xref: /openbmc/linux/arch/s390/crypto/crc32le-vx.S (revision 82e6fdd6)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
4 *
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
7 * and Castagnoli.
8 *
9 * This CRC-32 implementation algorithm is bitreflected and processes
10 * the least-significant bit first (Little-Endian).
11 *
12 * Copyright IBM Corp. 2015
13 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
14 */
15
16#include <linux/linkage.h>
17#include <asm/vx-insn.h>
18
19/* Vector register range containing CRC-32 constants */
20#define CONST_PERM_LE2BE	%v9
21#define CONST_R2R1		%v10
22#define CONST_R4R3		%v11
23#define CONST_R5		%v12
24#define CONST_RU_POLY		%v13
25#define CONST_CRC_POLY		%v14
26
27.data
28.align 8
29
30/*
31 * The CRC-32 constant block contains reduction constants to fold and
32 * process particular chunks of the input data stream in parallel.
33 *
34 * For the CRC-32 variants, the constants are precomputed according to
35 * these definitions:
36 *
37 *	R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
38 *	R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
39 *	R3 = [(x128+32 mod P'(x) << 32)]'   << 1
40 *	R4 = [(x128-32 mod P'(x) << 32)]'   << 1
41 *	R5 = [(x64 mod P'(x) << 32)]'	    << 1
42 *	R6 = [(x32 mod P'(x) << 32)]'	    << 1
43 *
44 *	The bitreflected Barret reduction constant, u', is defined as
45 *	the bit reversal of floor(x**64 / P(x)).
46 *
47 *	where P(x) is the polynomial in the normal domain and the P'(x) is the
48 *	polynomial in the reversed (bitreflected) domain.
49 *
50 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
51 *
52 *	P(x)  = 0x04C11DB7
53 *	P'(x) = 0xEDB88320
54 *
55 * CRC-32C (Castagnoli) polynomials:
56 *
57 *	P(x)  = 0x1EDC6F41
58 *	P'(x) = 0x82F63B78
59 */
60
61.Lconstants_CRC_32_LE:
62	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
63	.quad		0x1c6e41596, 0x154442bd4		# R2, R1
64	.quad		0x0ccaa009e, 0x1751997d0		# R4, R3
65	.octa		0x163cd6124				# R5
66	.octa		0x1F7011641				# u'
67	.octa		0x1DB710641				# P'(x) << 1
68
69.Lconstants_CRC_32C_LE:
70	.octa		0x0F0E0D0C0B0A09080706050403020100	# BE->LE mask
71	.quad		0x09e4addf8, 0x740eef02			# R2, R1
72	.quad		0x14cd00bd6, 0xf20c0dfe			# R4, R3
73	.octa		0x0dd45aab8				# R5
74	.octa		0x0dea713f1				# u'
75	.octa		0x105ec76f0				# P'(x) << 1
76
77.previous
78
79
80.text
81
82/*
83 * The CRC-32 functions use these calling conventions:
84 *
85 * Parameters:
86 *
87 *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
88 *	%r3:	Input buffer pointer, performance might be improved if the
89 *		buffer is on a doubleword boundary.
90 *	%r4:	Length of the buffer, must be 64 bytes or greater.
91 *
92 * Register usage:
93 *
94 *	%r5:	CRC-32 constant pool base pointer.
95 *	V0:	Initial CRC value and intermediate constants and results.
96 *	V1..V4:	Data for CRC computation.
97 *	V5..V8:	Next data chunks that are fetched from the input buffer.
98 *	V9:	Constant for BE->LE conversion and shift operations
99 *
100 *	V10..V14: CRC-32 constants.
101 */
102
103ENTRY(crc32_le_vgfm_16)
104	larl	%r5,.Lconstants_CRC_32_LE
105	j	crc32_le_vgfm_generic
106
107ENTRY(crc32c_le_vgfm_16)
108	larl	%r5,.Lconstants_CRC_32C_LE
109	j	crc32_le_vgfm_generic
110
111
112crc32_le_vgfm_generic:
113	/* Load CRC-32 constants */
114	VLM	CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
115
116	/*
117	 * Load the initial CRC value.
118	 *
119	 * The CRC value is loaded into the rightmost word of the
120	 * vector register and is later XORed with the LSB portion
121	 * of the loaded input data.
122	 */
123	VZERO	%v0			/* Clear V0 */
124	VLVGF	%v0,%r2,3		/* Load CRC into rightmost word */
125
126	/* Load a 64-byte data chunk and XOR with CRC */
127	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
128	VPERM	%v1,%v1,%v1,CONST_PERM_LE2BE
129	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
130	VPERM	%v3,%v3,%v3,CONST_PERM_LE2BE
131	VPERM	%v4,%v4,%v4,CONST_PERM_LE2BE
132
133	VX	%v1,%v0,%v1		/* V1 ^= CRC */
134	aghi	%r3,64			/* BUF = BUF + 64 */
135	aghi	%r4,-64			/* LEN = LEN - 64 */
136
137	cghi	%r4,64
138	jl	.Lless_than_64bytes
139
140.Lfold_64bytes_loop:
141	/* Load the next 64-byte data chunk into V5 to V8 */
142	VLM	%v5,%v8,0,%r3
143	VPERM	%v5,%v5,%v5,CONST_PERM_LE2BE
144	VPERM	%v6,%v6,%v6,CONST_PERM_LE2BE
145	VPERM	%v7,%v7,%v7,CONST_PERM_LE2BE
146	VPERM	%v8,%v8,%v8,CONST_PERM_LE2BE
147
148	/*
149	 * Perform a GF(2) multiplication of the doublewords in V1 with
150	 * the R1 and R2 reduction constants in V0.  The intermediate result
151	 * is then folded (accumulated) with the next data chunk in V5 and
152	 * stored in V1. Repeat this step for the register contents
153	 * in V2, V3, and V4 respectively.
154	 */
155	VGFMAG	%v1,CONST_R2R1,%v1,%v5
156	VGFMAG	%v2,CONST_R2R1,%v2,%v6
157	VGFMAG	%v3,CONST_R2R1,%v3,%v7
158	VGFMAG	%v4,CONST_R2R1,%v4,%v8
159
160	aghi	%r3,64			/* BUF = BUF + 64 */
161	aghi	%r4,-64			/* LEN = LEN - 64 */
162
163	cghi	%r4,64
164	jnl	.Lfold_64bytes_loop
165
166.Lless_than_64bytes:
167	/*
168	 * Fold V1 to V4 into a single 128-bit value in V1.  Multiply V1 with R3
169	 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
170	 * value remains.
171	 */
172	VGFMAG	%v1,CONST_R4R3,%v1,%v2
173	VGFMAG	%v1,CONST_R4R3,%v1,%v3
174	VGFMAG	%v1,CONST_R4R3,%v1,%v4
175
176	cghi	%r4,16
177	jl	.Lfinal_fold
178
179.Lfold_16bytes_loop:
180
181	VL	%v2,0,,%r3		/* Load next data chunk */
182	VPERM	%v2,%v2,%v2,CONST_PERM_LE2BE
183	VGFMAG	%v1,CONST_R4R3,%v1,%v2	/* Fold next data chunk */
184
185	aghi	%r3,16
186	aghi	%r4,-16
187
188	cghi	%r4,16
189	jnl	.Lfold_16bytes_loop
190
191.Lfinal_fold:
192	/*
193	 * Set up a vector register for byte shifts.  The shift value must
194	 * be loaded in bits 1-4 in byte element 7 of a vector register.
195	 * Shift by 8 bytes: 0x40
196	 * Shift by 4 bytes: 0x20
197	 */
198	VLEIB	%v9,0x40,7
199
200	/*
201	 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
202	 * to move R4 into the rightmost doubleword and set the leftmost
203	 * doubleword to 0x1.
204	 */
205	VSRLB	%v0,CONST_R4R3,%v9
206	VLEIG	%v0,1,0
207
208	/*
209	 * Compute GF(2) product of V1 and V0.	The rightmost doubleword
210	 * of V1 is multiplied with R4.  The leftmost doubleword of V1 is
211	 * multiplied by 0x1 and is then XORed with rightmost product.
212	 * Implicitly, the intermediate leftmost product becomes padded
213	 */
214	VGFMG	%v1,%v0,%v1
215
216	/*
217	 * Now do the final 32-bit fold by multiplying the rightmost word
218	 * in V1 with R5 and XOR the result with the remaining bits in V1.
219	 *
220	 * To achieve this by a single VGFMAG, right shift V1 by a word
221	 * and store the result in V2 which is then accumulated.  Use the
222	 * vector unpack instruction to load the rightmost half of the
223	 * doubleword into the rightmost doubleword element of V1; the other
224	 * half is loaded in the leftmost doubleword.
225	 * The vector register with CONST_R5 contains the R5 constant in the
226	 * rightmost doubleword and the leftmost doubleword is zero to ignore
227	 * the leftmost product of V1.
228	 */
229	VLEIB	%v9,0x20,7		  /* Shift by words */
230	VSRLB	%v2,%v1,%v9		  /* Store remaining bits in V2 */
231	VUPLLF	%v1,%v1			  /* Split rightmost doubleword */
232	VGFMAG	%v1,CONST_R5,%v1,%v2	  /* V1 = (V1 * R5) XOR V2 */
233
234	/*
235	 * Apply a Barret reduction to compute the final 32-bit CRC value.
236	 *
237	 * The input values to the Barret reduction are the degree-63 polynomial
238	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
239	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
240	 * P(x).
241	 *
242	 * The Barret reduction algorithm is defined as:
243	 *
244	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
245	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
246	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
247	 *
248	 *  Note: The leftmost doubleword of vector register containing
249	 *  CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
250	 *  is zero and does not contribute to the final result.
251	 */
252
253	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
254	VUPLLF	%v2,%v1
255	VGFMG	%v2,CONST_RU_POLY,%v2
256
257	/*
258	 * Compute the GF(2) product of the CRC polynomial with T1(x) in
259	 * V2 and XOR the intermediate result, T2(x), with the value in V1.
260	 * The final result is stored in word element 2 of V2.
261	 */
262	VUPLLF	%v2,%v2
263	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
264
265.Ldone:
266	VLGVF	%r2,%v2,2
267	br	%r14
268
269.previous
270