xref: /openbmc/linux/arch/s390/crypto/crc32le-vx.S (revision b78412b8)
1/*
2 * Hardware-accelerated CRC-32 variants for Linux on z Systems
3 *
4 * Use the z/Architecture Vector Extension Facility to accelerate the
5 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
6 * and Castagnoli.
7 *
8 * This CRC-32 implementation algorithm is bitreflected and processes
9 * the least-significant bit first (Little-Endian).
10 *
11 * Copyright IBM Corp. 2015
12 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13 */
14
15#include <linux/linkage.h>
16#include <asm/vx-insn.h>
17
18/* Vector register range containing CRC-32 constants */
19#define CONST_PERM_LE2BE	%v9
20#define CONST_R2R1		%v10
21#define CONST_R4R3		%v11
22#define CONST_R5		%v12
23#define CONST_RU_POLY		%v13
24#define CONST_CRC_POLY		%v14
25
26.data
27.align 8
28
29/*
30 * The CRC-32 constant block contains reduction constants to fold and
31 * process particular chunks of the input data stream in parallel.
32 *
33 * For the CRC-32 variants, the constants are precomputed according to
34 * these definitions:
35 *
36 *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
37 *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
38 *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1
39 *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1
40 *	R5 = [(x64 mod P'(x) << 32)]'	    << 1
41 *	R6 = [(x32 mod P'(x) << 32)]'	    << 1
42 *
43 *	The bitreflected Barret reduction constant, u', is defined as
44 *	the bit reversal of floor(x**64 / P(x)).
45 *
46 *	where P(x) is the polynomial in the normal domain and the P'(x) is the
47 *	polynomial in the reversed (bitreflected) domain.
48 *
49 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
50 *
51 *	P(x)  = 0x04C11DB7
52 *	P'(x) = 0xEDB88320
53 *
54 * CRC-32C (Castagnoli) polynomials:
55 *
56 *	P(x)  = 0x1EDC6F41
57 *	P'(x) = 0x82F63B78
58 */
59
60.Lconstants_CRC_32_LE:
61	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
62	.quad		0x1c6e41596, 0x154442bd4		# R2, R1
63	.quad		0x0ccaa009e, 0x1751997d0		# R4, R3
64	.octa		0x163cd6124				# R5
65	.octa		0x1F7011641				# u'
66	.octa		0x1DB710641				# P'(x) << 1
67
68.Lconstants_CRC_32C_LE:
69	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
70	.quad		0x09e4addf8, 0x740eef02			# R2, R1
71	.quad		0x14cd00bd6, 0xf20c0dfe			# R4, R3
72	.octa		0x0dd45aab8				# R5
73	.octa		0x0dea713f1				# u'
74	.octa		0x105ec76f0				# P'(x) << 1
75
76.previous
77
78
79.text
80
81/*
82 * The CRC-32 functions use these calling conventions:
83 *
84 * Parameters:
85 *
86 *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
87 *	%r3:	Input buffer pointer, performance might be improved if the
88 *		buffer is on a doubleword boundary.
89 *	%r4:	Length of the buffer, must be 64 bytes or greater.
90 *
91 * Register usage:
92 *
93 *	%r5:	CRC-32 constant pool base pointer.
94 *	V0:	Initial CRC value and intermediate constants and results.
95 *	V1..V4:	Data for CRC computation.
96 *	V5..V8:	Next data chunks that are fetched from the input buffer.
97 *	V9:	Constant for BE->LE conversion and shift operations
98 *
99 *	V10..V14: CRC-32 constants.
100 */
101
102ENTRY(crc32_le_vgfm_16)
103	larl	%r5,.Lconstants_CRC_32_LE
104	j	crc32_le_vgfm_generic
105
106ENTRY(crc32c_le_vgfm_16)
107	larl	%r5,.Lconstants_CRC_32C_LE
108	j	crc32_le_vgfm_generic
109
110
111crc32_le_vgfm_generic:
112	/* Load CRC-32 constants */
113	VLM	CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
114
115	/*
116	 * Load the initial CRC value.
117	 *
118	 * The CRC value is loaded into the rightmost word of the
119	 * vector register and is later XORed with the LSB portion
120	 * of the loaded input data.
121	 */
122	VZERO	%v0			/* Clear V0 */
123	VLVGF	%v0,%r2,3		/* Load CRC into rightmost word */
124
125	/* Load a 64-byte data chunk and XOR with CRC */
126	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
127	VPERM	%v1,%v1,%v1,CONST_PERM_LE2BE
128	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
129	VPERM	%v3,%v3,%v3,CONST_PERM_LE2BE
130	VPERM	%v4,%v4,%v4,CONST_PERM_LE2BE
131
132	VX	%v1,%v0,%v1		/* V1 ^= CRC */
133	aghi	%r3,64			/* BUF = BUF + 64 */
134	aghi	%r4,-64			/* LEN = LEN - 64 */
135
136	cghi	%r4,64
137	jl	.Lless_than_64bytes
138
139.Lfold_64bytes_loop:
140	/* Load the next 64-byte data chunk into V5 to V8 */
141	VLM	%v5,%v8,0,%r3
142	VPERM	%v5,%v5,%v5,CONST_PERM_LE2BE
143	VPERM	%v6,%v6,%v6,CONST_PERM_LE2BE
144	VPERM	%v7,%v7,%v7,CONST_PERM_LE2BE
145	VPERM	%v8,%v8,%v8,CONST_PERM_LE2BE
146
147	/*
148	 * Perform a GF(2) multiplication of the doublewords in V1 with
149	 * the R1 and R2 reduction constants in V0.  The intermediate result
150	 * is then folded (accumulated) with the next data chunk in V5 and
151	 * stored in V1. Repeat this step for the register contents
152	 * in V2, V3, and V4 respectively.
153	 */
154	VGFMAG	%v1,CONST_R2R1,%v1,%v5
155	VGFMAG	%v2,CONST_R2R1,%v2,%v6
156	VGFMAG	%v3,CONST_R2R1,%v3,%v7
157	VGFMAG	%v4,CONST_R2R1,%v4,%v8
158
159	aghi	%r3,64			/* BUF = BUF + 64 */
160	aghi	%r4,-64			/* LEN = LEN - 64 */
161
162	cghi	%r4,64
163	jnl	.Lfold_64bytes_loop
164
165.Lless_than_64bytes:
166	/*
167	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
168	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
169	 * value remains.
170	 */
171	VGFMAG	%v1,CONST_R4R3,%v1,%v2
172	VGFMAG	%v1,CONST_R4R3,%v1,%v3
173	VGFMAG	%v1,CONST_R4R3,%v1,%v4
174
175	cghi	%r4,16
176	jl	.Lfinal_fold
177
178.Lfold_16bytes_loop:
179
180	VL	%v2,0,,%r3		/* Load next data chunk */
181	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
182	VGFMAG	%v1,CONST_R4R3,%v1,%v2	/* Fold next data chunk */
183
184	aghi	%r3,16
185	aghi	%r4,-16
186
187	cghi	%r4,16
188	jnl	.Lfold_16bytes_loop
189
190.Lfinal_fold:
191	/*
192	 * Set up a vector register for byte shifts.  The shift value must
193	 * be loaded in bits 1-4 in byte element 7 of a vector register.
194	 * Shift by 8 bytes: 0x40
195	 * Shift by 4 bytes: 0x20
196	 */
197	VLEIB	%v9,0x40,7
198
199	/*
200	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
201	 * to move R4 into the rightmost doubleword and set the leftmost
202	 * doubleword to 0x1.
203	 */
204	VSRLB	%v0,CONST_R4R3,%v9
205	VLEIG	%v0,1,0
206
207	/*
208	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword
209	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
210	 * multiplied by 0x1 and is then XORed with rightmost product.
211	 * Implicitly, the intermediate leftmost product becomes padded
212	 */
213	VGFMG	%v1,%v0,%v1
214
215	/*
216	 * Now do the final 32-bit fold by multiplying the rightmost word
217	 * in V1 with R5 and XOR the result with the remaining bits in V1.
218	 *
219	 * To achieve this by a single VGFMAG, right shift V1 by a word
220	 * and store the result in V2 which is then accumulated.  Use the
221	 * vector unpack instruction to load the rightmost half of the
222	 * doubleword into the rightmost doubleword element of V1; the other
223	 * half is loaded in the leftmost doubleword.
224	 * The vector register with CONST_R5 contains the R5 constant in the
225	 * rightmost doubleword and the leftmost doubleword is zero to ignore
226	 * the leftmost product of V1.
227	 */
228	VLEIB	%v9,0x20,7		  /* Shift by words */
229	VSRLB	%v2,%v1,%v9		  /* Store remaining bits in V2 */
230	VUPLLF	%v1,%v1			  /* Split rightmost doubleword */
231	VGFMAG	%v1,CONST_R5,%v1,%v2	  /* V1 = (V1 * R5) XOR V2 */
232
233	/*
234	 * Apply a Barret reduction to compute the final 32-bit CRC value.
235	 *
236	 * The input values to the Barret reduction are the degree-63 polynomial
237	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
238	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
239	 * P(x).
240	 *
241	 * The Barret reduction algorithm is defined as:
242	 *
243	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
244	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
245	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
246	 *
247	 *  Note: The leftmost doubleword of vector register containing
248	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
249	 *  is zero and does not contribute to the final result.
250	 */
251
252	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
253	VUPLLF	%v2,%v1
254	VGFMG	%v2,CONST_RU_POLY,%v2
255
256	/*
257	 * Compute the GF(2) product of the CRC polynomial with T1(x) in
258	 * V2 and XOR the intermediate result, T2(x), with the value in V1.
259	 * The final result is stored in word element 2 of V2.
260	 */
261	VUPLLF	%v2,%v2
262	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
263
264.Ldone:
265	VLGVF	%r2,%v2,2
266	br	%r14
267
268.previous
269