xref: /openbmc/linux/arch/s390/crypto/crc32be-vx.S (revision 49f3806d89e4cf9e330b6f2e39db1c913a8fd25a)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
4 *
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of CRC-32 checksums.
7 *
8 * This CRC-32 implementation algorithm processes the most-significant
9 * bit first (BE).
10 *
11 * Copyright IBM Corp. 2015
12 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
13 */
14
15#include <linux/linkage.h>
16#include <asm/nospec-insn.h>
17#include <asm/vx-insn.h>
18
19/* Vector register range containing CRC-32 constants */
20#define CONST_R1R2		%v9
21#define CONST_R3R4		%v10
22#define CONST_R5		%v11
23#define CONST_R6		%v12
24#define CONST_RU_POLY		%v13
25#define CONST_CRC_POLY		%v14
26
27	.data
28	.balign	8
29
30/*
31 * The CRC-32 constant block contains reduction constants to fold and
32 * process particular chunks of the input data stream in parallel.
33 *
34 * For the CRC-32 variants, the constants are precomputed according to
35 * these definitions:
36 *
37 *	R1 = x4*128+64 mod P(x)
38 *	R2 = x4*128    mod P(x)
39 *	R3 = x128+64   mod P(x)
40 *	R4 = x128      mod P(x)
41 *	R5 = x96       mod P(x)
42 *	R6 = x64       mod P(x)
43 *
44 *	Barret reduction constant, u, is defined as floor(x**64 / P(x)).
45 *
46 *	where P(x) is the polynomial in the normal domain and the P'(x) is the
47 *	polynomial in the reversed (bitreflected) domain.
48 *
49 * Note that the constant definitions below are extended in order to compute
50 * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
51 * The righmost doubleword can be 0 to prevent contribution to the result or
52 * can be multiplied by 1 to perform an XOR without the need for a separate
53 * VECTOR EXCLUSIVE OR instruction.
54 *
55 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
56 *
57 *	P(x)  = 0x04C11DB7
58 *	P'(x) = 0xEDB88320
59 */
60
61SYM_DATA_START_LOCAL(constants_CRC_32_BE)
62	.quad		0x08833794c, 0x0e6228b11	# R1, R2
63	.quad		0x0c5b9cd4c, 0x0e8a45605	# R3, R4
64	.quad		0x0f200aa66, 1 << 32		# R5, x32
65	.quad		0x0490d678d, 1			# R6, 1
66	.quad		0x104d101df, 0			# u
67	.quad		0x104C11DB7, 0			# P(x)
68SYM_DATA_END(constants_CRC_32_BE)
69
70	.previous
71
72	GEN_BR_THUNK %r14
73
74	.text
75/*
76 * The CRC-32 function(s) use these calling conventions:
77 *
78 * Parameters:
79 *
80 *	%r2:	Initial CRC value, typically ~0; and final CRC (return) value.
81 *	%r3:	Input buffer pointer, performance might be improved if the
82 *		buffer is on a doubleword boundary.
83 *	%r4:	Length of the buffer, must be 64 bytes or greater.
84 *
85 * Register usage:
86 *
87 *	%r5:	CRC-32 constant pool base pointer.
88 *	V0:	Initial CRC value and intermediate constants and results.
89 *	V1..V4:	Data for CRC computation.
90 *	V5..V8:	Next data chunks that are fetched from the input buffer.
91 *
92 *	V9..V14: CRC-32 constants.
93 */
94SYM_FUNC_START(crc32_be_vgfm_16)
95	/* Load CRC-32 constants */
96	larl	%r5,constants_CRC_32_BE
97	VLM	CONST_R1R2,CONST_CRC_POLY,0,%r5
98
99	/* Load the initial CRC value into the leftmost word of V0. */
100	VZERO	%v0
101	VLVGF	%v0,%r2,0
102
103	/* Load a 64-byte data chunk and XOR with CRC */
104	VLM	%v1,%v4,0,%r3		/* 64-bytes into V1..V4 */
105	VX	%v1,%v0,%v1		/* V1 ^= CRC */
106	aghi	%r3,64			/* BUF = BUF + 64 */
107	aghi	%r4,-64			/* LEN = LEN - 64 */
108
109	/* Check remaining buffer size and jump to proper folding method */
110	cghi	%r4,64
111	jl	.Lless_than_64bytes
112
113.Lfold_64bytes_loop:
114	/* Load the next 64-byte data chunk into V5 to V8 */
115	VLM	%v5,%v8,0,%r3
116
117	/*
118	 * Perform a GF(2) multiplication of the doublewords in V1 with
119	 * the reduction constants in V0.  The intermediate result is
120	 * then folded (accumulated) with the next data chunk in V5 and
121	 * stored in V1.  Repeat this step for the register contents
122	 * in V2, V3, and V4 respectively.
123	 */
124	VGFMAG	%v1,CONST_R1R2,%v1,%v5
125	VGFMAG	%v2,CONST_R1R2,%v2,%v6
126	VGFMAG	%v3,CONST_R1R2,%v3,%v7
127	VGFMAG	%v4,CONST_R1R2,%v4,%v8
128
129	/* Adjust buffer pointer and length for next loop */
130	aghi	%r3,64			/* BUF = BUF + 64 */
131	aghi	%r4,-64			/* LEN = LEN - 64 */
132
133	cghi	%r4,64
134	jnl	.Lfold_64bytes_loop
135
136.Lless_than_64bytes:
137	/* Fold V1 to V4 into a single 128-bit value in V1 */
138	VGFMAG	%v1,CONST_R3R4,%v1,%v2
139	VGFMAG	%v1,CONST_R3R4,%v1,%v3
140	VGFMAG	%v1,CONST_R3R4,%v1,%v4
141
142	/* Check whether to continue with 64-bit folding */
143	cghi	%r4,16
144	jl	.Lfinal_fold
145
146.Lfold_16bytes_loop:
147
148	VL	%v2,0,,%r3		/* Load next data chunk */
149	VGFMAG	%v1,CONST_R3R4,%v1,%v2	/* Fold next data chunk */
150
151	/* Adjust buffer pointer and size for folding next data chunk */
152	aghi	%r3,16
153	aghi	%r4,-16
154
155	/* Process remaining data chunks */
156	cghi	%r4,16
157	jnl	.Lfold_16bytes_loop
158
159.Lfinal_fold:
160	/*
161	 * The R5 constant is used to fold a 128-bit value into an 96-bit value
162	 * that is XORed with the next 96-bit input data chunk.  To use a single
163	 * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
164	 * form an intermediate 96-bit value (with appended zeros) which is then
165	 * XORed with the intermediate reduction result.
166	 */
167	VGFMG	%v1,CONST_R5,%v1
168
169	/*
170	 * Further reduce the remaining 96-bit value to a 64-bit value using a
171	 * single VGFMG, the rightmost doubleword is multiplied with 0x1. The
172	 * intermediate result is then XORed with the product of the leftmost
173	 * doubleword with R6.	The result is a 64-bit value and is subject to
174	 * the Barret reduction.
175	 */
176	VGFMG	%v1,CONST_R6,%v1
177
178	/*
179	 * The input values to the Barret reduction are the degree-63 polynomial
180	 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
181	 * constant u.	The Barret reduction result is the CRC value of R(x) mod
182	 * P(x).
183	 *
184	 * The Barret reduction algorithm is defined as:
185	 *
186	 *    1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
187	 *    2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
188	 *    3. C(x)  = R(x) XOR T2(x) mod x^32
189	 *
190	 * Note: To compensate the division by x^32, use the vector unpack
191	 * instruction to move the leftmost word into the leftmost doubleword
192	 * of the vector register.  The rightmost doubleword is multiplied
193	 * with zero to not contribute to the intermediate results.
194	 */
195
196	/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
197	VUPLLF	%v2,%v1
198	VGFMG	%v2,CONST_RU_POLY,%v2
199
200	/*
201	 * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
202	 * V2 and XOR the intermediate result, T2(x),  with the value in V1.
203	 * The final result is in the rightmost word of V2.
204	 */
205	VUPLLF	%v2,%v2
206	VGFMAG	%v2,CONST_CRC_POLY,%v2,%v1
207
208.Ldone:
209	VLGVF	%r2,%v2,3
210	BR_EX	%r14
211SYM_FUNC_END(crc32_be_vgfm_16)
212
213.previous
214