342 #define PTRS_PER_PMD	_CRST_ENTRIES
343 #define PTRS_PER_PUD	_CRST_ENTRIES
344 #define PTRS_PER_P4D	_CRST_ENTRIES
345 #define PTRS_PER_PGD	_CRST_ENTRIES
346 
347 /*
348  * Segment table and region3 table entry encoding
349  * (R = read-only, I = invalid, y = young bit):
350  *				dy..R...I...wr
351  * prot-none, clean, old	00..1...1...00
352  * prot-none, clean, young	01..1...1...00
353  * prot-none, dirty, old	10..1...1...00
354  * prot-none, dirty, young	11..1...1...00
355  * read-only, clean, old	00..1...1...01
356  * read-only, clean, young	01..1...0...01
357  * read-only, dirty, old	10..1...1...01
358  * read-only, dirty, young	11..1...0...01
359  * read-write, clean, old	00..1...1...11
360  * read-write, clean, young	01..1...0...11
361  * read-write, dirty, old	10..0...1...11
362  * read-write, dirty, young	11..0...0...11
363  * The segment table origin is used to distinguish empty (origin==0) from
364  * read-write, old segment table entries (origin!=0)
365  * HW-bits: R read-only, I invalid
366  * SW-bits: y young, d dirty, r read, w write
367  */
368 
369 /* Page status table bits for virtualization */
370 #define PGSTE_ACC_BITS	0xf000000000000000UL
371 #define PGSTE_FP_BIT	0x0800000000000000UL
372 #define PGSTE_PCL_BIT	0x0080000000000000UL
373 #define PGSTE_HR_BIT	0x0040000000000000UL
374 #define PGSTE_HC_BIT	0x0020000000000000UL
375 #define PGSTE_GR_BIT	0x0004000000000000UL
376 #define PGSTE_GC_BIT	0x0002000000000000UL
377 #define PGSTE_UC_BIT	0x0000800000000000UL	/* user dirty (migration) */
378 #define PGSTE_IN_BIT	0x0000400000000000UL	/* IPTE notify bit */
379 #define PGSTE_VSIE_BIT	0x0000200000000000UL	/* ref'd in a shadow table */
380 
381 /* Guest Page State used for virtualization */
382 #define _PGSTE_GPS_ZERO			0x0000000080000000UL
383 #define _PGSTE_GPS_NODAT		0x0000000040000000UL
384 #define _PGSTE_GPS_USAGE_MASK		0x0000000003000000UL
385 #define _PGSTE_GPS_USAGE_STABLE		0x0000000000000000UL
386 #define _PGSTE_GPS_USAGE_UNUSED		0x0000000001000000UL
387 #define _PGSTE_GPS_USAGE_POT_VOLATILE	0x0000000002000000UL
388 #define _PGSTE_GPS_USAGE_VOLATILE	_PGSTE_GPS_USAGE_MASK
389 
390 /*
391  * A user page table pointer has the space-switch-event bit, the
392  * private-space-control bit and the storage-alteration-event-control
393  * bit set. A kernel page table pointer doesn't need them.
394  */
395 #define _ASCE_USER_BITS		(_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
396 				 _ASCE_ALT_EVENT)
397 
398 /*
399  * Page protection definitions.
400  */
401 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
402 #define PAGE_RO		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
403 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RX		__pgprot(_PAGE_PRESENT | _PAGE_READ | \
405 				 _PAGE_INVALID | _PAGE_PROTECT)
406 #define PAGE_RW		__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
407 				 _PAGE_NOEXEC  | _PAGE_INVALID | _PAGE_PROTECT)
408 #define PAGE_RWX	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 				 _PAGE_INVALID | _PAGE_PROTECT)
410 
411 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
412 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
413 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 				 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
415 #define PAGE_KERNEL_RO	__pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
416 				 _PAGE_PROTECT | _PAGE_NOEXEC)
417 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
418 				  _PAGE_YOUNG |	_PAGE_DIRTY)
419 
420 /*
421  * On s390 the page table entry has an invalid bit and a read-only bit.
422  * Read permission implies execute permission and write permission
423  * implies read permission.
424  */
425          /*xwr*/
426 #define __P000	PAGE_NONE
427 #define __P001	PAGE_RO
428 #define __P010	PAGE_RO
429 #define __P011	PAGE_RO
430 #define __P100	PAGE_RX
431 #define __P101	PAGE_RX
432 #define __P110	PAGE_RX
433 #define __P111	PAGE_RX
434 
435 #define __S000	PAGE_NONE
436 #define __S001	PAGE_RO
437 #define __S010	PAGE_RW
438 #define __S011	PAGE_RW
439 #define __S100	PAGE_RX
440 #define __S101	PAGE_RX
441 #define __S110	PAGE_RWX
442 #define __S111	PAGE_RWX
443 
444 /*
445  * Segment entry (large page) protection definitions.
446  */
447 #define SEGMENT_NONE	__pgprot(_SEGMENT_ENTRY_INVALID | \
448 				 _SEGMENT_ENTRY_PROTECT)
449 #define SEGMENT_RO	__pgprot(_SEGMENT_ENTRY_PROTECT | \
450 				 _SEGMENT_ENTRY_READ | \
451 				 _SEGMENT_ENTRY_NOEXEC)
452 #define SEGMENT_RX	__pgprot(_SEGMENT_ENTRY_PROTECT | \
453 				 _SEGMENT_ENTRY_READ)
454 #define SEGMENT_RW	__pgprot(_SEGMENT_ENTRY_READ | \
455 				 _SEGMENT_ENTRY_WRITE | \
456 				 _SEGMENT_ENTRY_NOEXEC)
457 #define SEGMENT_RWX	__pgprot(_SEGMENT_ENTRY_READ | \
458 				 _SEGMENT_ENTRY_WRITE)
459 #define SEGMENT_KERNEL	__pgprot(_SEGMENT_ENTRY |	\
460 				 _SEGMENT_ENTRY_LARGE |	\
461 				 _SEGMENT_ENTRY_READ |	\
462 				 _SEGMENT_ENTRY_WRITE | \
463 				 _SEGMENT_ENTRY_YOUNG | \
464 				 _SEGMENT_ENTRY_DIRTY | \
465 				 _SEGMENT_ENTRY_NOEXEC)
466 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY |	\
467 				 _SEGMENT_ENTRY_LARGE |	\
468 				 _SEGMENT_ENTRY_READ |	\
469 				 _SEGMENT_ENTRY_YOUNG |	\
470 				 _SEGMENT_ENTRY_PROTECT | \
471 				 _SEGMENT_ENTRY_NOEXEC)
472 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY |	\
473 				 _SEGMENT_ENTRY_LARGE |	\
474 				 _SEGMENT_ENTRY_READ |	\
475 				 _SEGMENT_ENTRY_WRITE | \
476 				 _SEGMENT_ENTRY_YOUNG |	\
477 				 _SEGMENT_ENTRY_DIRTY)
478 
479 /*
480  * Region3 entry (large page) protection definitions.
481  */
482 
483 #define REGION3_KERNEL	__pgprot(_REGION_ENTRY_TYPE_R3 | \
484 				 _REGION3_ENTRY_LARGE |	 \
485 				 _REGION3_ENTRY_READ |	 \
486 				 _REGION3_ENTRY_WRITE |	 \
487 				 _REGION3_ENTRY_YOUNG |	 \
488 				 _REGION3_ENTRY_DIRTY | \
489 				 _REGION_ENTRY_NOEXEC)
490 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
491 				   _REGION3_ENTRY_LARGE |  \
492 				   _REGION3_ENTRY_READ |   \
493 				   _REGION3_ENTRY_YOUNG |  \
494 				   _REGION_ENTRY_PROTECT | \
495 				   _REGION_ENTRY_NOEXEC)
496 
497 static inline bool mm_p4d_folded(struct mm_struct *mm)
498 {
499 	return mm->context.asce_limit <= _REGION1_SIZE;
500 }
501 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
502 
503 static inline bool mm_pud_folded(struct mm_struct *mm)
504 {
505 	return mm->context.asce_limit <= _REGION2_SIZE;
506 }
507 #define mm_pud_folded(mm) mm_pud_folded(mm)
508 
509 static inline bool mm_pmd_folded(struct mm_struct *mm)
510 {
511 	return mm->context.asce_limit <= _REGION3_SIZE;
512 }
513 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
514 
515 static inline int mm_has_pgste(struct mm_struct *mm)
516 {
517 #ifdef CONFIG_PGSTE
518 	if (unlikely(mm->context.has_pgste))
519 		return 1;
520 #endif
521 	return 0;
522 }
523 
524 static inline int mm_is_protected(struct mm_struct *mm)
525 {
526 #ifdef CONFIG_PGSTE
527 	if (unlikely(atomic_read(&mm->context.is_protected)))
528 		return 1;
529 #endif
530 	return 0;
531 }
532 
533 static inline int mm_alloc_pgste(struct mm_struct *mm)
534 {
535 #ifdef CONFIG_PGSTE
536 	if (unlikely(mm->context.alloc_pgste))
537 		return 1;
538 #endif
539 	return 0;
540 }
541 
542 /*
543  * In the case that a guest uses storage keys
544  * faults should no longer be backed by zero pages
545  */
546 #define mm_forbids_zeropage mm_has_pgste
547 static inline int mm_uses_skeys(struct mm_struct *mm)
548 {
549 #ifdef CONFIG_PGSTE
550 	if (mm->context.uses_skeys)
551 		return 1;
552 #endif
553 	return 0;
554 }
555 
556 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
557 {
558 	register unsigned long reg2 asm("2") = old;
559 	register unsigned long reg3 asm("3") = new;
560 	unsigned long address = (unsigned long)ptr | 1;
561 
562 	asm volatile(
563 		"	csp	%0,%3"
564 		: "+d" (reg2), "+m" (*ptr)
565 		: "d" (reg3), "d" (address)
566 		: "cc");
567 }
568 
569 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
570 {
571 	register unsigned long reg2 asm("2") = old;
572 	register unsigned long reg3 asm("3") = new;
573 	unsigned long address = (unsigned long)ptr | 1;
574 
575 	asm volatile(
576 		"	.insn	rre,0xb98a0000,%0,%3"
577 		: "+d" (reg2), "+m" (*ptr)
578 		: "d" (reg3), "d" (address)
579 		: "cc");
580 }
581 
582 #define CRDTE_DTT_PAGE		0x00UL
583 #define CRDTE_DTT_SEGMENT	0x10UL
584 #define CRDTE_DTT_REGION3	0x14UL
585 #define CRDTE_DTT_REGION2	0x18UL
586 #define CRDTE_DTT_REGION1	0x1cUL
587 
588 static inline void crdte(unsigned long old, unsigned long new,
589 			 unsigned long table, unsigned long dtt,
590 			 unsigned long address, unsigned long asce)
591 {
592 	register unsigned long reg2 asm("2") = old;
593 	register unsigned long reg3 asm("3") = new;
594 	register unsigned long reg4 asm("4") = table | dtt;
595 	register unsigned long reg5 asm("5") = address;
596 
597 	asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
598 		     : "+d" (reg2)
599 		     : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
600 		     : "memory", "cc");
601 }
602 
603 /*
604  * pgd/p4d/pud/pmd/pte query functions
605  */
606 static inline int pgd_folded(pgd_t pgd)
607 {
608 	return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
609 }
610 
611 static inline int pgd_present(pgd_t pgd)
612 {
613 	if (pgd_folded(pgd))
614 		return 1;
615 	return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
616 }
617 
618 static inline int pgd_none(pgd_t pgd)
619 {
620 	if (pgd_folded(pgd))
621 		return 0;
622 	return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
623 }
624 
625 static inline int pgd_bad(pgd_t pgd)
626 {
627 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
628 		return 0;
629 	return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
630 }
631 
632 static inline unsigned long pgd_pfn(pgd_t pgd)
633 {
634 	unsigned long origin_mask;
635 
636 	origin_mask = _REGION_ENTRY_ORIGIN;
637 	return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
638 }
639 
640 static inline int p4d_folded(p4d_t p4d)
641 {
642 	return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
643 }
644 
645 static inline int p4d_present(p4d_t p4d)
646 {
647 	if (p4d_folded(p4d))
648 		return 1;
649 	return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
650 }
651 
652 static inline int p4d_none(p4d_t p4d)
653 {
654 	if (p4d_folded(p4d))
655 		return 0;
656 	return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
657 }
658 
659 static inline unsigned long p4d_pfn(p4d_t p4d)
660 {
661 	unsigned long origin_mask;
662 
663 	origin_mask = _REGION_ENTRY_ORIGIN;
664 	return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
665 }
666 
667 static inline int pud_folded(pud_t pud)
668 {
669 	return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
670 }
671 
672 static inline int pud_present(pud_t pud)
673 {
674 	if (pud_folded(pud))
675 		return 1;
676 	return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
677 }
678 
679 static inline int pud_none(pud_t pud)
680 {
681 	if (pud_folded(pud))
682 		return 0;
683 	return pud_val(pud) == _REGION3_ENTRY_EMPTY;
684 }
685 
686 #define pud_leaf	pud_large
687 static inline int pud_large(pud_t pud)
688 {
689 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
690 		return 0;
691 	return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
692 }
693 
694 #define pmd_leaf	pmd_large
695 static inline int pmd_large(pmd_t pmd)
696 {
697 	return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
698 }
699 
700 static inline int pmd_bad(pmd_t pmd)
701 {
702 	if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
703 		return 1;
704 	return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
705 }
706 
707 static inline int pud_bad(pud_t pud)
708 {
709 	unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
710 
711 	if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
712 		return 1;
713 	if (type < _REGION_ENTRY_TYPE_R3)
714 		return 0;
715 	return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
716 }
717 
718 static inline int p4d_bad(p4d_t p4d)
719 {
720 	unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
721 
722 	if (type > _REGION_ENTRY_TYPE_R2)
723 		return 1;
724 	if (type < _REGION_ENTRY_TYPE_R2)
725 		return 0;
726 	return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
727 }
728 
729 static inline int pmd_present(pmd_t pmd)
730 {
731 	return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
732 }
733 
734 static inline int pmd_none(pmd_t pmd)
735 {
736 	return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
737 }
738 
739 #define pmd_write pmd_write
740 static inline int pmd_write(pmd_t pmd)
741 {
742 	return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
743 }
744 
745 #define pud_write pud_write
746 static inline int pud_write(pud_t pud)
747 {
748 	return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
749 }
750 
751 static inline int pmd_dirty(pmd_t pmd)
752 {
753 	return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
754 }
755 
756 static inline int pmd_young(pmd_t pmd)
757 {
758 	return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
759 }
760 
761 static inline int pte_present(pte_t pte)
762 {
763 	/* Bit pattern: (pte & 0x001) == 0x001 */
764 	return (pte_val(pte) & _PAGE_PRESENT) != 0;
765 }
766 
767 static inline int pte_none(pte_t pte)
768 {
769 	/* Bit pattern: pte == 0x400 */
770 	return pte_val(pte) == _PAGE_INVALID;
771 }
772 
773 static inline int pte_swap(pte_t pte)
774 {
775 	/* Bit pattern: (pte & 0x201) == 0x200 */
776 	return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
777 		== _PAGE_PROTECT;
778 }
779 
780 static inline int pte_special(pte_t pte)
781 {
782 	return (pte_val(pte) & _PAGE_SPECIAL);
783 }
784 
785 #define __HAVE_ARCH_PTE_SAME
786 static inline int pte_same(pte_t a, pte_t b)
787 {
788 	return pte_val(a) == pte_val(b);
789 }
790 
791 #ifdef CONFIG_NUMA_BALANCING
792 static inline int pte_protnone(pte_t pte)
793 {
794 	return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
795 }
796 
797 static inline int pmd_protnone(pmd_t pmd)
798 {
799 	/* pmd_large(pmd) implies pmd_present(pmd) */
800 	return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
801 }
802 #endif
803 
804 static inline int pte_soft_dirty(pte_t pte)
805 {
806 	return pte_val(pte) & _PAGE_SOFT_DIRTY;
807 }
808 #define pte_swp_soft_dirty pte_soft_dirty
809 
810 static inline pte_t pte_mksoft_dirty(pte_t pte)
811 {
812 	pte_val(pte) |= _PAGE_SOFT_DIRTY;
813 	return pte;
814 }
815 #define pte_swp_mksoft_dirty pte_mksoft_dirty
816 
817 static inline pte_t pte_clear_soft_dirty(pte_t pte)
818 {
819 	pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
820 	return pte;
821 }
822 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
823 
824 static inline int pmd_soft_dirty(pmd_t pmd)
825 {
826 	return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
827 }
828 
829 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
830 {
831 	pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
832 	return pmd;
833 }
834 
835 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
836 {
837 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
838 	return pmd;
839 }
840 
841 /*
842  * query functions pte_write/pte_dirty/pte_young only work if
843  * pte_present() is true. Undefined behaviour if not..
844  */
845 static inline int pte_write(pte_t pte)
846 {
847 	return (pte_val(pte) & _PAGE_WRITE) != 0;
848 }
849 
850 static inline int pte_dirty(pte_t pte)
851 {
852 	return (pte_val(pte) & _PAGE_DIRTY) != 0;
853 }
854 
855 static inline int pte_young(pte_t pte)
856 {
857 	return (pte_val(pte) & _PAGE_YOUNG) != 0;
858 }
859 
860 #define __HAVE_ARCH_PTE_UNUSED
861 static inline int pte_unused(pte_t pte)
862 {
863 	return pte_val(pte) & _PAGE_UNUSED;
864 }
865 
866 /*
867  * pgd/pmd/pte modification functions
868  */
869 
870 static inline void pgd_clear(pgd_t *pgd)
871 {
872 	if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
873 		pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
874 }
875 
876 static inline void p4d_clear(p4d_t *p4d)
877 {
878 	if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
879 		p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
880 }
881 
882 static inline void pud_clear(pud_t *pud)
883 {
884 	if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
885 		pud_val(*pud) = _REGION3_ENTRY_EMPTY;
886 }
887 
888 static inline void pmd_clear(pmd_t *pmdp)
889 {
890 	pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
891 }
892 
893 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
894 {
895 	pte_val(*ptep) = _PAGE_INVALID;
896 }
897 
898 /*
899  * The following pte modification functions only work if
900  * pte_present() is true. Undefined behaviour if not..
901  */
902 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
903 {
904 	pte_val(pte) &= _PAGE_CHG_MASK;
905 	pte_val(pte) |= pgprot_val(newprot);
906 	/*
907 	 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
908 	 * has the invalid bit set, clear it again for readable, young pages
909 	 */
910 	if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
911 		pte_val(pte) &= ~_PAGE_INVALID;
912 	/*
913 	 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
914 	 * protection bit set, clear it again for writable, dirty pages
915 	 */
916 	if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
917 		pte_val(pte) &= ~_PAGE_PROTECT;
918 	return pte;
919 }
920 
921 static inline pte_t pte_wrprotect(pte_t pte)
922 {
923 	pte_val(pte) &= ~_PAGE_WRITE;
924 	pte_val(pte) |= _PAGE_PROTECT;
925 	return pte;
926 }
927 
928 static inline pte_t pte_mkwrite(pte_t pte)
929 {
930 	pte_val(pte) |= _PAGE_WRITE;
931 	if (pte_val(pte) & _PAGE_DIRTY)
932 		pte_val(pte) &= ~_PAGE_PROTECT;
933 	return pte;
934 }
935 
936 static inline pte_t pte_mkclean(pte_t pte)
937 {
938 	pte_val(pte) &= ~_PAGE_DIRTY;
939 	pte_val(pte) |= _PAGE_PROTECT;
940 	return pte;
941 }
942 
943 static inline pte_t pte_mkdirty(pte_t pte)
944 {
945 	pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
946 	if (pte_val(pte) & _PAGE_WRITE)
947 		pte_val(pte) &= ~_PAGE_PROTECT;
948 	return pte;
949 }
950 
951 static inline pte_t pte_mkold(pte_t pte)
952 {
953 	pte_val(pte) &= ~_PAGE_YOUNG;
954 	pte_val(pte) |= _PAGE_INVALID;
955 	return pte;
956 }
957 
958 static inline pte_t pte_mkyoung(pte_t pte)
959 {
960 	pte_val(pte) |= _PAGE_YOUNG;
961 	if (pte_val(pte) & _PAGE_READ)
962 		pte_val(pte) &= ~_PAGE_INVALID;
963 	return pte;
964 }
965 
966 static inline pte_t pte_mkspecial(pte_t pte)
967 {
968 	pte_val(pte) |= _PAGE_SPECIAL;
969 	return pte;
970 }
971 
972 #ifdef CONFIG_HUGETLB_PAGE
973 static inline pte_t pte_mkhuge(pte_t pte)
974 {
975 	pte_val(pte) |= _PAGE_LARGE;
976 	return pte;
977 }
978 #endif
979 
980 #define IPTE_GLOBAL	0
981 #define	IPTE_LOCAL	1
982 
983 #define IPTE_NODAT	0x400
984 #define IPTE_GUEST_ASCE	0x800
985 
986 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
987 					unsigned long opt, unsigned long asce,
988 					int local)
989 {
990 	unsigned long pto = (unsigned long) ptep;
991 
992 	if (__builtin_constant_p(opt) && opt == 0) {
993 		/* Invalidation + TLB flush for the pte */
994 		asm volatile(
995 			"	.insn	rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
996 			: "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
997 			  [m4] "i" (local));
998 		return;
999 	}
1000 
1001 	/* Invalidate ptes with options + TLB flush of the ptes */
1002 	opt = opt | (asce & _ASCE_ORIGIN);
1003 	asm volatile(
1004 		"	.insn	rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1005 		: [r2] "+a" (address), [r3] "+a" (opt)
1006 		: [r1] "a" (pto), [m4] "i" (local) : "memory");
1007 }
1008 
1009 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1010 					      pte_t *ptep, int local)
1011 {
1012 	unsigned long pto = (unsigned long) ptep;
1013 
1014 	/* Invalidate a range of ptes + TLB flush of the ptes */
1015 	do {
1016 		asm volatile(
1017 			"       .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1018 			: [r2] "+a" (address), [r3] "+a" (nr)
1019 			: [r1] "a" (pto), [m4] "i" (local) : "memory");
1020 	} while (nr != 255);
1021 }
1022 
1023 /*
1024  * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1025  * both clear the TLB for the unmapped pte. The reason is that
1026  * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1027  * to modify an active pte. The sequence is
1028  *   1) ptep_get_and_clear
1029  *   2) set_pte_at
1030  *   3) flush_tlb_range
1031  * On s390 the tlb needs to get flushed with the modification of the pte
1032  * if the pte is active. The only way how this can be implemented is to
1033  * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1034  * is a nop.
1035  */
1036 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1037 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1038 
1039 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1040 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1041 					    unsigned long addr, pte_t *ptep)
1042 {
1043 	pte_t pte = *ptep;
1044 
1045 	pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1046 	return pte_young(pte);
1047 }
1048 
1049 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1050 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1051 					 unsigned long address, pte_t *ptep)
1052 {
1053 	return ptep_test_and_clear_young(vma, address, ptep);
1054 }
1055 
1056 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1057 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1058 				       unsigned long addr, pte_t *ptep)
1059 {
1060 	pte_t res;
1061 
1062 	res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1063 	if (mm_is_protected(mm) && pte_present(res))
1064 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1065 	return res;
1066 }
1067 
1068 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1069 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1070 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1071 			     pte_t *, pte_t, pte_t);
1072 
1073 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1074 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1075 				     unsigned long addr, pte_t *ptep)
1076 {
1077 	pte_t res;
1078 
1079 	res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1080 	if (mm_is_protected(vma->vm_mm) && pte_present(res))
1081 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1082 	return res;
1083 }
1084 
1085 /*
1086  * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1087  * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1088  * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1089  * cannot be accessed while the batched unmap is running. In this case
1090  * full==1 and a simple pte_clear is enough. See tlb.h.
1091  */
1092 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1093 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1094 					    unsigned long addr,
1095 					    pte_t *ptep, int full)
1096 {
1097 	pte_t res;
1098 
1099 	if (full) {
1100 		res = *ptep;
1101 		*ptep = __pte(_PAGE_INVALID);
1102 	} else {
1103 		res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1104 	}
1105 	if (mm_is_protected(mm) && pte_present(res))
1106 		uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1107 	return res;
1108 }
1109 
1110 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1111 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1112 				      unsigned long addr, pte_t *ptep)
1113 {
1114 	pte_t pte = *ptep;
1115 
1116 	if (pte_write(pte))
1117 		ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1118 }
1119 
1120 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1121 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1122 					unsigned long addr, pte_t *ptep,
1123 					pte_t entry, int dirty)
1124 {
1125 	if (pte_same(*ptep, entry))
1126 		return 0;
1127 	ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1128 	return 1;
1129 }
1130 
1131 /*
1132  * Additional functions to handle KVM guest page tables
1133  */
1134 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1135 		     pte_t *ptep, pte_t entry);
1136 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1137 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1138 		 pte_t *ptep, unsigned long bits);
1139 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1140 		    pte_t *ptep, int prot, unsigned long bit);
1141 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1142 		     pte_t *ptep , int reset);
1143 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1144 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1145 		    pte_t *sptep, pte_t *tptep, pte_t pte);
1146 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1147 
1148 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1149 			    pte_t *ptep);
1150 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1151 			  unsigned char key, bool nq);
1152 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1153 			       unsigned char key, unsigned char *oldkey,
1154 			       bool nq, bool mr, bool mc);
1155 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1156 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1157 			  unsigned char *key);
1158 
1159 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1160 				unsigned long bits, unsigned long value);
1161 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1162 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1163 			unsigned long *oldpte, unsigned long *oldpgste);
1164 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1165 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1166 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1167 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1168 
1169 #define pgprot_writecombine	pgprot_writecombine
1170 pgprot_t pgprot_writecombine(pgprot_t prot);
1171 
1172 #define pgprot_writethrough	pgprot_writethrough
1173 pgprot_t pgprot_writethrough(pgprot_t prot);
1174 
1175 /*
1176  * Certain architectures need to do special things when PTEs
1177  * within a page table are directly modified.  Thus, the following
1178  * hook is made available.
1179  */
1180 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1181 			      pte_t *ptep, pte_t entry)
1182 {
1183 	if (pte_present(entry))
1184 		pte_val(entry) &= ~_PAGE_UNUSED;
1185 	if (mm_has_pgste(mm))
1186 		ptep_set_pte_at(mm, addr, ptep, entry);
1187 	else
1188 		*ptep = entry;
1189 }
1190 
1191 /*
1192  * Conversion functions: convert a page and protection to a page entry,
1193  * and a page entry and page directory to the page they refer to.
1194  */
1195 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1196 {
1197 	pte_t __pte;
1198 
1199 	pte_val(__pte) = physpage | pgprot_val(pgprot);
1200 	if (!MACHINE_HAS_NX)
1201 		pte_val(__pte) &= ~_PAGE_NOEXEC;
1202 	return pte_mkyoung(__pte);
1203 }
1204 
1205 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1206 {
1207 	unsigned long physpage = page_to_phys(page);
1208 	pte_t __pte = mk_pte_phys(physpage, pgprot);
1209 
1210 	if (pte_write(__pte) && PageDirty(page))
1211 		__pte = pte_mkdirty(__pte);
1212 	return __pte;
1213 }
1214 
1215 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1216 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1217 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1218 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1219 
1220 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1221 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1222 
1223 static inline unsigned long pmd_deref(pmd_t pmd)
1224 {
1225 	unsigned long origin_mask;
1226 
1227 	origin_mask = _SEGMENT_ENTRY_ORIGIN;
1228 	if (pmd_large(pmd))
1229 		origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1230 	return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1231 }
1232 
1233 static inline unsigned long pmd_pfn(pmd_t pmd)
1234 {
1235 	return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1236 }
1237 
1238 static inline unsigned long pud_deref(pud_t pud)
1239 {
1240 	unsigned long origin_mask;
1241 
1242 	origin_mask = _REGION_ENTRY_ORIGIN;
1243 	if (pud_large(pud))
1244 		origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1245 	return (unsigned long)__va(pud_val(pud) & origin_mask);
1246 }
1247 
1248 static inline unsigned long pud_pfn(pud_t pud)
1249 {
1250 	return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1251 }
1252 
1253 /*
1254  * The pgd_offset function *always* adds the index for the top-level
1255  * region/segment table. This is done to get a sequence like the
1256  * following to work:
1257  *	pgdp = pgd_offset(current->mm, addr);
1258  *	pgd = READ_ONCE(*pgdp);
1259  *	p4dp = p4d_offset(&pgd, addr);
1260  *	...
1261  * The subsequent p4d_offset, pud_offset and pmd_offset functions
1262  * only add an index if they dereferenced the pointer.
1263  */
1264 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1265 {
1266 	unsigned long rste;
1267 	unsigned int shift;
1268 
1269 	/* Get the first entry of the top level table */
1270 	rste = pgd_val(*pgd);
1271 	/* Pick up the shift from the table type of the first entry */
1272 	shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1273 	return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1274 }
1275 
1276 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1277 
1278 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1279 {
1280 	if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1281 		return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1282 	return (p4d_t *) pgdp;
1283 }
1284 #define p4d_offset_lockless p4d_offset_lockless
1285 
1286 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1287 {
1288 	return p4d_offset_lockless(pgdp, *pgdp, address);
1289 }
1290 
1291 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1292 {
1293 	if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1294 		return (pud_t *) p4d_deref(p4d) + pud_index(address);
1295 	return (pud_t *) p4dp;
1296 }
1297 #define pud_offset_lockless pud_offset_lockless
1298 
1299 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1300 {
1301 	return pud_offset_lockless(p4dp, *p4dp, address);
1302 }
1303 #define pud_offset pud_offset
1304 
1305 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1306 {
1307 	if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1308 		return (pmd_t *) pud_deref(pud) + pmd_index(address);
1309 	return (pmd_t *) pudp;
1310 }
1311 #define pmd_offset_lockless pmd_offset_lockless
1312 
1313 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1314 {
1315 	return pmd_offset_lockless(pudp, *pudp, address);
1316 }
1317 #define pmd_offset pmd_offset
1318 
1319 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1320 {
1321 	return (unsigned long) pmd_deref(pmd);
1322 }
1323 
1324 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1325 {
1326 	return end <= current->mm->context.asce_limit;
1327 }
1328 #define gup_fast_permitted gup_fast_permitted
1329 
1330 #define pfn_pte(pfn, pgprot)	mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1331 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1332 #define pte_page(x) pfn_to_page(pte_pfn(x))
1333 
1334 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1335 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1336 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1337 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1338 
1339 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1340 {
1341 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1342 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1343 	return pmd;
1344 }
1345 
1346 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1347 {
1348 	pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1349 	if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1350 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1351 	return pmd;
1352 }
1353 
1354 static inline pmd_t pmd_mkclean(pmd_t pmd)
1355 {
1356 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1357 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1358 	return pmd;
1359 }
1360 
1361 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1362 {
1363 	pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1364 	if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1365 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1366 	return pmd;
1367 }
1368 
1369 static inline pud_t pud_wrprotect(pud_t pud)
1370 {
1371 	pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1372 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1373 	return pud;
1374 }
1375 
1376 static inline pud_t pud_mkwrite(pud_t pud)
1377 {
1378 	pud_val(pud) |= _REGION3_ENTRY_WRITE;
1379 	if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1380 		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1381 	return pud;
1382 }
1383 
1384 static inline pud_t pud_mkclean(pud_t pud)
1385 {
1386 	pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1387 	pud_val(pud) |= _REGION_ENTRY_PROTECT;
1388 	return pud;
1389 }
1390 
1391 static inline pud_t pud_mkdirty(pud_t pud)
1392 {
1393 	pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1394 	if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1395 		pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1396 	return pud;
1397 }
1398 
1399 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1400 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1401 {
1402 	/*
1403 	 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1404 	 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1405 	 */
1406 	if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1407 		return pgprot_val(SEGMENT_NONE);
1408 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1409 		return pgprot_val(SEGMENT_RO);
1410 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1411 		return pgprot_val(SEGMENT_RX);
1412 	if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1413 		return pgprot_val(SEGMENT_RW);
1414 	return pgprot_val(SEGMENT_RWX);
1415 }
1416 
1417 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1418 {
1419 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1420 	if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1421 		pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1422 	return pmd;
1423 }
1424 
1425 static inline pmd_t pmd_mkold(pmd_t pmd)
1426 {
1427 	pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1428 	pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1429 	return pmd;
1430 }
1431 
1432 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1433 {
1434 	pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1435 		_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1436 		_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1437 	pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1438 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1439 		pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1440 	if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1441 		pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1442 	return pmd;
1443 }
1444 
1445 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1446 {
1447 	pmd_t __pmd;
1448 	pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1449 	return __pmd;
1450 }
1451 
1452 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1453 
1454 static inline void __pmdp_csp(pmd_t *pmdp)
1455 {
1456 	csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1457 	    pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1458 }
1459 
1460 #define IDTE_GLOBAL	0
1461 #define IDTE_LOCAL	1
1462 
1463 #define IDTE_PTOA	0x0800
1464 #define IDTE_NODAT	0x1000
1465 #define IDTE_GUEST_ASCE	0x2000
1466 
1467 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1468 					unsigned long opt, unsigned long asce,
1469 					int local)
1470 {
1471 	unsigned long sto;
1472 
1473 	sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1474 	if (__builtin_constant_p(opt) && opt == 0) {
1475 		/* flush without guest asce */
1476 		asm volatile(
1477 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1478 			: "+m" (*pmdp)
1479 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1480 			  [m4] "i" (local)
1481 			: "cc" );
1482 	} else {
1483 		/* flush with guest asce */
1484 		asm volatile(
1485 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1486 			: "+m" (*pmdp)
1487 			: [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1488 			  [r3] "a" (asce), [m4] "i" (local)
1489 			: "cc" );
1490 	}
1491 }
1492 
1493 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1494 					unsigned long opt, unsigned long asce,
1495 					int local)
1496 {
1497 	unsigned long r3o;
1498 
1499 	r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1500 	r3o |= _ASCE_TYPE_REGION3;
1501 	if (__builtin_constant_p(opt) && opt == 0) {
1502 		/* flush without guest asce */
1503 		asm volatile(
1504 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1505 			: "+m" (*pudp)
1506 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1507 			  [m4] "i" (local)
1508 			: "cc");
1509 	} else {
1510 		/* flush with guest asce */
1511 		asm volatile(
1512 			"	.insn	rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1513 			: "+m" (*pudp)
1514 			: [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1515 			  [r3] "a" (asce), [m4] "i" (local)
1516 			: "cc" );
1517 	}
1518 }
1519 
1520 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1521 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1522 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1523 
1524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1525 
1526 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1527 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1528 				pgtable_t pgtable);
1529 
1530 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1531 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1532 
1533 #define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1534 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1535 					unsigned long addr, pmd_t *pmdp,
1536 					pmd_t entry, int dirty)
1537 {
1538 	VM_BUG_ON(addr & ~HPAGE_MASK);
1539 
1540 	entry = pmd_mkyoung(entry);
1541 	if (dirty)
1542 		entry = pmd_mkdirty(entry);
1543 	if (pmd_val(*pmdp) == pmd_val(entry))
1544 		return 0;
1545 	pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1546 	return 1;
1547 }
1548 
1549 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1550 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1551 					    unsigned long addr, pmd_t *pmdp)
1552 {
1553 	pmd_t pmd = *pmdp;
1554 
1555 	pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1556 	return pmd_young(pmd);
1557 }
1558 
1559 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1560 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1561 					 unsigned long addr, pmd_t *pmdp)
1562 {
1563 	VM_BUG_ON(addr & ~HPAGE_MASK);
1564 	return pmdp_test_and_clear_young(vma, addr, pmdp);
1565 }
1566 
1567 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1568 			      pmd_t *pmdp, pmd_t entry)
1569 {
1570 	if (!MACHINE_HAS_NX)
1571 		pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1572 	*pmdp = entry;
1573 }
1574 
1575 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1576 {
1577 	pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1578 	pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1579 	pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1580 	return pmd;
1581 }
1582 
1583 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1584 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1585 					    unsigned long addr, pmd_t *pmdp)
1586 {
1587 	return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1588 }
1589 
1590 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1591 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1592 						 unsigned long addr,
1593 						 pmd_t *pmdp, int full)
1594 {
1595 	if (full) {
1596 		pmd_t pmd = *pmdp;
1597 		*pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1598 		return pmd;
1599 	}
1600 	return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1601 }
1602 
1603 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1604 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1605 					  unsigned long addr, pmd_t *pmdp)
1606 {
1607 	return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1608 }
1609 
1610 #define __HAVE_ARCH_PMDP_INVALIDATE
1611 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1612 				   unsigned long addr, pmd_t *pmdp)
1613 {
1614 	pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1615 
1616 	return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1617 }
1618 
1619 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1620 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1621 				      unsigned long addr, pmd_t *pmdp)
1622 {
1623 	pmd_t pmd = *pmdp;
1624 
1625 	if (pmd_write(pmd))
1626 		pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1627 }
1628 
1629 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1630 					unsigned long address,
1631 					pmd_t *pmdp)
1632 {
1633 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1634 }
1635 #define pmdp_collapse_flush pmdp_collapse_flush
1636 
1637 #define pfn_pmd(pfn, pgprot)	mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1638 #define mk_pmd(page, pgprot)	pfn_pmd(page_to_pfn(page), (pgprot))
1639 
1640 static inline int pmd_trans_huge(pmd_t pmd)
1641 {
1642 	return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1643 }
1644 
1645 #define has_transparent_hugepage has_transparent_hugepage
1646 static inline int has_transparent_hugepage(void)
1647 {
1648 	return MACHINE_HAS_EDAT1 ? 1 : 0;
1649 }
1650 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1651 
1652 /*
1653  * 64 bit swap entry format:
1654  * A page-table entry has some bits we have to treat in a special way.
1655  * Bits 52 and bit 55 have to be zero, otherwise a specification
1656  * exception will occur instead of a page translation exception. The
1657  * specification exception has the bad habit not to store necessary
1658  * information in the lowcore.
1659  * Bits 54 and 63 are used to indicate the page type.
1660  * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1661  * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1662  * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1663  * for the offset.
1664  * |			  offset			|01100|type |00|
1665  * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1666  * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1667  */
1668 
1669 #define __SWP_OFFSET_MASK	((1UL << 52) - 1)
1670 #define __SWP_OFFSET_SHIFT	12
1671 #define __SWP_TYPE_MASK		((1UL << 5) - 1)
1672 #define __SWP_TYPE_SHIFT	2
1673 
1674 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1675 {
1676 	pte_t pte;
1677 
1678 	pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1679 	pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1680 	pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1681 	return pte;
1682 }
1683 
1684 static inline unsigned long __swp_type(swp_entry_t entry)
1685 {
1686 	return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1687 }
1688 
1689 static inline unsigned long __swp_offset(swp_entry_t entry)
1690 {
1691 	return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1692 }
1693 
1694 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1695 {
1696 	return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1697 }
1698 
1699 #define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
1700 #define __swp_entry_to_pte(x)	((pte_t) { (x).val })
1701 
1702 #define kern_addr_valid(addr)   (1)
1703 
1704 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1705 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1706 extern int s390_enable_sie(void);
1707 extern int s390_enable_skey(void);
1708 extern void s390_reset_cmma(struct mm_struct *mm);
1709 
1710 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1711 #define HAVE_ARCH_UNMAPPED_AREA
1712 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1713 
1714 #endif /* _S390_PAGE_H */
1715