1 /* 2 * Copyright IBM Corp. 2006,2007 3 * Author(s): Jan Glauber <jan.glauber@de.ibm.com> 4 * Driver for the s390 pseudo random number generator 5 */ 6 #include <linux/fs.h> 7 #include <linux/init.h> 8 #include <linux/kernel.h> 9 #include <linux/smp_lock.h> 10 #include <linux/miscdevice.h> 11 #include <linux/module.h> 12 #include <linux/moduleparam.h> 13 #include <linux/random.h> 14 #include <asm/debug.h> 15 #include <asm/uaccess.h> 16 17 #include "crypt_s390.h" 18 19 MODULE_LICENSE("GPL"); 20 MODULE_AUTHOR("Jan Glauber <jan.glauber@de.ibm.com>"); 21 MODULE_DESCRIPTION("s390 PRNG interface"); 22 23 static int prng_chunk_size = 256; 24 module_param(prng_chunk_size, int, S_IRUSR | S_IRGRP | S_IROTH); 25 MODULE_PARM_DESC(prng_chunk_size, "PRNG read chunk size in bytes"); 26 27 static int prng_entropy_limit = 4096; 28 module_param(prng_entropy_limit, int, S_IRUSR | S_IRGRP | S_IROTH | S_IWUSR); 29 MODULE_PARM_DESC(prng_entropy_limit, 30 "PRNG add entropy after that much bytes were produced"); 31 32 /* 33 * Any one who considers arithmetical methods of producing random digits is, 34 * of course, in a state of sin. -- John von Neumann 35 */ 36 37 struct s390_prng_data { 38 unsigned long count; /* how many bytes were produced */ 39 char *buf; 40 }; 41 42 static struct s390_prng_data *p; 43 44 /* copied from libica, use a non-zero initial parameter block */ 45 static unsigned char parm_block[32] = { 46 0x0F,0x2B,0x8E,0x63,0x8C,0x8E,0xD2,0x52,0x64,0xB7,0xA0,0x7B,0x75,0x28,0xB8,0xF4, 47 0x75,0x5F,0xD2,0xA6,0x8D,0x97,0x11,0xFF,0x49,0xD8,0x23,0xF3,0x7E,0x21,0xEC,0xA0, 48 }; 49 50 static int prng_open(struct inode *inode, struct file *file) 51 { 52 cycle_kernel_lock(); 53 return nonseekable_open(inode, file); 54 } 55 56 static void prng_add_entropy(void) 57 { 58 __u64 entropy[4]; 59 unsigned int i; 60 int ret; 61 62 for (i = 0; i < 16; i++) { 63 ret = crypt_s390_kmc(KMC_PRNG, parm_block, (char *)entropy, 64 (char *)entropy, sizeof(entropy)); 65 BUG_ON(ret < 0 || ret != sizeof(entropy)); 66 memcpy(parm_block, entropy, sizeof(entropy)); 67 } 68 } 69 70 static void prng_seed(int nbytes) 71 { 72 char buf[16]; 73 int i = 0; 74 75 BUG_ON(nbytes > 16); 76 get_random_bytes(buf, nbytes); 77 78 /* Add the entropy */ 79 while (nbytes >= 8) { 80 *((__u64 *)parm_block) ^= *((__u64 *)buf+i*8); 81 prng_add_entropy(); 82 i += 8; 83 nbytes -= 8; 84 } 85 prng_add_entropy(); 86 } 87 88 static ssize_t prng_read(struct file *file, char __user *ubuf, size_t nbytes, 89 loff_t *ppos) 90 { 91 int chunk, n; 92 int ret = 0; 93 int tmp; 94 95 /* nbytes can be arbitrary length, we split it into chunks */ 96 while (nbytes) { 97 /* same as in extract_entropy_user in random.c */ 98 if (need_resched()) { 99 if (signal_pending(current)) { 100 if (ret == 0) 101 ret = -ERESTARTSYS; 102 break; 103 } 104 schedule(); 105 } 106 107 /* 108 * we lose some random bytes if an attacker issues 109 * reads < 8 bytes, but we don't care 110 */ 111 chunk = min_t(int, nbytes, prng_chunk_size); 112 113 /* PRNG only likes multiples of 8 bytes */ 114 n = (chunk + 7) & -8; 115 116 if (p->count > prng_entropy_limit) 117 prng_seed(8); 118 119 /* if the CPU supports PRNG stckf is present too */ 120 asm volatile(".insn s,0xb27c0000,%0" 121 : "=m" (*((unsigned long long *)p->buf)) : : "cc"); 122 123 /* 124 * Beside the STCKF the input for the TDES-EDE is the output 125 * of the last operation. We differ here from X9.17 since we 126 * only store one timestamp into the buffer. Padding the whole 127 * buffer with timestamps does not improve security, since 128 * successive stckf have nearly constant offsets. 129 * If an attacker knows the first timestamp it would be 130 * trivial to guess the additional values. One timestamp 131 * is therefore enough and still guarantees unique input values. 132 * 133 * Note: you can still get strict X9.17 conformity by setting 134 * prng_chunk_size to 8 bytes. 135 */ 136 tmp = crypt_s390_kmc(KMC_PRNG, parm_block, p->buf, p->buf, n); 137 BUG_ON((tmp < 0) || (tmp != n)); 138 139 p->count += n; 140 141 if (copy_to_user(ubuf, p->buf, chunk)) 142 return -EFAULT; 143 144 nbytes -= chunk; 145 ret += chunk; 146 ubuf += chunk; 147 } 148 return ret; 149 } 150 151 static const struct file_operations prng_fops = { 152 .owner = THIS_MODULE, 153 .open = &prng_open, 154 .release = NULL, 155 .read = &prng_read, 156 }; 157 158 static struct miscdevice prng_dev = { 159 .name = "prandom", 160 .minor = MISC_DYNAMIC_MINOR, 161 .fops = &prng_fops, 162 }; 163 164 static int __init prng_init(void) 165 { 166 int ret; 167 168 /* check if the CPU has a PRNG */ 169 if (!crypt_s390_func_available(KMC_PRNG)) 170 return -EOPNOTSUPP; 171 172 if (prng_chunk_size < 8) 173 return -EINVAL; 174 175 p = kmalloc(sizeof(struct s390_prng_data), GFP_KERNEL); 176 if (!p) 177 return -ENOMEM; 178 p->count = 0; 179 180 p->buf = kmalloc(prng_chunk_size, GFP_KERNEL); 181 if (!p->buf) { 182 ret = -ENOMEM; 183 goto out_free; 184 } 185 186 /* initialize the PRNG, add 128 bits of entropy */ 187 prng_seed(16); 188 189 ret = misc_register(&prng_dev); 190 if (ret) 191 goto out_buf; 192 return 0; 193 194 out_buf: 195 kfree(p->buf); 196 out_free: 197 kfree(p); 198 return ret; 199 } 200 201 static void __exit prng_exit(void) 202 { 203 /* wipe me */ 204 kzfree(p->buf); 205 kfree(p); 206 207 misc_deregister(&prng_dev); 208 } 209 210 module_init(prng_init); 211 module_exit(prng_exit); 212