xref: /openbmc/linux/arch/s390/crypto/aes_s390.c (revision edc63a37)
1 /*
2  * Cryptographic API.
3  *
4  * s390 implementation of the AES Cipher Algorithm.
5  *
6  * s390 Version:
7  *   Copyright IBM Corp. 2005, 2007
8  *   Author(s): Jan Glauber (jang@de.ibm.com)
9  *		Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
10  *
11  * Derived from "crypto/aes_generic.c"
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 2 of the License, or (at your option)
16  * any later version.
17  *
18  */
19 
20 #define KMSG_COMPONENT "aes_s390"
21 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22 
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <crypto/xts.h>
32 #include <asm/cpacf.h>
33 
34 #define AES_KEYLEN_128		1
35 #define AES_KEYLEN_192		2
36 #define AES_KEYLEN_256		4
37 
38 static u8 *ctrblk;
39 static DEFINE_SPINLOCK(ctrblk_lock);
40 static char keylen_flag;
41 
42 struct s390_aes_ctx {
43 	u8 key[AES_MAX_KEY_SIZE];
44 	int key_len;
45 	unsigned long fc;
46 	union {
47 		struct crypto_skcipher *blk;
48 		struct crypto_cipher *cip;
49 	} fallback;
50 };
51 
52 struct pcc_param {
53 	u8 key[32];
54 	u8 tweak[16];
55 	u8 block[16];
56 	u8 bit[16];
57 	u8 xts[16];
58 };
59 
60 struct s390_xts_ctx {
61 	u8 key[32];
62 	u8 pcc_key[32];
63 	int key_len;
64 	unsigned long fc;
65 	struct crypto_skcipher *fallback;
66 };
67 
68 /*
69  * Check if the key_len is supported by the HW.
70  * Returns 0 if it is, a positive number if it is not and software fallback is
71  * required or a negative number in case the key size is not valid
72  */
73 static int need_fallback(unsigned int key_len)
74 {
75 	switch (key_len) {
76 	case 16:
77 		if (!(keylen_flag & AES_KEYLEN_128))
78 			return 1;
79 		break;
80 	case 24:
81 		if (!(keylen_flag & AES_KEYLEN_192))
82 			return 1;
83 		break;
84 	case 32:
85 		if (!(keylen_flag & AES_KEYLEN_256))
86 			return 1;
87 		break;
88 	default:
89 		return -1;
90 		break;
91 	}
92 	return 0;
93 }
94 
95 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
96 		unsigned int key_len)
97 {
98 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
99 	int ret;
100 
101 	sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
102 	sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
103 			CRYPTO_TFM_REQ_MASK);
104 
105 	ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
106 	if (ret) {
107 		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
108 		tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags &
109 				CRYPTO_TFM_RES_MASK);
110 	}
111 	return ret;
112 }
113 
114 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
115 		       unsigned int key_len)
116 {
117 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
118 	u32 *flags = &tfm->crt_flags;
119 	int ret;
120 
121 	ret = need_fallback(key_len);
122 	if (ret < 0) {
123 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
124 		return -EINVAL;
125 	}
126 
127 	sctx->key_len = key_len;
128 	if (!ret) {
129 		memcpy(sctx->key, in_key, key_len);
130 		return 0;
131 	}
132 
133 	return setkey_fallback_cip(tfm, in_key, key_len);
134 }
135 
136 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
137 {
138 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
139 
140 	if (unlikely(need_fallback(sctx->key_len))) {
141 		crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
142 		return;
143 	}
144 
145 	switch (sctx->key_len) {
146 	case 16:
147 		cpacf_km(CPACF_KM_AES_128,
148 			 &sctx->key, out, in, AES_BLOCK_SIZE);
149 		break;
150 	case 24:
151 		cpacf_km(CPACF_KM_AES_192,
152 			 &sctx->key, out, in, AES_BLOCK_SIZE);
153 		break;
154 	case 32:
155 		cpacf_km(CPACF_KM_AES_256,
156 			 &sctx->key, out, in, AES_BLOCK_SIZE);
157 		break;
158 	}
159 }
160 
161 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
162 {
163 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
164 
165 	if (unlikely(need_fallback(sctx->key_len))) {
166 		crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
167 		return;
168 	}
169 
170 	switch (sctx->key_len) {
171 	case 16:
172 		cpacf_km(CPACF_KM_AES_128 | CPACF_DECRYPT,
173 			 &sctx->key, out, in, AES_BLOCK_SIZE);
174 		break;
175 	case 24:
176 		cpacf_km(CPACF_KM_AES_192 | CPACF_DECRYPT,
177 			 &sctx->key, out, in, AES_BLOCK_SIZE);
178 		break;
179 	case 32:
180 		cpacf_km(CPACF_KM_AES_256 | CPACF_DECRYPT,
181 			 &sctx->key, out, in, AES_BLOCK_SIZE);
182 		break;
183 	}
184 }
185 
186 static int fallback_init_cip(struct crypto_tfm *tfm)
187 {
188 	const char *name = tfm->__crt_alg->cra_name;
189 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
190 
191 	sctx->fallback.cip = crypto_alloc_cipher(name, 0,
192 			CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
193 
194 	if (IS_ERR(sctx->fallback.cip)) {
195 		pr_err("Allocating AES fallback algorithm %s failed\n",
196 		       name);
197 		return PTR_ERR(sctx->fallback.cip);
198 	}
199 
200 	return 0;
201 }
202 
203 static void fallback_exit_cip(struct crypto_tfm *tfm)
204 {
205 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
206 
207 	crypto_free_cipher(sctx->fallback.cip);
208 	sctx->fallback.cip = NULL;
209 }
210 
211 static struct crypto_alg aes_alg = {
212 	.cra_name		=	"aes",
213 	.cra_driver_name	=	"aes-s390",
214 	.cra_priority		=	300,
215 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER |
216 					CRYPTO_ALG_NEED_FALLBACK,
217 	.cra_blocksize		=	AES_BLOCK_SIZE,
218 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
219 	.cra_module		=	THIS_MODULE,
220 	.cra_init               =       fallback_init_cip,
221 	.cra_exit               =       fallback_exit_cip,
222 	.cra_u			=	{
223 		.cipher = {
224 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
225 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
226 			.cia_setkey		=	aes_set_key,
227 			.cia_encrypt		=	aes_encrypt,
228 			.cia_decrypt		=	aes_decrypt,
229 		}
230 	}
231 };
232 
233 static int setkey_fallback_blk(struct crypto_tfm *tfm, const u8 *key,
234 		unsigned int len)
235 {
236 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
237 	unsigned int ret;
238 
239 	crypto_skcipher_clear_flags(sctx->fallback.blk, CRYPTO_TFM_REQ_MASK);
240 	crypto_skcipher_set_flags(sctx->fallback.blk, tfm->crt_flags &
241 						      CRYPTO_TFM_REQ_MASK);
242 
243 	ret = crypto_skcipher_setkey(sctx->fallback.blk, key, len);
244 
245 	tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
246 	tfm->crt_flags |= crypto_skcipher_get_flags(sctx->fallback.blk) &
247 			  CRYPTO_TFM_RES_MASK;
248 
249 	return ret;
250 }
251 
252 static int fallback_blk_dec(struct blkcipher_desc *desc,
253 		struct scatterlist *dst, struct scatterlist *src,
254 		unsigned int nbytes)
255 {
256 	unsigned int ret;
257 	struct crypto_blkcipher *tfm = desc->tfm;
258 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
259 	SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
260 
261 	skcipher_request_set_tfm(req, sctx->fallback.blk);
262 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
263 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
264 
265 	ret = crypto_skcipher_decrypt(req);
266 
267 	skcipher_request_zero(req);
268 	return ret;
269 }
270 
271 static int fallback_blk_enc(struct blkcipher_desc *desc,
272 		struct scatterlist *dst, struct scatterlist *src,
273 		unsigned int nbytes)
274 {
275 	unsigned int ret;
276 	struct crypto_blkcipher *tfm = desc->tfm;
277 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
278 	SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
279 
280 	skcipher_request_set_tfm(req, sctx->fallback.blk);
281 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
282 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
283 
284 	ret = crypto_skcipher_encrypt(req);
285 	return ret;
286 }
287 
288 static int ecb_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
289 			   unsigned int key_len)
290 {
291 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
292 	int ret;
293 
294 	ret = need_fallback(key_len);
295 	if (ret > 0) {
296 		sctx->key_len = key_len;
297 		return setkey_fallback_blk(tfm, in_key, key_len);
298 	}
299 
300 	switch (key_len) {
301 	case 16:
302 		sctx->fc = CPACF_KM_AES_128;
303 		break;
304 	case 24:
305 		sctx->fc = CPACF_KM_AES_192;
306 		break;
307 	case 32:
308 		sctx->fc = CPACF_KM_AES_256;
309 		break;
310 	}
311 
312 	return aes_set_key(tfm, in_key, key_len);
313 }
314 
315 static int ecb_aes_crypt(struct blkcipher_desc *desc, long func, void *param,
316 			 struct blkcipher_walk *walk)
317 {
318 	int ret = blkcipher_walk_virt(desc, walk);
319 	unsigned int nbytes;
320 
321 	while ((nbytes = walk->nbytes)) {
322 		/* only use complete blocks */
323 		unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
324 		u8 *out = walk->dst.virt.addr;
325 		u8 *in = walk->src.virt.addr;
326 
327 		ret = cpacf_km(func, param, out, in, n);
328 		if (ret < 0 || ret != n)
329 			return -EIO;
330 
331 		nbytes &= AES_BLOCK_SIZE - 1;
332 		ret = blkcipher_walk_done(desc, walk, nbytes);
333 	}
334 
335 	return ret;
336 }
337 
338 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
339 			   struct scatterlist *dst, struct scatterlist *src,
340 			   unsigned int nbytes)
341 {
342 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
343 	struct blkcipher_walk walk;
344 
345 	if (unlikely(need_fallback(sctx->key_len)))
346 		return fallback_blk_enc(desc, dst, src, nbytes);
347 
348 	blkcipher_walk_init(&walk, dst, src, nbytes);
349 	return ecb_aes_crypt(desc, sctx->fc, sctx->key, &walk);
350 }
351 
352 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
353 			   struct scatterlist *dst, struct scatterlist *src,
354 			   unsigned int nbytes)
355 {
356 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
357 	struct blkcipher_walk walk;
358 
359 	if (unlikely(need_fallback(sctx->key_len)))
360 		return fallback_blk_dec(desc, dst, src, nbytes);
361 
362 	blkcipher_walk_init(&walk, dst, src, nbytes);
363 	return ecb_aes_crypt(desc, sctx->fc | CPACF_DECRYPT, sctx->key, &walk);
364 }
365 
366 static int fallback_init_blk(struct crypto_tfm *tfm)
367 {
368 	const char *name = tfm->__crt_alg->cra_name;
369 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
370 
371 	sctx->fallback.blk = crypto_alloc_skcipher(name, 0,
372 						   CRYPTO_ALG_ASYNC |
373 						   CRYPTO_ALG_NEED_FALLBACK);
374 
375 	if (IS_ERR(sctx->fallback.blk)) {
376 		pr_err("Allocating AES fallback algorithm %s failed\n",
377 		       name);
378 		return PTR_ERR(sctx->fallback.blk);
379 	}
380 
381 	return 0;
382 }
383 
384 static void fallback_exit_blk(struct crypto_tfm *tfm)
385 {
386 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
387 
388 	crypto_free_skcipher(sctx->fallback.blk);
389 }
390 
391 static struct crypto_alg ecb_aes_alg = {
392 	.cra_name		=	"ecb(aes)",
393 	.cra_driver_name	=	"ecb-aes-s390",
394 	.cra_priority		=	400,	/* combo: aes + ecb */
395 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
396 					CRYPTO_ALG_NEED_FALLBACK,
397 	.cra_blocksize		=	AES_BLOCK_SIZE,
398 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
399 	.cra_type		=	&crypto_blkcipher_type,
400 	.cra_module		=	THIS_MODULE,
401 	.cra_init		=	fallback_init_blk,
402 	.cra_exit		=	fallback_exit_blk,
403 	.cra_u			=	{
404 		.blkcipher = {
405 			.min_keysize		=	AES_MIN_KEY_SIZE,
406 			.max_keysize		=	AES_MAX_KEY_SIZE,
407 			.setkey			=	ecb_aes_set_key,
408 			.encrypt		=	ecb_aes_encrypt,
409 			.decrypt		=	ecb_aes_decrypt,
410 		}
411 	}
412 };
413 
414 static int cbc_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
415 			   unsigned int key_len)
416 {
417 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
418 	int ret;
419 
420 	ret = need_fallback(key_len);
421 	if (ret > 0) {
422 		sctx->key_len = key_len;
423 		return setkey_fallback_blk(tfm, in_key, key_len);
424 	}
425 
426 	switch (key_len) {
427 	case 16:
428 		sctx->fc = CPACF_KMC_AES_128;
429 		break;
430 	case 24:
431 		sctx->fc = CPACF_KMC_AES_192;
432 		break;
433 	case 32:
434 		sctx->fc = CPACF_KMC_AES_256;
435 		break;
436 	}
437 
438 	return aes_set_key(tfm, in_key, key_len);
439 }
440 
441 static int cbc_aes_crypt(struct blkcipher_desc *desc, long func,
442 			 struct blkcipher_walk *walk)
443 {
444 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
445 	int ret = blkcipher_walk_virt(desc, walk);
446 	unsigned int nbytes = walk->nbytes;
447 	struct {
448 		u8 iv[AES_BLOCK_SIZE];
449 		u8 key[AES_MAX_KEY_SIZE];
450 	} param;
451 
452 	if (!nbytes)
453 		goto out;
454 
455 	memcpy(param.iv, walk->iv, AES_BLOCK_SIZE);
456 	memcpy(param.key, sctx->key, sctx->key_len);
457 	do {
458 		/* only use complete blocks */
459 		unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
460 		u8 *out = walk->dst.virt.addr;
461 		u8 *in = walk->src.virt.addr;
462 
463 		ret = cpacf_kmc(func, &param, out, in, n);
464 		if (ret < 0 || ret != n)
465 			return -EIO;
466 
467 		nbytes &= AES_BLOCK_SIZE - 1;
468 		ret = blkcipher_walk_done(desc, walk, nbytes);
469 	} while ((nbytes = walk->nbytes));
470 	memcpy(walk->iv, param.iv, AES_BLOCK_SIZE);
471 
472 out:
473 	return ret;
474 }
475 
476 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
477 			   struct scatterlist *dst, struct scatterlist *src,
478 			   unsigned int nbytes)
479 {
480 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
481 	struct blkcipher_walk walk;
482 
483 	if (unlikely(need_fallback(sctx->key_len)))
484 		return fallback_blk_enc(desc, dst, src, nbytes);
485 
486 	blkcipher_walk_init(&walk, dst, src, nbytes);
487 	return cbc_aes_crypt(desc, sctx->fc, &walk);
488 }
489 
490 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
491 			   struct scatterlist *dst, struct scatterlist *src,
492 			   unsigned int nbytes)
493 {
494 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
495 	struct blkcipher_walk walk;
496 
497 	if (unlikely(need_fallback(sctx->key_len)))
498 		return fallback_blk_dec(desc, dst, src, nbytes);
499 
500 	blkcipher_walk_init(&walk, dst, src, nbytes);
501 	return cbc_aes_crypt(desc, sctx->fc | CPACF_DECRYPT, &walk);
502 }
503 
504 static struct crypto_alg cbc_aes_alg = {
505 	.cra_name		=	"cbc(aes)",
506 	.cra_driver_name	=	"cbc-aes-s390",
507 	.cra_priority		=	400,	/* combo: aes + cbc */
508 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
509 					CRYPTO_ALG_NEED_FALLBACK,
510 	.cra_blocksize		=	AES_BLOCK_SIZE,
511 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
512 	.cra_type		=	&crypto_blkcipher_type,
513 	.cra_module		=	THIS_MODULE,
514 	.cra_init		=	fallback_init_blk,
515 	.cra_exit		=	fallback_exit_blk,
516 	.cra_u			=	{
517 		.blkcipher = {
518 			.min_keysize		=	AES_MIN_KEY_SIZE,
519 			.max_keysize		=	AES_MAX_KEY_SIZE,
520 			.ivsize			=	AES_BLOCK_SIZE,
521 			.setkey			=	cbc_aes_set_key,
522 			.encrypt		=	cbc_aes_encrypt,
523 			.decrypt		=	cbc_aes_decrypt,
524 		}
525 	}
526 };
527 
528 static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
529 				   unsigned int len)
530 {
531 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
532 	unsigned int ret;
533 
534 	crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
535 	crypto_skcipher_set_flags(xts_ctx->fallback, tfm->crt_flags &
536 						     CRYPTO_TFM_REQ_MASK);
537 
538 	ret = crypto_skcipher_setkey(xts_ctx->fallback, key, len);
539 
540 	tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
541 	tfm->crt_flags |= crypto_skcipher_get_flags(xts_ctx->fallback) &
542 			  CRYPTO_TFM_RES_MASK;
543 
544 	return ret;
545 }
546 
547 static int xts_fallback_decrypt(struct blkcipher_desc *desc,
548 		struct scatterlist *dst, struct scatterlist *src,
549 		unsigned int nbytes)
550 {
551 	struct crypto_blkcipher *tfm = desc->tfm;
552 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
553 	SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
554 	unsigned int ret;
555 
556 	skcipher_request_set_tfm(req, xts_ctx->fallback);
557 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
558 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
559 
560 	ret = crypto_skcipher_decrypt(req);
561 
562 	skcipher_request_zero(req);
563 	return ret;
564 }
565 
566 static int xts_fallback_encrypt(struct blkcipher_desc *desc,
567 		struct scatterlist *dst, struct scatterlist *src,
568 		unsigned int nbytes)
569 {
570 	struct crypto_blkcipher *tfm = desc->tfm;
571 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
572 	SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
573 	unsigned int ret;
574 
575 	skcipher_request_set_tfm(req, xts_ctx->fallback);
576 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
577 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
578 
579 	ret = crypto_skcipher_encrypt(req);
580 
581 	skcipher_request_zero(req);
582 	return ret;
583 }
584 
585 static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
586 			   unsigned int key_len)
587 {
588 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
589 	u32 *flags = &tfm->crt_flags;
590 	int err;
591 
592 	err = xts_check_key(tfm, in_key, key_len);
593 	if (err)
594 		return err;
595 
596 	switch (key_len) {
597 	case 32:
598 		xts_ctx->fc = CPACF_KM_XTS_128;
599 		memcpy(xts_ctx->key + 16, in_key, 16);
600 		memcpy(xts_ctx->pcc_key + 16, in_key + 16, 16);
601 		break;
602 	case 48:
603 		xts_ctx->fc = 0;
604 		xts_fallback_setkey(tfm, in_key, key_len);
605 		break;
606 	case 64:
607 		xts_ctx->fc = CPACF_KM_XTS_256;
608 		memcpy(xts_ctx->key, in_key, 32);
609 		memcpy(xts_ctx->pcc_key, in_key + 32, 32);
610 		break;
611 	default:
612 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
613 		return -EINVAL;
614 	}
615 	xts_ctx->key_len = key_len;
616 	return 0;
617 }
618 
619 static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
620 			 struct s390_xts_ctx *xts_ctx,
621 			 struct blkcipher_walk *walk)
622 {
623 	unsigned int offset = (xts_ctx->key_len >> 1) & 0x10;
624 	int ret = blkcipher_walk_virt(desc, walk);
625 	unsigned int nbytes = walk->nbytes;
626 	unsigned int n;
627 	u8 *in, *out;
628 	struct pcc_param pcc_param;
629 	struct {
630 		u8 key[32];
631 		u8 init[16];
632 	} xts_param;
633 
634 	if (!nbytes)
635 		goto out;
636 
637 	memset(pcc_param.block, 0, sizeof(pcc_param.block));
638 	memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
639 	memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
640 	memcpy(pcc_param.tweak, walk->iv, sizeof(pcc_param.tweak));
641 	memcpy(pcc_param.key, xts_ctx->pcc_key, 32);
642 	/* remove decipher modifier bit from 'func' and call PCC */
643 	ret = cpacf_pcc(func & 0x7f, &pcc_param.key[offset]);
644 	if (ret < 0)
645 		return -EIO;
646 
647 	memcpy(xts_param.key, xts_ctx->key, 32);
648 	memcpy(xts_param.init, pcc_param.xts, 16);
649 	do {
650 		/* only use complete blocks */
651 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
652 		out = walk->dst.virt.addr;
653 		in = walk->src.virt.addr;
654 
655 		ret = cpacf_km(func, &xts_param.key[offset], out, in, n);
656 		if (ret < 0 || ret != n)
657 			return -EIO;
658 
659 		nbytes &= AES_BLOCK_SIZE - 1;
660 		ret = blkcipher_walk_done(desc, walk, nbytes);
661 	} while ((nbytes = walk->nbytes));
662 out:
663 	return ret;
664 }
665 
666 static int xts_aes_encrypt(struct blkcipher_desc *desc,
667 			   struct scatterlist *dst, struct scatterlist *src,
668 			   unsigned int nbytes)
669 {
670 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
671 	struct blkcipher_walk walk;
672 
673 	if (unlikely(xts_ctx->key_len == 48))
674 		return xts_fallback_encrypt(desc, dst, src, nbytes);
675 
676 	blkcipher_walk_init(&walk, dst, src, nbytes);
677 	return xts_aes_crypt(desc, xts_ctx->fc, xts_ctx, &walk);
678 }
679 
680 static int xts_aes_decrypt(struct blkcipher_desc *desc,
681 			   struct scatterlist *dst, struct scatterlist *src,
682 			   unsigned int nbytes)
683 {
684 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
685 	struct blkcipher_walk walk;
686 
687 	if (unlikely(xts_ctx->key_len == 48))
688 		return xts_fallback_decrypt(desc, dst, src, nbytes);
689 
690 	blkcipher_walk_init(&walk, dst, src, nbytes);
691 	return xts_aes_crypt(desc, xts_ctx->fc | CPACF_DECRYPT, xts_ctx, &walk);
692 }
693 
694 static int xts_fallback_init(struct crypto_tfm *tfm)
695 {
696 	const char *name = tfm->__crt_alg->cra_name;
697 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
698 
699 	xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
700 						  CRYPTO_ALG_ASYNC |
701 						  CRYPTO_ALG_NEED_FALLBACK);
702 
703 	if (IS_ERR(xts_ctx->fallback)) {
704 		pr_err("Allocating XTS fallback algorithm %s failed\n",
705 		       name);
706 		return PTR_ERR(xts_ctx->fallback);
707 	}
708 	return 0;
709 }
710 
711 static void xts_fallback_exit(struct crypto_tfm *tfm)
712 {
713 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
714 
715 	crypto_free_skcipher(xts_ctx->fallback);
716 }
717 
718 static struct crypto_alg xts_aes_alg = {
719 	.cra_name		=	"xts(aes)",
720 	.cra_driver_name	=	"xts-aes-s390",
721 	.cra_priority		=	400,	/* combo: aes + xts */
722 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
723 					CRYPTO_ALG_NEED_FALLBACK,
724 	.cra_blocksize		=	AES_BLOCK_SIZE,
725 	.cra_ctxsize		=	sizeof(struct s390_xts_ctx),
726 	.cra_type		=	&crypto_blkcipher_type,
727 	.cra_module		=	THIS_MODULE,
728 	.cra_init		=	xts_fallback_init,
729 	.cra_exit		=	xts_fallback_exit,
730 	.cra_u			=	{
731 		.blkcipher = {
732 			.min_keysize		=	2 * AES_MIN_KEY_SIZE,
733 			.max_keysize		=	2 * AES_MAX_KEY_SIZE,
734 			.ivsize			=	AES_BLOCK_SIZE,
735 			.setkey			=	xts_aes_set_key,
736 			.encrypt		=	xts_aes_encrypt,
737 			.decrypt		=	xts_aes_decrypt,
738 		}
739 	}
740 };
741 
742 static int xts_aes_alg_reg;
743 
744 static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
745 			   unsigned int key_len)
746 {
747 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
748 
749 	switch (key_len) {
750 	case 16:
751 		sctx->fc = CPACF_KMCTR_AES_128;
752 		break;
753 	case 24:
754 		sctx->fc = CPACF_KMCTR_AES_192;
755 		break;
756 	case 32:
757 		sctx->fc = CPACF_KMCTR_AES_256;
758 		break;
759 	}
760 
761 	return aes_set_key(tfm, in_key, key_len);
762 }
763 
764 static unsigned int __ctrblk_init(u8 *ctrptr, unsigned int nbytes)
765 {
766 	unsigned int i, n;
767 
768 	/* only use complete blocks, max. PAGE_SIZE */
769 	n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
770 	for (i = AES_BLOCK_SIZE; i < n; i += AES_BLOCK_SIZE) {
771 		memcpy(ctrptr + i, ctrptr + i - AES_BLOCK_SIZE,
772 		       AES_BLOCK_SIZE);
773 		crypto_inc(ctrptr + i, AES_BLOCK_SIZE);
774 	}
775 	return n;
776 }
777 
778 static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
779 			 struct s390_aes_ctx *sctx, struct blkcipher_walk *walk)
780 {
781 	int ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
782 	unsigned int n, nbytes;
783 	u8 buf[AES_BLOCK_SIZE], ctrbuf[AES_BLOCK_SIZE];
784 	u8 *out, *in, *ctrptr = ctrbuf;
785 
786 	if (!walk->nbytes)
787 		return ret;
788 
789 	if (spin_trylock(&ctrblk_lock))
790 		ctrptr = ctrblk;
791 
792 	memcpy(ctrptr, walk->iv, AES_BLOCK_SIZE);
793 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
794 		out = walk->dst.virt.addr;
795 		in = walk->src.virt.addr;
796 		while (nbytes >= AES_BLOCK_SIZE) {
797 			if (ctrptr == ctrblk)
798 				n = __ctrblk_init(ctrptr, nbytes);
799 			else
800 				n = AES_BLOCK_SIZE;
801 			ret = cpacf_kmctr(func, sctx->key, out, in, n, ctrptr);
802 			if (ret < 0 || ret != n) {
803 				if (ctrptr == ctrblk)
804 					spin_unlock(&ctrblk_lock);
805 				return -EIO;
806 			}
807 			if (n > AES_BLOCK_SIZE)
808 				memcpy(ctrptr, ctrptr + n - AES_BLOCK_SIZE,
809 				       AES_BLOCK_SIZE);
810 			crypto_inc(ctrptr, AES_BLOCK_SIZE);
811 			out += n;
812 			in += n;
813 			nbytes -= n;
814 		}
815 		ret = blkcipher_walk_done(desc, walk, nbytes);
816 	}
817 	if (ctrptr == ctrblk) {
818 		if (nbytes)
819 			memcpy(ctrbuf, ctrptr, AES_BLOCK_SIZE);
820 		else
821 			memcpy(walk->iv, ctrptr, AES_BLOCK_SIZE);
822 		spin_unlock(&ctrblk_lock);
823 	} else {
824 		if (!nbytes)
825 			memcpy(walk->iv, ctrptr, AES_BLOCK_SIZE);
826 	}
827 	/*
828 	 * final block may be < AES_BLOCK_SIZE, copy only nbytes
829 	 */
830 	if (nbytes) {
831 		out = walk->dst.virt.addr;
832 		in = walk->src.virt.addr;
833 		ret = cpacf_kmctr(func, sctx->key, buf, in,
834 				  AES_BLOCK_SIZE, ctrbuf);
835 		if (ret < 0 || ret != AES_BLOCK_SIZE)
836 			return -EIO;
837 		memcpy(out, buf, nbytes);
838 		crypto_inc(ctrbuf, AES_BLOCK_SIZE);
839 		ret = blkcipher_walk_done(desc, walk, 0);
840 		memcpy(walk->iv, ctrbuf, AES_BLOCK_SIZE);
841 	}
842 
843 	return ret;
844 }
845 
846 static int ctr_aes_encrypt(struct blkcipher_desc *desc,
847 			   struct scatterlist *dst, struct scatterlist *src,
848 			   unsigned int nbytes)
849 {
850 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
851 	struct blkcipher_walk walk;
852 
853 	blkcipher_walk_init(&walk, dst, src, nbytes);
854 	return ctr_aes_crypt(desc, sctx->fc, sctx, &walk);
855 }
856 
857 static int ctr_aes_decrypt(struct blkcipher_desc *desc,
858 			   struct scatterlist *dst, struct scatterlist *src,
859 			   unsigned int nbytes)
860 {
861 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
862 	struct blkcipher_walk walk;
863 
864 	blkcipher_walk_init(&walk, dst, src, nbytes);
865 	return ctr_aes_crypt(desc, sctx->fc | CPACF_DECRYPT, sctx, &walk);
866 }
867 
868 static struct crypto_alg ctr_aes_alg = {
869 	.cra_name		=	"ctr(aes)",
870 	.cra_driver_name	=	"ctr-aes-s390",
871 	.cra_priority		=	400,	/* combo: aes + ctr */
872 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
873 	.cra_blocksize		=	1,
874 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
875 	.cra_type		=	&crypto_blkcipher_type,
876 	.cra_module		=	THIS_MODULE,
877 	.cra_u			=	{
878 		.blkcipher = {
879 			.min_keysize		=	AES_MIN_KEY_SIZE,
880 			.max_keysize		=	AES_MAX_KEY_SIZE,
881 			.ivsize			=	AES_BLOCK_SIZE,
882 			.setkey			=	ctr_aes_set_key,
883 			.encrypt		=	ctr_aes_encrypt,
884 			.decrypt		=	ctr_aes_decrypt,
885 		}
886 	}
887 };
888 
889 static int ctr_aes_alg_reg;
890 
891 static int __init aes_s390_init(void)
892 {
893 	int ret;
894 
895 	if (cpacf_query(CPACF_KM, CPACF_KM_AES_128))
896 		keylen_flag |= AES_KEYLEN_128;
897 	if (cpacf_query(CPACF_KM, CPACF_KM_AES_192))
898 		keylen_flag |= AES_KEYLEN_192;
899 	if (cpacf_query(CPACF_KM, CPACF_KM_AES_256))
900 		keylen_flag |= AES_KEYLEN_256;
901 
902 	if (!keylen_flag)
903 		return -EOPNOTSUPP;
904 
905 	/* z9 109 and z9 BC/EC only support 128 bit key length */
906 	if (keylen_flag == AES_KEYLEN_128)
907 		pr_info("AES hardware acceleration is only available for"
908 			" 128-bit keys\n");
909 
910 	ret = crypto_register_alg(&aes_alg);
911 	if (ret)
912 		goto aes_err;
913 
914 	ret = crypto_register_alg(&ecb_aes_alg);
915 	if (ret)
916 		goto ecb_aes_err;
917 
918 	ret = crypto_register_alg(&cbc_aes_alg);
919 	if (ret)
920 		goto cbc_aes_err;
921 
922 	if (cpacf_query(CPACF_KM, CPACF_KM_XTS_128) &&
923 	    cpacf_query(CPACF_KM, CPACF_KM_XTS_256)) {
924 		ret = crypto_register_alg(&xts_aes_alg);
925 		if (ret)
926 			goto xts_aes_err;
927 		xts_aes_alg_reg = 1;
928 	}
929 
930 	if (cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_128) &&
931 	    cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_192) &&
932 	    cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_256)) {
933 		ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
934 		if (!ctrblk) {
935 			ret = -ENOMEM;
936 			goto ctr_aes_err;
937 		}
938 		ret = crypto_register_alg(&ctr_aes_alg);
939 		if (ret) {
940 			free_page((unsigned long) ctrblk);
941 			goto ctr_aes_err;
942 		}
943 		ctr_aes_alg_reg = 1;
944 	}
945 
946 out:
947 	return ret;
948 
949 ctr_aes_err:
950 	crypto_unregister_alg(&xts_aes_alg);
951 xts_aes_err:
952 	crypto_unregister_alg(&cbc_aes_alg);
953 cbc_aes_err:
954 	crypto_unregister_alg(&ecb_aes_alg);
955 ecb_aes_err:
956 	crypto_unregister_alg(&aes_alg);
957 aes_err:
958 	goto out;
959 }
960 
961 static void __exit aes_s390_fini(void)
962 {
963 	if (ctr_aes_alg_reg) {
964 		crypto_unregister_alg(&ctr_aes_alg);
965 		free_page((unsigned long) ctrblk);
966 	}
967 	if (xts_aes_alg_reg)
968 		crypto_unregister_alg(&xts_aes_alg);
969 	crypto_unregister_alg(&cbc_aes_alg);
970 	crypto_unregister_alg(&ecb_aes_alg);
971 	crypto_unregister_alg(&aes_alg);
972 }
973 
974 module_cpu_feature_match(MSA, aes_s390_init);
975 module_exit(aes_s390_fini);
976 
977 MODULE_ALIAS_CRYPTO("aes-all");
978 
979 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
980 MODULE_LICENSE("GPL");
981