xref: /openbmc/linux/arch/s390/crypto/aes_s390.c (revision aeb64ff3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cryptographic API.
4  *
5  * s390 implementation of the AES Cipher Algorithm.
6  *
7  * s390 Version:
8  *   Copyright IBM Corp. 2005, 2017
9  *   Author(s): Jan Glauber (jang@de.ibm.com)
10  *		Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11  *		Patrick Steuer <patrick.steuer@de.ibm.com>
12  *		Harald Freudenberger <freude@de.ibm.com>
13  *
14  * Derived from "crypto/aes_generic.c"
15  */
16 
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19 
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/mutex.h>
31 #include <linux/fips.h>
32 #include <linux/string.h>
33 #include <crypto/xts.h>
34 #include <asm/cpacf.h>
35 
36 static u8 *ctrblk;
37 static DEFINE_MUTEX(ctrblk_lock);
38 
39 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
40 		    kma_functions;
41 
42 struct s390_aes_ctx {
43 	u8 key[AES_MAX_KEY_SIZE];
44 	int key_len;
45 	unsigned long fc;
46 	union {
47 		struct crypto_skcipher *skcipher;
48 		struct crypto_cipher *cip;
49 	} fallback;
50 };
51 
52 struct s390_xts_ctx {
53 	u8 key[32];
54 	u8 pcc_key[32];
55 	int key_len;
56 	unsigned long fc;
57 	struct crypto_skcipher *fallback;
58 };
59 
60 struct gcm_sg_walk {
61 	struct scatter_walk walk;
62 	unsigned int walk_bytes;
63 	u8 *walk_ptr;
64 	unsigned int walk_bytes_remain;
65 	u8 buf[AES_BLOCK_SIZE];
66 	unsigned int buf_bytes;
67 	u8 *ptr;
68 	unsigned int nbytes;
69 };
70 
71 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
72 		unsigned int key_len)
73 {
74 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
75 	int ret;
76 
77 	sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
78 	sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
79 			CRYPTO_TFM_REQ_MASK);
80 
81 	ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
82 	if (ret) {
83 		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
84 		tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags &
85 				CRYPTO_TFM_RES_MASK);
86 	}
87 	return ret;
88 }
89 
90 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
91 		       unsigned int key_len)
92 {
93 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
94 	unsigned long fc;
95 
96 	/* Pick the correct function code based on the key length */
97 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
98 	     (key_len == 24) ? CPACF_KM_AES_192 :
99 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
100 
101 	/* Check if the function code is available */
102 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
103 	if (!sctx->fc)
104 		return setkey_fallback_cip(tfm, in_key, key_len);
105 
106 	sctx->key_len = key_len;
107 	memcpy(sctx->key, in_key, key_len);
108 	return 0;
109 }
110 
111 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
112 {
113 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
114 
115 	if (unlikely(!sctx->fc)) {
116 		crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
117 		return;
118 	}
119 	cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
120 }
121 
122 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
123 {
124 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
125 
126 	if (unlikely(!sctx->fc)) {
127 		crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
128 		return;
129 	}
130 	cpacf_km(sctx->fc | CPACF_DECRYPT,
131 		 &sctx->key, out, in, AES_BLOCK_SIZE);
132 }
133 
134 static int fallback_init_cip(struct crypto_tfm *tfm)
135 {
136 	const char *name = tfm->__crt_alg->cra_name;
137 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
138 
139 	sctx->fallback.cip = crypto_alloc_cipher(name, 0,
140 						 CRYPTO_ALG_NEED_FALLBACK);
141 
142 	if (IS_ERR(sctx->fallback.cip)) {
143 		pr_err("Allocating AES fallback algorithm %s failed\n",
144 		       name);
145 		return PTR_ERR(sctx->fallback.cip);
146 	}
147 
148 	return 0;
149 }
150 
151 static void fallback_exit_cip(struct crypto_tfm *tfm)
152 {
153 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
154 
155 	crypto_free_cipher(sctx->fallback.cip);
156 	sctx->fallback.cip = NULL;
157 }
158 
159 static struct crypto_alg aes_alg = {
160 	.cra_name		=	"aes",
161 	.cra_driver_name	=	"aes-s390",
162 	.cra_priority		=	300,
163 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER |
164 					CRYPTO_ALG_NEED_FALLBACK,
165 	.cra_blocksize		=	AES_BLOCK_SIZE,
166 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
167 	.cra_module		=	THIS_MODULE,
168 	.cra_init               =       fallback_init_cip,
169 	.cra_exit               =       fallback_exit_cip,
170 	.cra_u			=	{
171 		.cipher = {
172 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
173 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
174 			.cia_setkey		=	aes_set_key,
175 			.cia_encrypt		=	crypto_aes_encrypt,
176 			.cia_decrypt		=	crypto_aes_decrypt,
177 		}
178 	}
179 };
180 
181 static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
182 				    unsigned int len)
183 {
184 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
185 	int ret;
186 
187 	crypto_skcipher_clear_flags(sctx->fallback.skcipher,
188 				    CRYPTO_TFM_REQ_MASK);
189 	crypto_skcipher_set_flags(sctx->fallback.skcipher,
190 				  crypto_skcipher_get_flags(tfm) &
191 				  CRYPTO_TFM_REQ_MASK);
192 	ret = crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
193 	crypto_skcipher_set_flags(tfm,
194 				  crypto_skcipher_get_flags(sctx->fallback.skcipher) &
195 				  CRYPTO_TFM_RES_MASK);
196 	return ret;
197 }
198 
199 static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
200 				   struct skcipher_request *req,
201 				   unsigned long modifier)
202 {
203 	struct skcipher_request *subreq = skcipher_request_ctx(req);
204 
205 	*subreq = *req;
206 	skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
207 	return (modifier & CPACF_DECRYPT) ?
208 		crypto_skcipher_decrypt(subreq) :
209 		crypto_skcipher_encrypt(subreq);
210 }
211 
212 static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
213 			   unsigned int key_len)
214 {
215 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
216 	unsigned long fc;
217 
218 	/* Pick the correct function code based on the key length */
219 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
220 	     (key_len == 24) ? CPACF_KM_AES_192 :
221 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
222 
223 	/* Check if the function code is available */
224 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
225 	if (!sctx->fc)
226 		return setkey_fallback_skcipher(tfm, in_key, key_len);
227 
228 	sctx->key_len = key_len;
229 	memcpy(sctx->key, in_key, key_len);
230 	return 0;
231 }
232 
233 static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
234 {
235 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
236 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
237 	struct skcipher_walk walk;
238 	unsigned int nbytes, n;
239 	int ret;
240 
241 	if (unlikely(!sctx->fc))
242 		return fallback_skcipher_crypt(sctx, req, modifier);
243 
244 	ret = skcipher_walk_virt(&walk, req, false);
245 	while ((nbytes = walk.nbytes) != 0) {
246 		/* only use complete blocks */
247 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
248 		cpacf_km(sctx->fc | modifier, sctx->key,
249 			 walk.dst.virt.addr, walk.src.virt.addr, n);
250 		ret = skcipher_walk_done(&walk, nbytes - n);
251 	}
252 	return ret;
253 }
254 
255 static int ecb_aes_encrypt(struct skcipher_request *req)
256 {
257 	return ecb_aes_crypt(req, 0);
258 }
259 
260 static int ecb_aes_decrypt(struct skcipher_request *req)
261 {
262 	return ecb_aes_crypt(req, CPACF_DECRYPT);
263 }
264 
265 static int fallback_init_skcipher(struct crypto_skcipher *tfm)
266 {
267 	const char *name = crypto_tfm_alg_name(&tfm->base);
268 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
269 
270 	sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
271 				CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
272 
273 	if (IS_ERR(sctx->fallback.skcipher)) {
274 		pr_err("Allocating AES fallback algorithm %s failed\n",
275 		       name);
276 		return PTR_ERR(sctx->fallback.skcipher);
277 	}
278 
279 	crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
280 				    crypto_skcipher_reqsize(sctx->fallback.skcipher));
281 	return 0;
282 }
283 
284 static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
285 {
286 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
287 
288 	crypto_free_skcipher(sctx->fallback.skcipher);
289 }
290 
291 static struct skcipher_alg ecb_aes_alg = {
292 	.base.cra_name		=	"ecb(aes)",
293 	.base.cra_driver_name	=	"ecb-aes-s390",
294 	.base.cra_priority	=	401,	/* combo: aes + ecb + 1 */
295 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
296 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
297 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
298 	.base.cra_module	=	THIS_MODULE,
299 	.init			=	fallback_init_skcipher,
300 	.exit			=	fallback_exit_skcipher,
301 	.min_keysize		=	AES_MIN_KEY_SIZE,
302 	.max_keysize		=	AES_MAX_KEY_SIZE,
303 	.setkey			=	ecb_aes_set_key,
304 	.encrypt		=	ecb_aes_encrypt,
305 	.decrypt		=	ecb_aes_decrypt,
306 };
307 
308 static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
309 			   unsigned int key_len)
310 {
311 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
312 	unsigned long fc;
313 
314 	/* Pick the correct function code based on the key length */
315 	fc = (key_len == 16) ? CPACF_KMC_AES_128 :
316 	     (key_len == 24) ? CPACF_KMC_AES_192 :
317 	     (key_len == 32) ? CPACF_KMC_AES_256 : 0;
318 
319 	/* Check if the function code is available */
320 	sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
321 	if (!sctx->fc)
322 		return setkey_fallback_skcipher(tfm, in_key, key_len);
323 
324 	sctx->key_len = key_len;
325 	memcpy(sctx->key, in_key, key_len);
326 	return 0;
327 }
328 
329 static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
330 {
331 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
332 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
333 	struct skcipher_walk walk;
334 	unsigned int nbytes, n;
335 	int ret;
336 	struct {
337 		u8 iv[AES_BLOCK_SIZE];
338 		u8 key[AES_MAX_KEY_SIZE];
339 	} param;
340 
341 	if (unlikely(!sctx->fc))
342 		return fallback_skcipher_crypt(sctx, req, modifier);
343 
344 	ret = skcipher_walk_virt(&walk, req, false);
345 	if (ret)
346 		return ret;
347 	memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
348 	memcpy(param.key, sctx->key, sctx->key_len);
349 	while ((nbytes = walk.nbytes) != 0) {
350 		/* only use complete blocks */
351 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
352 		cpacf_kmc(sctx->fc | modifier, &param,
353 			  walk.dst.virt.addr, walk.src.virt.addr, n);
354 		memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
355 		ret = skcipher_walk_done(&walk, nbytes - n);
356 	}
357 	return ret;
358 }
359 
360 static int cbc_aes_encrypt(struct skcipher_request *req)
361 {
362 	return cbc_aes_crypt(req, 0);
363 }
364 
365 static int cbc_aes_decrypt(struct skcipher_request *req)
366 {
367 	return cbc_aes_crypt(req, CPACF_DECRYPT);
368 }
369 
370 static struct skcipher_alg cbc_aes_alg = {
371 	.base.cra_name		=	"cbc(aes)",
372 	.base.cra_driver_name	=	"cbc-aes-s390",
373 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
374 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
375 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
376 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
377 	.base.cra_module	=	THIS_MODULE,
378 	.init			=	fallback_init_skcipher,
379 	.exit			=	fallback_exit_skcipher,
380 	.min_keysize		=	AES_MIN_KEY_SIZE,
381 	.max_keysize		=	AES_MAX_KEY_SIZE,
382 	.ivsize			=	AES_BLOCK_SIZE,
383 	.setkey			=	cbc_aes_set_key,
384 	.encrypt		=	cbc_aes_encrypt,
385 	.decrypt		=	cbc_aes_decrypt,
386 };
387 
388 static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
389 			       unsigned int len)
390 {
391 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
392 	int ret;
393 
394 	crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
395 	crypto_skcipher_set_flags(xts_ctx->fallback,
396 				  crypto_skcipher_get_flags(tfm) &
397 				  CRYPTO_TFM_REQ_MASK);
398 	ret = crypto_skcipher_setkey(xts_ctx->fallback, key, len);
399 	crypto_skcipher_set_flags(tfm,
400 				  crypto_skcipher_get_flags(xts_ctx->fallback) &
401 				  CRYPTO_TFM_RES_MASK);
402 	return ret;
403 }
404 
405 static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
406 			   unsigned int key_len)
407 {
408 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
409 	unsigned long fc;
410 	int err;
411 
412 	err = xts_fallback_setkey(tfm, in_key, key_len);
413 	if (err)
414 		return err;
415 
416 	/* In fips mode only 128 bit or 256 bit keys are valid */
417 	if (fips_enabled && key_len != 32 && key_len != 64) {
418 		crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
419 		return -EINVAL;
420 	}
421 
422 	/* Pick the correct function code based on the key length */
423 	fc = (key_len == 32) ? CPACF_KM_XTS_128 :
424 	     (key_len == 64) ? CPACF_KM_XTS_256 : 0;
425 
426 	/* Check if the function code is available */
427 	xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
428 	if (!xts_ctx->fc)
429 		return 0;
430 
431 	/* Split the XTS key into the two subkeys */
432 	key_len = key_len / 2;
433 	xts_ctx->key_len = key_len;
434 	memcpy(xts_ctx->key, in_key, key_len);
435 	memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
436 	return 0;
437 }
438 
439 static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
440 {
441 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
442 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
443 	struct skcipher_walk walk;
444 	unsigned int offset, nbytes, n;
445 	int ret;
446 	struct {
447 		u8 key[32];
448 		u8 tweak[16];
449 		u8 block[16];
450 		u8 bit[16];
451 		u8 xts[16];
452 	} pcc_param;
453 	struct {
454 		u8 key[32];
455 		u8 init[16];
456 	} xts_param;
457 
458 	if (req->cryptlen < AES_BLOCK_SIZE)
459 		return -EINVAL;
460 
461 	if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
462 		struct skcipher_request *subreq = skcipher_request_ctx(req);
463 
464 		*subreq = *req;
465 		skcipher_request_set_tfm(subreq, xts_ctx->fallback);
466 		return (modifier & CPACF_DECRYPT) ?
467 			crypto_skcipher_decrypt(subreq) :
468 			crypto_skcipher_encrypt(subreq);
469 	}
470 
471 	ret = skcipher_walk_virt(&walk, req, false);
472 	if (ret)
473 		return ret;
474 	offset = xts_ctx->key_len & 0x10;
475 	memset(pcc_param.block, 0, sizeof(pcc_param.block));
476 	memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
477 	memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
478 	memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
479 	memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
480 	cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
481 
482 	memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
483 	memcpy(xts_param.init, pcc_param.xts, 16);
484 
485 	while ((nbytes = walk.nbytes) != 0) {
486 		/* only use complete blocks */
487 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
488 		cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
489 			 walk.dst.virt.addr, walk.src.virt.addr, n);
490 		ret = skcipher_walk_done(&walk, nbytes - n);
491 	}
492 	return ret;
493 }
494 
495 static int xts_aes_encrypt(struct skcipher_request *req)
496 {
497 	return xts_aes_crypt(req, 0);
498 }
499 
500 static int xts_aes_decrypt(struct skcipher_request *req)
501 {
502 	return xts_aes_crypt(req, CPACF_DECRYPT);
503 }
504 
505 static int xts_fallback_init(struct crypto_skcipher *tfm)
506 {
507 	const char *name = crypto_tfm_alg_name(&tfm->base);
508 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
509 
510 	xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
511 				CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
512 
513 	if (IS_ERR(xts_ctx->fallback)) {
514 		pr_err("Allocating XTS fallback algorithm %s failed\n",
515 		       name);
516 		return PTR_ERR(xts_ctx->fallback);
517 	}
518 	crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
519 				    crypto_skcipher_reqsize(xts_ctx->fallback));
520 	return 0;
521 }
522 
523 static void xts_fallback_exit(struct crypto_skcipher *tfm)
524 {
525 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
526 
527 	crypto_free_skcipher(xts_ctx->fallback);
528 }
529 
530 static struct skcipher_alg xts_aes_alg = {
531 	.base.cra_name		=	"xts(aes)",
532 	.base.cra_driver_name	=	"xts-aes-s390",
533 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
534 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
535 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
536 	.base.cra_ctxsize	=	sizeof(struct s390_xts_ctx),
537 	.base.cra_module	=	THIS_MODULE,
538 	.init			=	xts_fallback_init,
539 	.exit			=	xts_fallback_exit,
540 	.min_keysize		=	2 * AES_MIN_KEY_SIZE,
541 	.max_keysize		=	2 * AES_MAX_KEY_SIZE,
542 	.ivsize			=	AES_BLOCK_SIZE,
543 	.setkey			=	xts_aes_set_key,
544 	.encrypt		=	xts_aes_encrypt,
545 	.decrypt		=	xts_aes_decrypt,
546 };
547 
548 static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
549 			   unsigned int key_len)
550 {
551 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
552 	unsigned long fc;
553 
554 	/* Pick the correct function code based on the key length */
555 	fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
556 	     (key_len == 24) ? CPACF_KMCTR_AES_192 :
557 	     (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
558 
559 	/* Check if the function code is available */
560 	sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
561 	if (!sctx->fc)
562 		return setkey_fallback_skcipher(tfm, in_key, key_len);
563 
564 	sctx->key_len = key_len;
565 	memcpy(sctx->key, in_key, key_len);
566 	return 0;
567 }
568 
569 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
570 {
571 	unsigned int i, n;
572 
573 	/* only use complete blocks, max. PAGE_SIZE */
574 	memcpy(ctrptr, iv, AES_BLOCK_SIZE);
575 	n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
576 	for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
577 		memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
578 		crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
579 		ctrptr += AES_BLOCK_SIZE;
580 	}
581 	return n;
582 }
583 
584 static int ctr_aes_crypt(struct skcipher_request *req)
585 {
586 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
587 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
588 	u8 buf[AES_BLOCK_SIZE], *ctrptr;
589 	struct skcipher_walk walk;
590 	unsigned int n, nbytes;
591 	int ret, locked;
592 
593 	if (unlikely(!sctx->fc))
594 		return fallback_skcipher_crypt(sctx, req, 0);
595 
596 	locked = mutex_trylock(&ctrblk_lock);
597 
598 	ret = skcipher_walk_virt(&walk, req, false);
599 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
600 		n = AES_BLOCK_SIZE;
601 
602 		if (nbytes >= 2*AES_BLOCK_SIZE && locked)
603 			n = __ctrblk_init(ctrblk, walk.iv, nbytes);
604 		ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
605 		cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
606 			    walk.src.virt.addr, n, ctrptr);
607 		if (ctrptr == ctrblk)
608 			memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
609 			       AES_BLOCK_SIZE);
610 		crypto_inc(walk.iv, AES_BLOCK_SIZE);
611 		ret = skcipher_walk_done(&walk, nbytes - n);
612 	}
613 	if (locked)
614 		mutex_unlock(&ctrblk_lock);
615 	/*
616 	 * final block may be < AES_BLOCK_SIZE, copy only nbytes
617 	 */
618 	if (nbytes) {
619 		cpacf_kmctr(sctx->fc, sctx->key, buf, walk.src.virt.addr,
620 			    AES_BLOCK_SIZE, walk.iv);
621 		memcpy(walk.dst.virt.addr, buf, nbytes);
622 		crypto_inc(walk.iv, AES_BLOCK_SIZE);
623 		ret = skcipher_walk_done(&walk, 0);
624 	}
625 
626 	return ret;
627 }
628 
629 static struct skcipher_alg ctr_aes_alg = {
630 	.base.cra_name		=	"ctr(aes)",
631 	.base.cra_driver_name	=	"ctr-aes-s390",
632 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
633 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
634 	.base.cra_blocksize	=	1,
635 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
636 	.base.cra_module	=	THIS_MODULE,
637 	.init			=	fallback_init_skcipher,
638 	.exit			=	fallback_exit_skcipher,
639 	.min_keysize		=	AES_MIN_KEY_SIZE,
640 	.max_keysize		=	AES_MAX_KEY_SIZE,
641 	.ivsize			=	AES_BLOCK_SIZE,
642 	.setkey			=	ctr_aes_set_key,
643 	.encrypt		=	ctr_aes_crypt,
644 	.decrypt		=	ctr_aes_crypt,
645 	.chunksize		=	AES_BLOCK_SIZE,
646 };
647 
648 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
649 			  unsigned int keylen)
650 {
651 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
652 
653 	switch (keylen) {
654 	case AES_KEYSIZE_128:
655 		ctx->fc = CPACF_KMA_GCM_AES_128;
656 		break;
657 	case AES_KEYSIZE_192:
658 		ctx->fc = CPACF_KMA_GCM_AES_192;
659 		break;
660 	case AES_KEYSIZE_256:
661 		ctx->fc = CPACF_KMA_GCM_AES_256;
662 		break;
663 	default:
664 		return -EINVAL;
665 	}
666 
667 	memcpy(ctx->key, key, keylen);
668 	ctx->key_len = keylen;
669 	return 0;
670 }
671 
672 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
673 {
674 	switch (authsize) {
675 	case 4:
676 	case 8:
677 	case 12:
678 	case 13:
679 	case 14:
680 	case 15:
681 	case 16:
682 		break;
683 	default:
684 		return -EINVAL;
685 	}
686 
687 	return 0;
688 }
689 
690 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
691 			   unsigned int len)
692 {
693 	memset(gw, 0, sizeof(*gw));
694 	gw->walk_bytes_remain = len;
695 	scatterwalk_start(&gw->walk, sg);
696 }
697 
698 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
699 {
700 	struct scatterlist *nextsg;
701 
702 	gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
703 	while (!gw->walk_bytes) {
704 		nextsg = sg_next(gw->walk.sg);
705 		if (!nextsg)
706 			return 0;
707 		scatterwalk_start(&gw->walk, nextsg);
708 		gw->walk_bytes = scatterwalk_clamp(&gw->walk,
709 						   gw->walk_bytes_remain);
710 	}
711 	gw->walk_ptr = scatterwalk_map(&gw->walk);
712 	return gw->walk_bytes;
713 }
714 
715 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
716 					     unsigned int nbytes)
717 {
718 	gw->walk_bytes_remain -= nbytes;
719 	scatterwalk_unmap(&gw->walk);
720 	scatterwalk_advance(&gw->walk, nbytes);
721 	scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
722 	gw->walk_ptr = NULL;
723 }
724 
725 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
726 {
727 	int n;
728 
729 	if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
730 		gw->ptr = gw->buf;
731 		gw->nbytes = gw->buf_bytes;
732 		goto out;
733 	}
734 
735 	if (gw->walk_bytes_remain == 0) {
736 		gw->ptr = NULL;
737 		gw->nbytes = 0;
738 		goto out;
739 	}
740 
741 	if (!_gcm_sg_clamp_and_map(gw)) {
742 		gw->ptr = NULL;
743 		gw->nbytes = 0;
744 		goto out;
745 	}
746 
747 	if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
748 		gw->ptr = gw->walk_ptr;
749 		gw->nbytes = gw->walk_bytes;
750 		goto out;
751 	}
752 
753 	while (1) {
754 		n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
755 		memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
756 		gw->buf_bytes += n;
757 		_gcm_sg_unmap_and_advance(gw, n);
758 		if (gw->buf_bytes >= minbytesneeded) {
759 			gw->ptr = gw->buf;
760 			gw->nbytes = gw->buf_bytes;
761 			goto out;
762 		}
763 		if (!_gcm_sg_clamp_and_map(gw)) {
764 			gw->ptr = NULL;
765 			gw->nbytes = 0;
766 			goto out;
767 		}
768 	}
769 
770 out:
771 	return gw->nbytes;
772 }
773 
774 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
775 {
776 	if (gw->walk_bytes_remain == 0) {
777 		gw->ptr = NULL;
778 		gw->nbytes = 0;
779 		goto out;
780 	}
781 
782 	if (!_gcm_sg_clamp_and_map(gw)) {
783 		gw->ptr = NULL;
784 		gw->nbytes = 0;
785 		goto out;
786 	}
787 
788 	if (gw->walk_bytes >= minbytesneeded) {
789 		gw->ptr = gw->walk_ptr;
790 		gw->nbytes = gw->walk_bytes;
791 		goto out;
792 	}
793 
794 	scatterwalk_unmap(&gw->walk);
795 	gw->walk_ptr = NULL;
796 
797 	gw->ptr = gw->buf;
798 	gw->nbytes = sizeof(gw->buf);
799 
800 out:
801 	return gw->nbytes;
802 }
803 
804 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
805 {
806 	if (gw->ptr == NULL)
807 		return 0;
808 
809 	if (gw->ptr == gw->buf) {
810 		int n = gw->buf_bytes - bytesdone;
811 		if (n > 0) {
812 			memmove(gw->buf, gw->buf + bytesdone, n);
813 			gw->buf_bytes = n;
814 		} else
815 			gw->buf_bytes = 0;
816 	} else
817 		_gcm_sg_unmap_and_advance(gw, bytesdone);
818 
819 	return bytesdone;
820 }
821 
822 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
823 {
824 	int i, n;
825 
826 	if (gw->ptr == NULL)
827 		return 0;
828 
829 	if (gw->ptr == gw->buf) {
830 		for (i = 0; i < bytesdone; i += n) {
831 			if (!_gcm_sg_clamp_and_map(gw))
832 				return i;
833 			n = min(gw->walk_bytes, bytesdone - i);
834 			memcpy(gw->walk_ptr, gw->buf + i, n);
835 			_gcm_sg_unmap_and_advance(gw, n);
836 		}
837 	} else
838 		_gcm_sg_unmap_and_advance(gw, bytesdone);
839 
840 	return bytesdone;
841 }
842 
843 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
844 {
845 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
846 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
847 	unsigned int ivsize = crypto_aead_ivsize(tfm);
848 	unsigned int taglen = crypto_aead_authsize(tfm);
849 	unsigned int aadlen = req->assoclen;
850 	unsigned int pclen = req->cryptlen;
851 	int ret = 0;
852 
853 	unsigned int n, len, in_bytes, out_bytes,
854 		     min_bytes, bytes, aad_bytes, pc_bytes;
855 	struct gcm_sg_walk gw_in, gw_out;
856 	u8 tag[GHASH_DIGEST_SIZE];
857 
858 	struct {
859 		u32 _[3];		/* reserved */
860 		u32 cv;			/* Counter Value */
861 		u8 t[GHASH_DIGEST_SIZE];/* Tag */
862 		u8 h[AES_BLOCK_SIZE];	/* Hash-subkey */
863 		u64 taadl;		/* Total AAD Length */
864 		u64 tpcl;		/* Total Plain-/Cipher-text Length */
865 		u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
866 		u8 k[AES_MAX_KEY_SIZE];	/* Key */
867 	} param;
868 
869 	/*
870 	 * encrypt
871 	 *   req->src: aad||plaintext
872 	 *   req->dst: aad||ciphertext||tag
873 	 * decrypt
874 	 *   req->src: aad||ciphertext||tag
875 	 *   req->dst: aad||plaintext, return 0 or -EBADMSG
876 	 * aad, plaintext and ciphertext may be empty.
877 	 */
878 	if (flags & CPACF_DECRYPT)
879 		pclen -= taglen;
880 	len = aadlen + pclen;
881 
882 	memset(&param, 0, sizeof(param));
883 	param.cv = 1;
884 	param.taadl = aadlen * 8;
885 	param.tpcl = pclen * 8;
886 	memcpy(param.j0, req->iv, ivsize);
887 	*(u32 *)(param.j0 + ivsize) = 1;
888 	memcpy(param.k, ctx->key, ctx->key_len);
889 
890 	gcm_walk_start(&gw_in, req->src, len);
891 	gcm_walk_start(&gw_out, req->dst, len);
892 
893 	do {
894 		min_bytes = min_t(unsigned int,
895 				  aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
896 		in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
897 		out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
898 		bytes = min(in_bytes, out_bytes);
899 
900 		if (aadlen + pclen <= bytes) {
901 			aad_bytes = aadlen;
902 			pc_bytes = pclen;
903 			flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
904 		} else {
905 			if (aadlen <= bytes) {
906 				aad_bytes = aadlen;
907 				pc_bytes = (bytes - aadlen) &
908 					   ~(AES_BLOCK_SIZE - 1);
909 				flags |= CPACF_KMA_LAAD;
910 			} else {
911 				aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
912 				pc_bytes = 0;
913 			}
914 		}
915 
916 		if (aad_bytes > 0)
917 			memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
918 
919 		cpacf_kma(ctx->fc | flags, &param,
920 			  gw_out.ptr + aad_bytes,
921 			  gw_in.ptr + aad_bytes, pc_bytes,
922 			  gw_in.ptr, aad_bytes);
923 
924 		n = aad_bytes + pc_bytes;
925 		if (gcm_in_walk_done(&gw_in, n) != n)
926 			return -ENOMEM;
927 		if (gcm_out_walk_done(&gw_out, n) != n)
928 			return -ENOMEM;
929 		aadlen -= aad_bytes;
930 		pclen -= pc_bytes;
931 	} while (aadlen + pclen > 0);
932 
933 	if (flags & CPACF_DECRYPT) {
934 		scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
935 		if (crypto_memneq(tag, param.t, taglen))
936 			ret = -EBADMSG;
937 	} else
938 		scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
939 
940 	memzero_explicit(&param, sizeof(param));
941 	return ret;
942 }
943 
944 static int gcm_aes_encrypt(struct aead_request *req)
945 {
946 	return gcm_aes_crypt(req, CPACF_ENCRYPT);
947 }
948 
949 static int gcm_aes_decrypt(struct aead_request *req)
950 {
951 	return gcm_aes_crypt(req, CPACF_DECRYPT);
952 }
953 
954 static struct aead_alg gcm_aes_aead = {
955 	.setkey			= gcm_aes_setkey,
956 	.setauthsize		= gcm_aes_setauthsize,
957 	.encrypt		= gcm_aes_encrypt,
958 	.decrypt		= gcm_aes_decrypt,
959 
960 	.ivsize			= GHASH_BLOCK_SIZE - sizeof(u32),
961 	.maxauthsize		= GHASH_DIGEST_SIZE,
962 	.chunksize		= AES_BLOCK_SIZE,
963 
964 	.base			= {
965 		.cra_blocksize		= 1,
966 		.cra_ctxsize		= sizeof(struct s390_aes_ctx),
967 		.cra_priority		= 900,
968 		.cra_name		= "gcm(aes)",
969 		.cra_driver_name	= "gcm-aes-s390",
970 		.cra_module		= THIS_MODULE,
971 	},
972 };
973 
974 static struct crypto_alg *aes_s390_alg;
975 static struct skcipher_alg *aes_s390_skcipher_algs[4];
976 static int aes_s390_skciphers_num;
977 static struct aead_alg *aes_s390_aead_alg;
978 
979 static int aes_s390_register_skcipher(struct skcipher_alg *alg)
980 {
981 	int ret;
982 
983 	ret = crypto_register_skcipher(alg);
984 	if (!ret)
985 		aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
986 	return ret;
987 }
988 
989 static void aes_s390_fini(void)
990 {
991 	if (aes_s390_alg)
992 		crypto_unregister_alg(aes_s390_alg);
993 	while (aes_s390_skciphers_num--)
994 		crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
995 	if (ctrblk)
996 		free_page((unsigned long) ctrblk);
997 
998 	if (aes_s390_aead_alg)
999 		crypto_unregister_aead(aes_s390_aead_alg);
1000 }
1001 
1002 static int __init aes_s390_init(void)
1003 {
1004 	int ret;
1005 
1006 	/* Query available functions for KM, KMC, KMCTR and KMA */
1007 	cpacf_query(CPACF_KM, &km_functions);
1008 	cpacf_query(CPACF_KMC, &kmc_functions);
1009 	cpacf_query(CPACF_KMCTR, &kmctr_functions);
1010 	cpacf_query(CPACF_KMA, &kma_functions);
1011 
1012 	if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
1013 	    cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1014 	    cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1015 		ret = crypto_register_alg(&aes_alg);
1016 		if (ret)
1017 			goto out_err;
1018 		aes_s390_alg = &aes_alg;
1019 		ret = aes_s390_register_skcipher(&ecb_aes_alg);
1020 		if (ret)
1021 			goto out_err;
1022 	}
1023 
1024 	if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1025 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1026 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1027 		ret = aes_s390_register_skcipher(&cbc_aes_alg);
1028 		if (ret)
1029 			goto out_err;
1030 	}
1031 
1032 	if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1033 	    cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1034 		ret = aes_s390_register_skcipher(&xts_aes_alg);
1035 		if (ret)
1036 			goto out_err;
1037 	}
1038 
1039 	if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1040 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1041 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1042 		ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1043 		if (!ctrblk) {
1044 			ret = -ENOMEM;
1045 			goto out_err;
1046 		}
1047 		ret = aes_s390_register_skcipher(&ctr_aes_alg);
1048 		if (ret)
1049 			goto out_err;
1050 	}
1051 
1052 	if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1053 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1054 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1055 		ret = crypto_register_aead(&gcm_aes_aead);
1056 		if (ret)
1057 			goto out_err;
1058 		aes_s390_aead_alg = &gcm_aes_aead;
1059 	}
1060 
1061 	return 0;
1062 out_err:
1063 	aes_s390_fini();
1064 	return ret;
1065 }
1066 
1067 module_cpu_feature_match(MSA, aes_s390_init);
1068 module_exit(aes_s390_fini);
1069 
1070 MODULE_ALIAS_CRYPTO("aes-all");
1071 
1072 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1073 MODULE_LICENSE("GPL");
1074