xref: /openbmc/linux/arch/s390/crypto/prng.c (revision 22246614)
1 /*
2  * Copyright IBM Corp. 2006,2007
3  * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
4  * Driver for the s390 pseudo random number generator
5  */
6 #include <linux/fs.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/miscdevice.h>
10 #include <linux/module.h>
11 #include <linux/moduleparam.h>
12 #include <linux/random.h>
13 #include <asm/debug.h>
14 #include <asm/uaccess.h>
15 
16 #include "crypt_s390.h"
17 
18 MODULE_LICENSE("GPL");
19 MODULE_AUTHOR("Jan Glauber <jan.glauber@de.ibm.com>");
20 MODULE_DESCRIPTION("s390 PRNG interface");
21 
22 static int prng_chunk_size = 256;
23 module_param(prng_chunk_size, int, S_IRUSR | S_IRGRP | S_IROTH);
24 MODULE_PARM_DESC(prng_chunk_size, "PRNG read chunk size in bytes");
25 
26 static int prng_entropy_limit = 4096;
27 module_param(prng_entropy_limit, int, S_IRUSR | S_IRGRP | S_IROTH | S_IWUSR);
28 MODULE_PARM_DESC(prng_entropy_limit,
29 	"PRNG add entropy after that much bytes were produced");
30 
31 /*
32  * Any one who considers arithmetical methods of producing random digits is,
33  * of course, in a state of sin. -- John von Neumann
34  */
35 
36 struct s390_prng_data {
37 	unsigned long count; /* how many bytes were produced */
38 	char *buf;
39 };
40 
41 static struct s390_prng_data *p;
42 
43 /* copied from libica, use a non-zero initial parameter block */
44 static unsigned char parm_block[32] = {
45 0x0F,0x2B,0x8E,0x63,0x8C,0x8E,0xD2,0x52,0x64,0xB7,0xA0,0x7B,0x75,0x28,0xB8,0xF4,
46 0x75,0x5F,0xD2,0xA6,0x8D,0x97,0x11,0xFF,0x49,0xD8,0x23,0xF3,0x7E,0x21,0xEC,0xA0,
47 };
48 
49 static int prng_open(struct inode *inode, struct file *file)
50 {
51 	return nonseekable_open(inode, file);
52 }
53 
54 static void prng_add_entropy(void)
55 {
56 	__u64 entropy[4];
57 	unsigned int i;
58 	int ret;
59 
60 	for (i = 0; i < 16; i++) {
61 		ret = crypt_s390_kmc(KMC_PRNG, parm_block, (char *)entropy,
62 				     (char *)entropy, sizeof(entropy));
63 		BUG_ON(ret < 0 || ret != sizeof(entropy));
64 		memcpy(parm_block, entropy, sizeof(entropy));
65 	}
66 }
67 
68 static void prng_seed(int nbytes)
69 {
70 	char buf[16];
71 	int i = 0;
72 
73 	BUG_ON(nbytes > 16);
74 	get_random_bytes(buf, nbytes);
75 
76 	/* Add the entropy */
77 	while (nbytes >= 8) {
78 		*((__u64 *)parm_block) ^= *((__u64 *)buf+i*8);
79 		prng_add_entropy();
80 		i += 8;
81 		nbytes -= 8;
82 	}
83 	prng_add_entropy();
84 }
85 
86 static ssize_t prng_read(struct file *file, char __user *ubuf, size_t nbytes,
87 			 loff_t *ppos)
88 {
89 	int chunk, n;
90 	int ret = 0;
91 	int tmp;
92 
93 	/* nbytes can be arbitrary length, we split it into chunks */
94 	while (nbytes) {
95 		/* same as in extract_entropy_user in random.c */
96 		if (need_resched()) {
97 			if (signal_pending(current)) {
98 				if (ret == 0)
99 					ret = -ERESTARTSYS;
100 				break;
101 			}
102 			schedule();
103 		}
104 
105 		/*
106 		 * we lose some random bytes if an attacker issues
107 		 * reads < 8 bytes, but we don't care
108 		 */
109 		chunk = min_t(int, nbytes, prng_chunk_size);
110 
111 		/* PRNG only likes multiples of 8 bytes */
112 		n = (chunk + 7) & -8;
113 
114 		if (p->count > prng_entropy_limit)
115 			prng_seed(8);
116 
117 		/* if the CPU supports PRNG stckf is present too */
118 		asm volatile(".insn     s,0xb27c0000,%0"
119 			     : "=m" (*((unsigned long long *)p->buf)) : : "cc");
120 
121 		/*
122 		 * Beside the STCKF the input for the TDES-EDE is the output
123 		 * of the last operation. We differ here from X9.17 since we
124 		 * only store one timestamp into the buffer. Padding the whole
125 		 * buffer with timestamps does not improve security, since
126 		 * successive stckf have nearly constant offsets.
127 		 * If an attacker knows the first timestamp it would be
128 		 * trivial to guess the additional values. One timestamp
129 		 * is therefore enough and still guarantees unique input values.
130 		 *
131 		 * Note: you can still get strict X9.17 conformity by setting
132 		 * prng_chunk_size to 8 bytes.
133 		*/
134 		tmp = crypt_s390_kmc(KMC_PRNG, parm_block, p->buf, p->buf, n);
135 		BUG_ON((tmp < 0) || (tmp != n));
136 
137 		p->count += n;
138 
139 		if (copy_to_user(ubuf, p->buf, chunk))
140 			return -EFAULT;
141 
142 		nbytes -= chunk;
143 		ret += chunk;
144 		ubuf += chunk;
145 	}
146 	return ret;
147 }
148 
149 static const struct file_operations prng_fops = {
150 	.owner		= THIS_MODULE,
151 	.open		= &prng_open,
152 	.release	= NULL,
153 	.read		= &prng_read,
154 };
155 
156 static struct miscdevice prng_dev = {
157 	.name	= "prandom",
158 	.minor	= MISC_DYNAMIC_MINOR,
159 	.fops	= &prng_fops,
160 };
161 
162 static int __init prng_init(void)
163 {
164 	int ret;
165 
166 	/* check if the CPU has a PRNG */
167 	if (!crypt_s390_func_available(KMC_PRNG))
168 		return -EOPNOTSUPP;
169 
170 	if (prng_chunk_size < 8)
171 		return -EINVAL;
172 
173 	p = kmalloc(sizeof(struct s390_prng_data), GFP_KERNEL);
174 	if (!p)
175 		return -ENOMEM;
176 	p->count = 0;
177 
178 	p->buf = kmalloc(prng_chunk_size, GFP_KERNEL);
179 	if (!p->buf) {
180 		ret = -ENOMEM;
181 		goto out_free;
182 	}
183 
184 	/* initialize the PRNG, add 128 bits of entropy */
185 	prng_seed(16);
186 
187 	ret = misc_register(&prng_dev);
188 	if (ret) {
189 		printk(KERN_WARNING
190 		       "Could not register misc device for PRNG.\n");
191 		goto out_buf;
192 	}
193 	return 0;
194 
195 out_buf:
196 	kfree(p->buf);
197 out_free:
198 	kfree(p);
199 	return ret;
200 }
201 
202 static void __exit prng_exit(void)
203 {
204 	/* wipe me */
205 	memset(p->buf, 0, prng_chunk_size);
206 	kfree(p->buf);
207 	kfree(p);
208 
209 	misc_deregister(&prng_dev);
210 }
211 
212 module_init(prng_init);
213 module_exit(prng_exit);
214