xref: /openbmc/linux/arch/s390/crypto/crc32be-vx.S (revision e639c869)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
4 *
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of CRC-32 checksums.
7 *
8 * This CRC-32 implementation algorithm processes the most-significant
9 * bit first (BE).
10 *
11 * Copyright IBM Corp. 2015
12 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13 */
14
15#include <linux/linkage.h>
16#include <asm/vx-insn.h>
17
18/* Vector register range containing CRC-32 constants */
19#define CONST_R1R2		%v9
20#define CONST_R3R4		%v10
21#define CONST_R5		%v11
22#define CONST_R6		%v12
23#define CONST_RU_POLY		%v13
24#define CONST_CRC_POLY		%v14
25
26.data
27.align 8
28
29/*
30 * The CRC-32 constant block contains reduction constants to fold and
31 * process particular chunks of the input data stream in parallel.
32 *
33 * For the CRC-32 variants, the constants are precomputed according to
34 * these defintions:
35 *
36 *	R1 = x4*128+64 mod P(x)
37 *	R2 = x4*128    mod P(x)
38 *	R3 = x128+64   mod P(x)
39 *	R4 = x128      mod P(x)
40 *	R5 = x96       mod P(x)
41 *	R6 = x64       mod P(x)
42 *
43 *	Barret reduction constant, u, is defined as floor(x**64 / P(x)).
44 *
45 *	where P(x) is the polynomial in the normal domain and the P'(x) is the
46 *	polynomial in the reversed (bitreflected) domain.
47 *
48 * Note that the constant definitions below are extended in order to compute
49 * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
50 * The righmost doubleword can be 0 to prevent contribution to the result or
51 * can be multiplied by 1 to perform an XOR without the need for a separate
52 * VECTOR EXCLUSIVE OR instruction.
53 *
54 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
55 *
56 *	P(x)  = 0x04C11DB7
57 *	P'(x) = 0xEDB88320
58 */
59
60.Lconstants_CRC_32_BE:
61	.quad		0x08833794c, 0x0e6228b11	# R1, R2
62	.quad		0x0c5b9cd4c, 0x0e8a45605	# R3, R4
63	.quad		0x0f200aa66, 1 << 32		# R5, x32
64	.quad		0x0490d678d, 1			# R6, 1
65	.quad		0x104d101df, 0			# u
66	.quad		0x104C11DB7, 0			# P(x)
67
68.previous
69
70.text
71/*
72 * The CRC-32 function(s) use these calling conventions:
73 *
74 * Parameters:
75 *
76 *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
77 *	%r3:	Input buffer pointer, performance might be improved if the
78 *		buffer is on a doubleword boundary.
79 *	%r4:	Length of the buffer, must be 64 bytes or greater.
80 *
81 * Register usage:
82 *
83 *	%r5:	CRC-32 constant pool base pointer.
84 *	V0:	Initial CRC value and intermediate constants and results.
85 *	V1..V4:	Data for CRC computation.
86 *	V5..V8:	Next data chunks that are fetched from the input buffer.
87 *
88 *	V9..V14: CRC-32 constants.
89 */
90ENTRY(crc32_be_vgfm_16)
91	/* Load CRC-32 constants */
92	larl	%r5,.Lconstants_CRC_32_BE
93	VLM	CONST_R1R2,CONST_CRC_POLY,0,%r5
94
95	/* Load the initial CRC value into the leftmost word of V0. */
96	VZERO	%v0
97	VLVGF	%v0,%r2,0
98
99	/* Load a 64-byte data chunk and XOR with CRC */
100	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
101	VX	%v1,%v0,%v1		/* V1 ^= CRC */
102	aghi	%r3,64			/* BUF = BUF + 64 */
103	aghi	%r4,-64			/* LEN = LEN - 64 */
104
105	/* Check remaining buffer size and jump to proper folding method */
106	cghi	%r4,64
107	jl	.Lless_than_64bytes
108
109.Lfold_64bytes_loop:
110	/* Load the next 64-byte data chunk into V5 to V8 */
111	VLM	%v5,%v8,0,%r3
112
113	/*
114	 * Perform a GF(2) multiplication of the doublewords in V1 with
115	 * the reduction constants in V0.  The intermediate result is
116	 * then folded (accumulated) with the next data chunk in V5 and
117	 * stored in V1.  Repeat this step for the register contents
118	 * in V2, V3, and V4 respectively.
119	 */
120	VGFMAG	%v1,CONST_R1R2,%v1,%v5
121	VGFMAG	%v2,CONST_R1R2,%v2,%v6
122	VGFMAG	%v3,CONST_R1R2,%v3,%v7
123	VGFMAG	%v4,CONST_R1R2,%v4,%v8
124
125	/* Adjust buffer pointer and length for next loop */
126	aghi	%r3,64			/* BUF = BUF + 64 */
127	aghi	%r4,-64			/* LEN = LEN - 64 */
128
129	cghi	%r4,64
130	jnl	.Lfold_64bytes_loop
131
132.Lless_than_64bytes:
133	/* Fold V1 to V4 into a single 128-bit value in V1 */
134	VGFMAG	%v1,CONST_R3R4,%v1,%v2
135	VGFMAG	%v1,CONST_R3R4,%v1,%v3
136	VGFMAG	%v1,CONST_R3R4,%v1,%v4
137
138	/* Check whether to continue with 64-bit folding */
139	cghi	%r4,16
140	jl	.Lfinal_fold
141
142.Lfold_16bytes_loop:
143
144	VL	%v2,0,,%r3		/* Load next data chunk */
145	VGFMAG	%v1,CONST_R3R4,%v1,%v2	/* Fold next data chunk */
146
147	/* Adjust buffer pointer and size for folding next data chunk */
148	aghi	%r3,16
149	aghi	%r4,-16
150
151	/* Process remaining data chunks */
152	cghi	%r4,16
153	jnl	.Lfold_16bytes_loop
154
155.Lfinal_fold:
156	/*
157	 * The R5 constant is used to fold a 128-bit value into an 96-bit value
158	 * that is XORed with the next 96-bit input data chunk.  To use a single
159	 * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
160	 * form an intermediate 96-bit value (with appended zeros) which is then
161	 * XORed with the intermediate reduction result.
162	 */
163	VGFMG	%v1,CONST_R5,%v1
164
165	/*
166	 * Further reduce the remaining 96-bit value to a 64-bit value using a
167	 * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
168	 * intermediate result is then XORed with the product of the leftmost
169	 * doubleword with R6.	The result is a 64-bit value and is subject to
170	 * the Barret reduction.
171	 */
172	VGFMG	%v1,CONST_R6,%v1
173
174	/*
175	 * The input values to the Barret reduction are the degree-63 polynomial
176	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
177	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
178	 * P(x).
179	 *
180	 * The Barret reduction algorithm is defined as:
181	 *
182	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
183	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
184	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
185	 *
186	 * Note: To compensate the division by x^32, use the vector unpack
187	 * instruction to move the leftmost word into the leftmost doubleword
188	 * of the vector register.  The rightmost doubleword is multiplied
189	 * with zero to not contribute to the intermedate results.
190	 */
191
192	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
193	VUPLLF	%v2,%v1
194	VGFMG	%v2,CONST_RU_POLY,%v2
195
196	/*
197	 * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
198	 * V2 and XOR the intermediate result, T2(x),  with the value in V1.
199	 * The final result is in the rightmost word of V2.
200	 */
201	VUPLLF	%v2,%v2
202	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
203
204.Ldone:
205	VLGVF	%r2,%v2,3
206	br	%r14
207
208.previous
209