xref: /openbmc/linux/arch/s390/crypto/aes_s390.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cryptographic API.
4  *
5  * s390 implementation of the AES Cipher Algorithm.
6  *
7  * s390 Version:
8  *   Copyright IBM Corp. 2005, 2017
9  *   Author(s): Jan Glauber (jang@de.ibm.com)
10  *		Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11  *		Patrick Steuer <patrick.steuer@de.ibm.com>
12  *		Harald Freudenberger <freude@de.ibm.com>
13  *
14  * Derived from "crypto/aes_generic.c"
15  */
16 
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19 
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/mutex.h>
31 #include <linux/fips.h>
32 #include <linux/string.h>
33 #include <crypto/xts.h>
34 #include <asm/cpacf.h>
35 
36 static u8 *ctrblk;
37 static DEFINE_MUTEX(ctrblk_lock);
38 
39 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
40 		    kma_functions;
41 
42 struct s390_aes_ctx {
43 	u8 key[AES_MAX_KEY_SIZE];
44 	int key_len;
45 	unsigned long fc;
46 	union {
47 		struct crypto_sync_skcipher *blk;
48 		struct crypto_cipher *cip;
49 	} fallback;
50 };
51 
52 struct s390_xts_ctx {
53 	u8 key[32];
54 	u8 pcc_key[32];
55 	int key_len;
56 	unsigned long fc;
57 	struct crypto_sync_skcipher *fallback;
58 };
59 
60 struct gcm_sg_walk {
61 	struct scatter_walk walk;
62 	unsigned int walk_bytes;
63 	u8 *walk_ptr;
64 	unsigned int walk_bytes_remain;
65 	u8 buf[AES_BLOCK_SIZE];
66 	unsigned int buf_bytes;
67 	u8 *ptr;
68 	unsigned int nbytes;
69 };
70 
71 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
72 		unsigned int key_len)
73 {
74 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
75 	int ret;
76 
77 	sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
78 	sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
79 			CRYPTO_TFM_REQ_MASK);
80 
81 	ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
82 	if (ret) {
83 		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
84 		tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags &
85 				CRYPTO_TFM_RES_MASK);
86 	}
87 	return ret;
88 }
89 
90 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
91 		       unsigned int key_len)
92 {
93 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
94 	unsigned long fc;
95 
96 	/* Pick the correct function code based on the key length */
97 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
98 	     (key_len == 24) ? CPACF_KM_AES_192 :
99 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
100 
101 	/* Check if the function code is available */
102 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
103 	if (!sctx->fc)
104 		return setkey_fallback_cip(tfm, in_key, key_len);
105 
106 	sctx->key_len = key_len;
107 	memcpy(sctx->key, in_key, key_len);
108 	return 0;
109 }
110 
111 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
112 {
113 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
114 
115 	if (unlikely(!sctx->fc)) {
116 		crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
117 		return;
118 	}
119 	cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
120 }
121 
122 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
123 {
124 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
125 
126 	if (unlikely(!sctx->fc)) {
127 		crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
128 		return;
129 	}
130 	cpacf_km(sctx->fc | CPACF_DECRYPT,
131 		 &sctx->key, out, in, AES_BLOCK_SIZE);
132 }
133 
134 static int fallback_init_cip(struct crypto_tfm *tfm)
135 {
136 	const char *name = tfm->__crt_alg->cra_name;
137 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
138 
139 	sctx->fallback.cip = crypto_alloc_cipher(name, 0,
140 						 CRYPTO_ALG_NEED_FALLBACK);
141 
142 	if (IS_ERR(sctx->fallback.cip)) {
143 		pr_err("Allocating AES fallback algorithm %s failed\n",
144 		       name);
145 		return PTR_ERR(sctx->fallback.cip);
146 	}
147 
148 	return 0;
149 }
150 
151 static void fallback_exit_cip(struct crypto_tfm *tfm)
152 {
153 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
154 
155 	crypto_free_cipher(sctx->fallback.cip);
156 	sctx->fallback.cip = NULL;
157 }
158 
159 static struct crypto_alg aes_alg = {
160 	.cra_name		=	"aes",
161 	.cra_driver_name	=	"aes-s390",
162 	.cra_priority		=	300,
163 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER |
164 					CRYPTO_ALG_NEED_FALLBACK,
165 	.cra_blocksize		=	AES_BLOCK_SIZE,
166 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
167 	.cra_module		=	THIS_MODULE,
168 	.cra_init               =       fallback_init_cip,
169 	.cra_exit               =       fallback_exit_cip,
170 	.cra_u			=	{
171 		.cipher = {
172 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
173 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
174 			.cia_setkey		=	aes_set_key,
175 			.cia_encrypt		=	crypto_aes_encrypt,
176 			.cia_decrypt		=	crypto_aes_decrypt,
177 		}
178 	}
179 };
180 
181 static int setkey_fallback_blk(struct crypto_tfm *tfm, const u8 *key,
182 		unsigned int len)
183 {
184 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
185 	unsigned int ret;
186 
187 	crypto_sync_skcipher_clear_flags(sctx->fallback.blk,
188 					 CRYPTO_TFM_REQ_MASK);
189 	crypto_sync_skcipher_set_flags(sctx->fallback.blk, tfm->crt_flags &
190 						      CRYPTO_TFM_REQ_MASK);
191 
192 	ret = crypto_sync_skcipher_setkey(sctx->fallback.blk, key, len);
193 
194 	tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
195 	tfm->crt_flags |= crypto_sync_skcipher_get_flags(sctx->fallback.blk) &
196 			  CRYPTO_TFM_RES_MASK;
197 
198 	return ret;
199 }
200 
201 static int fallback_blk_dec(struct blkcipher_desc *desc,
202 		struct scatterlist *dst, struct scatterlist *src,
203 		unsigned int nbytes)
204 {
205 	unsigned int ret;
206 	struct crypto_blkcipher *tfm = desc->tfm;
207 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
208 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
209 
210 	skcipher_request_set_sync_tfm(req, sctx->fallback.blk);
211 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
212 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
213 
214 	ret = crypto_skcipher_decrypt(req);
215 
216 	skcipher_request_zero(req);
217 	return ret;
218 }
219 
220 static int fallback_blk_enc(struct blkcipher_desc *desc,
221 		struct scatterlist *dst, struct scatterlist *src,
222 		unsigned int nbytes)
223 {
224 	unsigned int ret;
225 	struct crypto_blkcipher *tfm = desc->tfm;
226 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
227 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
228 
229 	skcipher_request_set_sync_tfm(req, sctx->fallback.blk);
230 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
231 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
232 
233 	ret = crypto_skcipher_encrypt(req);
234 	return ret;
235 }
236 
237 static int ecb_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
238 			   unsigned int key_len)
239 {
240 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
241 	unsigned long fc;
242 
243 	/* Pick the correct function code based on the key length */
244 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
245 	     (key_len == 24) ? CPACF_KM_AES_192 :
246 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
247 
248 	/* Check if the function code is available */
249 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
250 	if (!sctx->fc)
251 		return setkey_fallback_blk(tfm, in_key, key_len);
252 
253 	sctx->key_len = key_len;
254 	memcpy(sctx->key, in_key, key_len);
255 	return 0;
256 }
257 
258 static int ecb_aes_crypt(struct blkcipher_desc *desc, unsigned long modifier,
259 			 struct blkcipher_walk *walk)
260 {
261 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
262 	unsigned int nbytes, n;
263 	int ret;
264 
265 	ret = blkcipher_walk_virt(desc, walk);
266 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
267 		/* only use complete blocks */
268 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
269 		cpacf_km(sctx->fc | modifier, sctx->key,
270 			 walk->dst.virt.addr, walk->src.virt.addr, n);
271 		ret = blkcipher_walk_done(desc, walk, nbytes - n);
272 	}
273 
274 	return ret;
275 }
276 
277 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
278 			   struct scatterlist *dst, struct scatterlist *src,
279 			   unsigned int nbytes)
280 {
281 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
282 	struct blkcipher_walk walk;
283 
284 	if (unlikely(!sctx->fc))
285 		return fallback_blk_enc(desc, dst, src, nbytes);
286 
287 	blkcipher_walk_init(&walk, dst, src, nbytes);
288 	return ecb_aes_crypt(desc, 0, &walk);
289 }
290 
291 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
292 			   struct scatterlist *dst, struct scatterlist *src,
293 			   unsigned int nbytes)
294 {
295 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
296 	struct blkcipher_walk walk;
297 
298 	if (unlikely(!sctx->fc))
299 		return fallback_blk_dec(desc, dst, src, nbytes);
300 
301 	blkcipher_walk_init(&walk, dst, src, nbytes);
302 	return ecb_aes_crypt(desc, CPACF_DECRYPT, &walk);
303 }
304 
305 static int fallback_init_blk(struct crypto_tfm *tfm)
306 {
307 	const char *name = tfm->__crt_alg->cra_name;
308 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
309 
310 	sctx->fallback.blk = crypto_alloc_sync_skcipher(name, 0,
311 						   CRYPTO_ALG_NEED_FALLBACK);
312 
313 	if (IS_ERR(sctx->fallback.blk)) {
314 		pr_err("Allocating AES fallback algorithm %s failed\n",
315 		       name);
316 		return PTR_ERR(sctx->fallback.blk);
317 	}
318 
319 	return 0;
320 }
321 
322 static void fallback_exit_blk(struct crypto_tfm *tfm)
323 {
324 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
325 
326 	crypto_free_sync_skcipher(sctx->fallback.blk);
327 }
328 
329 static struct crypto_alg ecb_aes_alg = {
330 	.cra_name		=	"ecb(aes)",
331 	.cra_driver_name	=	"ecb-aes-s390",
332 	.cra_priority		=	401,	/* combo: aes + ecb + 1 */
333 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
334 					CRYPTO_ALG_NEED_FALLBACK,
335 	.cra_blocksize		=	AES_BLOCK_SIZE,
336 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
337 	.cra_type		=	&crypto_blkcipher_type,
338 	.cra_module		=	THIS_MODULE,
339 	.cra_init		=	fallback_init_blk,
340 	.cra_exit		=	fallback_exit_blk,
341 	.cra_u			=	{
342 		.blkcipher = {
343 			.min_keysize		=	AES_MIN_KEY_SIZE,
344 			.max_keysize		=	AES_MAX_KEY_SIZE,
345 			.setkey			=	ecb_aes_set_key,
346 			.encrypt		=	ecb_aes_encrypt,
347 			.decrypt		=	ecb_aes_decrypt,
348 		}
349 	}
350 };
351 
352 static int cbc_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
353 			   unsigned int key_len)
354 {
355 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
356 	unsigned long fc;
357 
358 	/* Pick the correct function code based on the key length */
359 	fc = (key_len == 16) ? CPACF_KMC_AES_128 :
360 	     (key_len == 24) ? CPACF_KMC_AES_192 :
361 	     (key_len == 32) ? CPACF_KMC_AES_256 : 0;
362 
363 	/* Check if the function code is available */
364 	sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
365 	if (!sctx->fc)
366 		return setkey_fallback_blk(tfm, in_key, key_len);
367 
368 	sctx->key_len = key_len;
369 	memcpy(sctx->key, in_key, key_len);
370 	return 0;
371 }
372 
373 static int cbc_aes_crypt(struct blkcipher_desc *desc, unsigned long modifier,
374 			 struct blkcipher_walk *walk)
375 {
376 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
377 	unsigned int nbytes, n;
378 	int ret;
379 	struct {
380 		u8 iv[AES_BLOCK_SIZE];
381 		u8 key[AES_MAX_KEY_SIZE];
382 	} param;
383 
384 	ret = blkcipher_walk_virt(desc, walk);
385 	memcpy(param.iv, walk->iv, AES_BLOCK_SIZE);
386 	memcpy(param.key, sctx->key, sctx->key_len);
387 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
388 		/* only use complete blocks */
389 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
390 		cpacf_kmc(sctx->fc | modifier, &param,
391 			  walk->dst.virt.addr, walk->src.virt.addr, n);
392 		ret = blkcipher_walk_done(desc, walk, nbytes - n);
393 	}
394 	memcpy(walk->iv, param.iv, AES_BLOCK_SIZE);
395 	return ret;
396 }
397 
398 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
399 			   struct scatterlist *dst, struct scatterlist *src,
400 			   unsigned int nbytes)
401 {
402 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
403 	struct blkcipher_walk walk;
404 
405 	if (unlikely(!sctx->fc))
406 		return fallback_blk_enc(desc, dst, src, nbytes);
407 
408 	blkcipher_walk_init(&walk, dst, src, nbytes);
409 	return cbc_aes_crypt(desc, 0, &walk);
410 }
411 
412 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
413 			   struct scatterlist *dst, struct scatterlist *src,
414 			   unsigned int nbytes)
415 {
416 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
417 	struct blkcipher_walk walk;
418 
419 	if (unlikely(!sctx->fc))
420 		return fallback_blk_dec(desc, dst, src, nbytes);
421 
422 	blkcipher_walk_init(&walk, dst, src, nbytes);
423 	return cbc_aes_crypt(desc, CPACF_DECRYPT, &walk);
424 }
425 
426 static struct crypto_alg cbc_aes_alg = {
427 	.cra_name		=	"cbc(aes)",
428 	.cra_driver_name	=	"cbc-aes-s390",
429 	.cra_priority		=	402,	/* ecb-aes-s390 + 1 */
430 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
431 					CRYPTO_ALG_NEED_FALLBACK,
432 	.cra_blocksize		=	AES_BLOCK_SIZE,
433 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
434 	.cra_type		=	&crypto_blkcipher_type,
435 	.cra_module		=	THIS_MODULE,
436 	.cra_init		=	fallback_init_blk,
437 	.cra_exit		=	fallback_exit_blk,
438 	.cra_u			=	{
439 		.blkcipher = {
440 			.min_keysize		=	AES_MIN_KEY_SIZE,
441 			.max_keysize		=	AES_MAX_KEY_SIZE,
442 			.ivsize			=	AES_BLOCK_SIZE,
443 			.setkey			=	cbc_aes_set_key,
444 			.encrypt		=	cbc_aes_encrypt,
445 			.decrypt		=	cbc_aes_decrypt,
446 		}
447 	}
448 };
449 
450 static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
451 				   unsigned int len)
452 {
453 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
454 	unsigned int ret;
455 
456 	crypto_sync_skcipher_clear_flags(xts_ctx->fallback,
457 					 CRYPTO_TFM_REQ_MASK);
458 	crypto_sync_skcipher_set_flags(xts_ctx->fallback, tfm->crt_flags &
459 						     CRYPTO_TFM_REQ_MASK);
460 
461 	ret = crypto_sync_skcipher_setkey(xts_ctx->fallback, key, len);
462 
463 	tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
464 	tfm->crt_flags |= crypto_sync_skcipher_get_flags(xts_ctx->fallback) &
465 			  CRYPTO_TFM_RES_MASK;
466 
467 	return ret;
468 }
469 
470 static int xts_fallback_decrypt(struct blkcipher_desc *desc,
471 		struct scatterlist *dst, struct scatterlist *src,
472 		unsigned int nbytes)
473 {
474 	struct crypto_blkcipher *tfm = desc->tfm;
475 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
476 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
477 	unsigned int ret;
478 
479 	skcipher_request_set_sync_tfm(req, xts_ctx->fallback);
480 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
481 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
482 
483 	ret = crypto_skcipher_decrypt(req);
484 
485 	skcipher_request_zero(req);
486 	return ret;
487 }
488 
489 static int xts_fallback_encrypt(struct blkcipher_desc *desc,
490 		struct scatterlist *dst, struct scatterlist *src,
491 		unsigned int nbytes)
492 {
493 	struct crypto_blkcipher *tfm = desc->tfm;
494 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
495 	SYNC_SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
496 	unsigned int ret;
497 
498 	skcipher_request_set_sync_tfm(req, xts_ctx->fallback);
499 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
500 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
501 
502 	ret = crypto_skcipher_encrypt(req);
503 
504 	skcipher_request_zero(req);
505 	return ret;
506 }
507 
508 static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
509 			   unsigned int key_len)
510 {
511 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
512 	unsigned long fc;
513 	int err;
514 
515 	err = xts_fallback_setkey(tfm, in_key, key_len);
516 	if (err)
517 		return err;
518 
519 	/* In fips mode only 128 bit or 256 bit keys are valid */
520 	if (fips_enabled && key_len != 32 && key_len != 64) {
521 		tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
522 		return -EINVAL;
523 	}
524 
525 	/* Pick the correct function code based on the key length */
526 	fc = (key_len == 32) ? CPACF_KM_XTS_128 :
527 	     (key_len == 64) ? CPACF_KM_XTS_256 : 0;
528 
529 	/* Check if the function code is available */
530 	xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
531 	if (!xts_ctx->fc)
532 		return 0;
533 
534 	/* Split the XTS key into the two subkeys */
535 	key_len = key_len / 2;
536 	xts_ctx->key_len = key_len;
537 	memcpy(xts_ctx->key, in_key, key_len);
538 	memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
539 	return 0;
540 }
541 
542 static int xts_aes_crypt(struct blkcipher_desc *desc, unsigned long modifier,
543 			 struct blkcipher_walk *walk)
544 {
545 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
546 	unsigned int offset, nbytes, n;
547 	int ret;
548 	struct {
549 		u8 key[32];
550 		u8 tweak[16];
551 		u8 block[16];
552 		u8 bit[16];
553 		u8 xts[16];
554 	} pcc_param;
555 	struct {
556 		u8 key[32];
557 		u8 init[16];
558 	} xts_param;
559 
560 	ret = blkcipher_walk_virt(desc, walk);
561 	offset = xts_ctx->key_len & 0x10;
562 	memset(pcc_param.block, 0, sizeof(pcc_param.block));
563 	memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
564 	memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
565 	memcpy(pcc_param.tweak, walk->iv, sizeof(pcc_param.tweak));
566 	memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
567 	cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
568 
569 	memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
570 	memcpy(xts_param.init, pcc_param.xts, 16);
571 
572 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
573 		/* only use complete blocks */
574 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
575 		cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
576 			 walk->dst.virt.addr, walk->src.virt.addr, n);
577 		ret = blkcipher_walk_done(desc, walk, nbytes - n);
578 	}
579 	return ret;
580 }
581 
582 static int xts_aes_encrypt(struct blkcipher_desc *desc,
583 			   struct scatterlist *dst, struct scatterlist *src,
584 			   unsigned int nbytes)
585 {
586 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
587 	struct blkcipher_walk walk;
588 
589 	if (!nbytes)
590 		return -EINVAL;
591 
592 	if (unlikely(!xts_ctx->fc || (nbytes % XTS_BLOCK_SIZE) != 0))
593 		return xts_fallback_encrypt(desc, dst, src, nbytes);
594 
595 	blkcipher_walk_init(&walk, dst, src, nbytes);
596 	return xts_aes_crypt(desc, 0, &walk);
597 }
598 
599 static int xts_aes_decrypt(struct blkcipher_desc *desc,
600 			   struct scatterlist *dst, struct scatterlist *src,
601 			   unsigned int nbytes)
602 {
603 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
604 	struct blkcipher_walk walk;
605 
606 	if (!nbytes)
607 		return -EINVAL;
608 
609 	if (unlikely(!xts_ctx->fc || (nbytes % XTS_BLOCK_SIZE) != 0))
610 		return xts_fallback_decrypt(desc, dst, src, nbytes);
611 
612 	blkcipher_walk_init(&walk, dst, src, nbytes);
613 	return xts_aes_crypt(desc, CPACF_DECRYPT, &walk);
614 }
615 
616 static int xts_fallback_init(struct crypto_tfm *tfm)
617 {
618 	const char *name = tfm->__crt_alg->cra_name;
619 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
620 
621 	xts_ctx->fallback = crypto_alloc_sync_skcipher(name, 0,
622 						  CRYPTO_ALG_NEED_FALLBACK);
623 
624 	if (IS_ERR(xts_ctx->fallback)) {
625 		pr_err("Allocating XTS fallback algorithm %s failed\n",
626 		       name);
627 		return PTR_ERR(xts_ctx->fallback);
628 	}
629 	return 0;
630 }
631 
632 static void xts_fallback_exit(struct crypto_tfm *tfm)
633 {
634 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
635 
636 	crypto_free_sync_skcipher(xts_ctx->fallback);
637 }
638 
639 static struct crypto_alg xts_aes_alg = {
640 	.cra_name		=	"xts(aes)",
641 	.cra_driver_name	=	"xts-aes-s390",
642 	.cra_priority		=	402,	/* ecb-aes-s390 + 1 */
643 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
644 					CRYPTO_ALG_NEED_FALLBACK,
645 	.cra_blocksize		=	AES_BLOCK_SIZE,
646 	.cra_ctxsize		=	sizeof(struct s390_xts_ctx),
647 	.cra_type		=	&crypto_blkcipher_type,
648 	.cra_module		=	THIS_MODULE,
649 	.cra_init		=	xts_fallback_init,
650 	.cra_exit		=	xts_fallback_exit,
651 	.cra_u			=	{
652 		.blkcipher = {
653 			.min_keysize		=	2 * AES_MIN_KEY_SIZE,
654 			.max_keysize		=	2 * AES_MAX_KEY_SIZE,
655 			.ivsize			=	AES_BLOCK_SIZE,
656 			.setkey			=	xts_aes_set_key,
657 			.encrypt		=	xts_aes_encrypt,
658 			.decrypt		=	xts_aes_decrypt,
659 		}
660 	}
661 };
662 
663 static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
664 			   unsigned int key_len)
665 {
666 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
667 	unsigned long fc;
668 
669 	/* Pick the correct function code based on the key length */
670 	fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
671 	     (key_len == 24) ? CPACF_KMCTR_AES_192 :
672 	     (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
673 
674 	/* Check if the function code is available */
675 	sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
676 	if (!sctx->fc)
677 		return setkey_fallback_blk(tfm, in_key, key_len);
678 
679 	sctx->key_len = key_len;
680 	memcpy(sctx->key, in_key, key_len);
681 	return 0;
682 }
683 
684 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
685 {
686 	unsigned int i, n;
687 
688 	/* only use complete blocks, max. PAGE_SIZE */
689 	memcpy(ctrptr, iv, AES_BLOCK_SIZE);
690 	n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
691 	for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
692 		memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
693 		crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
694 		ctrptr += AES_BLOCK_SIZE;
695 	}
696 	return n;
697 }
698 
699 static int ctr_aes_crypt(struct blkcipher_desc *desc, unsigned long modifier,
700 			 struct blkcipher_walk *walk)
701 {
702 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
703 	u8 buf[AES_BLOCK_SIZE], *ctrptr;
704 	unsigned int n, nbytes;
705 	int ret, locked;
706 
707 	locked = mutex_trylock(&ctrblk_lock);
708 
709 	ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
710 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
711 		n = AES_BLOCK_SIZE;
712 		if (nbytes >= 2*AES_BLOCK_SIZE && locked)
713 			n = __ctrblk_init(ctrblk, walk->iv, nbytes);
714 		ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk->iv;
715 		cpacf_kmctr(sctx->fc | modifier, sctx->key,
716 			    walk->dst.virt.addr, walk->src.virt.addr,
717 			    n, ctrptr);
718 		if (ctrptr == ctrblk)
719 			memcpy(walk->iv, ctrptr + n - AES_BLOCK_SIZE,
720 			       AES_BLOCK_SIZE);
721 		crypto_inc(walk->iv, AES_BLOCK_SIZE);
722 		ret = blkcipher_walk_done(desc, walk, nbytes - n);
723 	}
724 	if (locked)
725 		mutex_unlock(&ctrblk_lock);
726 	/*
727 	 * final block may be < AES_BLOCK_SIZE, copy only nbytes
728 	 */
729 	if (nbytes) {
730 		cpacf_kmctr(sctx->fc | modifier, sctx->key,
731 			    buf, walk->src.virt.addr,
732 			    AES_BLOCK_SIZE, walk->iv);
733 		memcpy(walk->dst.virt.addr, buf, nbytes);
734 		crypto_inc(walk->iv, AES_BLOCK_SIZE);
735 		ret = blkcipher_walk_done(desc, walk, 0);
736 	}
737 
738 	return ret;
739 }
740 
741 static int ctr_aes_encrypt(struct blkcipher_desc *desc,
742 			   struct scatterlist *dst, struct scatterlist *src,
743 			   unsigned int nbytes)
744 {
745 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
746 	struct blkcipher_walk walk;
747 
748 	if (unlikely(!sctx->fc))
749 		return fallback_blk_enc(desc, dst, src, nbytes);
750 
751 	blkcipher_walk_init(&walk, dst, src, nbytes);
752 	return ctr_aes_crypt(desc, 0, &walk);
753 }
754 
755 static int ctr_aes_decrypt(struct blkcipher_desc *desc,
756 			   struct scatterlist *dst, struct scatterlist *src,
757 			   unsigned int nbytes)
758 {
759 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
760 	struct blkcipher_walk walk;
761 
762 	if (unlikely(!sctx->fc))
763 		return fallback_blk_dec(desc, dst, src, nbytes);
764 
765 	blkcipher_walk_init(&walk, dst, src, nbytes);
766 	return ctr_aes_crypt(desc, CPACF_DECRYPT, &walk);
767 }
768 
769 static struct crypto_alg ctr_aes_alg = {
770 	.cra_name		=	"ctr(aes)",
771 	.cra_driver_name	=	"ctr-aes-s390",
772 	.cra_priority		=	402,	/* ecb-aes-s390 + 1 */
773 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
774 					CRYPTO_ALG_NEED_FALLBACK,
775 	.cra_blocksize		=	1,
776 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
777 	.cra_type		=	&crypto_blkcipher_type,
778 	.cra_module		=	THIS_MODULE,
779 	.cra_init		=	fallback_init_blk,
780 	.cra_exit		=	fallback_exit_blk,
781 	.cra_u			=	{
782 		.blkcipher = {
783 			.min_keysize		=	AES_MIN_KEY_SIZE,
784 			.max_keysize		=	AES_MAX_KEY_SIZE,
785 			.ivsize			=	AES_BLOCK_SIZE,
786 			.setkey			=	ctr_aes_set_key,
787 			.encrypt		=	ctr_aes_encrypt,
788 			.decrypt		=	ctr_aes_decrypt,
789 		}
790 	}
791 };
792 
793 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
794 			  unsigned int keylen)
795 {
796 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
797 
798 	switch (keylen) {
799 	case AES_KEYSIZE_128:
800 		ctx->fc = CPACF_KMA_GCM_AES_128;
801 		break;
802 	case AES_KEYSIZE_192:
803 		ctx->fc = CPACF_KMA_GCM_AES_192;
804 		break;
805 	case AES_KEYSIZE_256:
806 		ctx->fc = CPACF_KMA_GCM_AES_256;
807 		break;
808 	default:
809 		return -EINVAL;
810 	}
811 
812 	memcpy(ctx->key, key, keylen);
813 	ctx->key_len = keylen;
814 	return 0;
815 }
816 
817 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
818 {
819 	switch (authsize) {
820 	case 4:
821 	case 8:
822 	case 12:
823 	case 13:
824 	case 14:
825 	case 15:
826 	case 16:
827 		break;
828 	default:
829 		return -EINVAL;
830 	}
831 
832 	return 0;
833 }
834 
835 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
836 			   unsigned int len)
837 {
838 	memset(gw, 0, sizeof(*gw));
839 	gw->walk_bytes_remain = len;
840 	scatterwalk_start(&gw->walk, sg);
841 }
842 
843 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
844 {
845 	struct scatterlist *nextsg;
846 
847 	gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
848 	while (!gw->walk_bytes) {
849 		nextsg = sg_next(gw->walk.sg);
850 		if (!nextsg)
851 			return 0;
852 		scatterwalk_start(&gw->walk, nextsg);
853 		gw->walk_bytes = scatterwalk_clamp(&gw->walk,
854 						   gw->walk_bytes_remain);
855 	}
856 	gw->walk_ptr = scatterwalk_map(&gw->walk);
857 	return gw->walk_bytes;
858 }
859 
860 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
861 					     unsigned int nbytes)
862 {
863 	gw->walk_bytes_remain -= nbytes;
864 	scatterwalk_unmap(&gw->walk);
865 	scatterwalk_advance(&gw->walk, nbytes);
866 	scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
867 	gw->walk_ptr = NULL;
868 }
869 
870 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
871 {
872 	int n;
873 
874 	if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
875 		gw->ptr = gw->buf;
876 		gw->nbytes = gw->buf_bytes;
877 		goto out;
878 	}
879 
880 	if (gw->walk_bytes_remain == 0) {
881 		gw->ptr = NULL;
882 		gw->nbytes = 0;
883 		goto out;
884 	}
885 
886 	if (!_gcm_sg_clamp_and_map(gw)) {
887 		gw->ptr = NULL;
888 		gw->nbytes = 0;
889 		goto out;
890 	}
891 
892 	if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
893 		gw->ptr = gw->walk_ptr;
894 		gw->nbytes = gw->walk_bytes;
895 		goto out;
896 	}
897 
898 	while (1) {
899 		n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
900 		memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
901 		gw->buf_bytes += n;
902 		_gcm_sg_unmap_and_advance(gw, n);
903 		if (gw->buf_bytes >= minbytesneeded) {
904 			gw->ptr = gw->buf;
905 			gw->nbytes = gw->buf_bytes;
906 			goto out;
907 		}
908 		if (!_gcm_sg_clamp_and_map(gw)) {
909 			gw->ptr = NULL;
910 			gw->nbytes = 0;
911 			goto out;
912 		}
913 	}
914 
915 out:
916 	return gw->nbytes;
917 }
918 
919 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
920 {
921 	if (gw->walk_bytes_remain == 0) {
922 		gw->ptr = NULL;
923 		gw->nbytes = 0;
924 		goto out;
925 	}
926 
927 	if (!_gcm_sg_clamp_and_map(gw)) {
928 		gw->ptr = NULL;
929 		gw->nbytes = 0;
930 		goto out;
931 	}
932 
933 	if (gw->walk_bytes >= minbytesneeded) {
934 		gw->ptr = gw->walk_ptr;
935 		gw->nbytes = gw->walk_bytes;
936 		goto out;
937 	}
938 
939 	scatterwalk_unmap(&gw->walk);
940 	gw->walk_ptr = NULL;
941 
942 	gw->ptr = gw->buf;
943 	gw->nbytes = sizeof(gw->buf);
944 
945 out:
946 	return gw->nbytes;
947 }
948 
949 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
950 {
951 	if (gw->ptr == NULL)
952 		return 0;
953 
954 	if (gw->ptr == gw->buf) {
955 		int n = gw->buf_bytes - bytesdone;
956 		if (n > 0) {
957 			memmove(gw->buf, gw->buf + bytesdone, n);
958 			gw->buf_bytes = n;
959 		} else
960 			gw->buf_bytes = 0;
961 	} else
962 		_gcm_sg_unmap_and_advance(gw, bytesdone);
963 
964 	return bytesdone;
965 }
966 
967 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
968 {
969 	int i, n;
970 
971 	if (gw->ptr == NULL)
972 		return 0;
973 
974 	if (gw->ptr == gw->buf) {
975 		for (i = 0; i < bytesdone; i += n) {
976 			if (!_gcm_sg_clamp_and_map(gw))
977 				return i;
978 			n = min(gw->walk_bytes, bytesdone - i);
979 			memcpy(gw->walk_ptr, gw->buf + i, n);
980 			_gcm_sg_unmap_and_advance(gw, n);
981 		}
982 	} else
983 		_gcm_sg_unmap_and_advance(gw, bytesdone);
984 
985 	return bytesdone;
986 }
987 
988 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
989 {
990 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
991 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
992 	unsigned int ivsize = crypto_aead_ivsize(tfm);
993 	unsigned int taglen = crypto_aead_authsize(tfm);
994 	unsigned int aadlen = req->assoclen;
995 	unsigned int pclen = req->cryptlen;
996 	int ret = 0;
997 
998 	unsigned int n, len, in_bytes, out_bytes,
999 		     min_bytes, bytes, aad_bytes, pc_bytes;
1000 	struct gcm_sg_walk gw_in, gw_out;
1001 	u8 tag[GHASH_DIGEST_SIZE];
1002 
1003 	struct {
1004 		u32 _[3];		/* reserved */
1005 		u32 cv;			/* Counter Value */
1006 		u8 t[GHASH_DIGEST_SIZE];/* Tag */
1007 		u8 h[AES_BLOCK_SIZE];	/* Hash-subkey */
1008 		u64 taadl;		/* Total AAD Length */
1009 		u64 tpcl;		/* Total Plain-/Cipher-text Length */
1010 		u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
1011 		u8 k[AES_MAX_KEY_SIZE];	/* Key */
1012 	} param;
1013 
1014 	/*
1015 	 * encrypt
1016 	 *   req->src: aad||plaintext
1017 	 *   req->dst: aad||ciphertext||tag
1018 	 * decrypt
1019 	 *   req->src: aad||ciphertext||tag
1020 	 *   req->dst: aad||plaintext, return 0 or -EBADMSG
1021 	 * aad, plaintext and ciphertext may be empty.
1022 	 */
1023 	if (flags & CPACF_DECRYPT)
1024 		pclen -= taglen;
1025 	len = aadlen + pclen;
1026 
1027 	memset(&param, 0, sizeof(param));
1028 	param.cv = 1;
1029 	param.taadl = aadlen * 8;
1030 	param.tpcl = pclen * 8;
1031 	memcpy(param.j0, req->iv, ivsize);
1032 	*(u32 *)(param.j0 + ivsize) = 1;
1033 	memcpy(param.k, ctx->key, ctx->key_len);
1034 
1035 	gcm_walk_start(&gw_in, req->src, len);
1036 	gcm_walk_start(&gw_out, req->dst, len);
1037 
1038 	do {
1039 		min_bytes = min_t(unsigned int,
1040 				  aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
1041 		in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
1042 		out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
1043 		bytes = min(in_bytes, out_bytes);
1044 
1045 		if (aadlen + pclen <= bytes) {
1046 			aad_bytes = aadlen;
1047 			pc_bytes = pclen;
1048 			flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
1049 		} else {
1050 			if (aadlen <= bytes) {
1051 				aad_bytes = aadlen;
1052 				pc_bytes = (bytes - aadlen) &
1053 					   ~(AES_BLOCK_SIZE - 1);
1054 				flags |= CPACF_KMA_LAAD;
1055 			} else {
1056 				aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
1057 				pc_bytes = 0;
1058 			}
1059 		}
1060 
1061 		if (aad_bytes > 0)
1062 			memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
1063 
1064 		cpacf_kma(ctx->fc | flags, &param,
1065 			  gw_out.ptr + aad_bytes,
1066 			  gw_in.ptr + aad_bytes, pc_bytes,
1067 			  gw_in.ptr, aad_bytes);
1068 
1069 		n = aad_bytes + pc_bytes;
1070 		if (gcm_in_walk_done(&gw_in, n) != n)
1071 			return -ENOMEM;
1072 		if (gcm_out_walk_done(&gw_out, n) != n)
1073 			return -ENOMEM;
1074 		aadlen -= aad_bytes;
1075 		pclen -= pc_bytes;
1076 	} while (aadlen + pclen > 0);
1077 
1078 	if (flags & CPACF_DECRYPT) {
1079 		scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
1080 		if (crypto_memneq(tag, param.t, taglen))
1081 			ret = -EBADMSG;
1082 	} else
1083 		scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
1084 
1085 	memzero_explicit(&param, sizeof(param));
1086 	return ret;
1087 }
1088 
1089 static int gcm_aes_encrypt(struct aead_request *req)
1090 {
1091 	return gcm_aes_crypt(req, CPACF_ENCRYPT);
1092 }
1093 
1094 static int gcm_aes_decrypt(struct aead_request *req)
1095 {
1096 	return gcm_aes_crypt(req, CPACF_DECRYPT);
1097 }
1098 
1099 static struct aead_alg gcm_aes_aead = {
1100 	.setkey			= gcm_aes_setkey,
1101 	.setauthsize		= gcm_aes_setauthsize,
1102 	.encrypt		= gcm_aes_encrypt,
1103 	.decrypt		= gcm_aes_decrypt,
1104 
1105 	.ivsize			= GHASH_BLOCK_SIZE - sizeof(u32),
1106 	.maxauthsize		= GHASH_DIGEST_SIZE,
1107 	.chunksize		= AES_BLOCK_SIZE,
1108 
1109 	.base			= {
1110 		.cra_blocksize		= 1,
1111 		.cra_ctxsize		= sizeof(struct s390_aes_ctx),
1112 		.cra_priority		= 900,
1113 		.cra_name		= "gcm(aes)",
1114 		.cra_driver_name	= "gcm-aes-s390",
1115 		.cra_module		= THIS_MODULE,
1116 	},
1117 };
1118 
1119 static struct crypto_alg *aes_s390_algs_ptr[5];
1120 static int aes_s390_algs_num;
1121 static struct aead_alg *aes_s390_aead_alg;
1122 
1123 static int aes_s390_register_alg(struct crypto_alg *alg)
1124 {
1125 	int ret;
1126 
1127 	ret = crypto_register_alg(alg);
1128 	if (!ret)
1129 		aes_s390_algs_ptr[aes_s390_algs_num++] = alg;
1130 	return ret;
1131 }
1132 
1133 static void aes_s390_fini(void)
1134 {
1135 	while (aes_s390_algs_num--)
1136 		crypto_unregister_alg(aes_s390_algs_ptr[aes_s390_algs_num]);
1137 	if (ctrblk)
1138 		free_page((unsigned long) ctrblk);
1139 
1140 	if (aes_s390_aead_alg)
1141 		crypto_unregister_aead(aes_s390_aead_alg);
1142 }
1143 
1144 static int __init aes_s390_init(void)
1145 {
1146 	int ret;
1147 
1148 	/* Query available functions for KM, KMC, KMCTR and KMA */
1149 	cpacf_query(CPACF_KM, &km_functions);
1150 	cpacf_query(CPACF_KMC, &kmc_functions);
1151 	cpacf_query(CPACF_KMCTR, &kmctr_functions);
1152 	cpacf_query(CPACF_KMA, &kma_functions);
1153 
1154 	if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
1155 	    cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
1156 	    cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1157 		ret = aes_s390_register_alg(&aes_alg);
1158 		if (ret)
1159 			goto out_err;
1160 		ret = aes_s390_register_alg(&ecb_aes_alg);
1161 		if (ret)
1162 			goto out_err;
1163 	}
1164 
1165 	if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1166 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1167 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1168 		ret = aes_s390_register_alg(&cbc_aes_alg);
1169 		if (ret)
1170 			goto out_err;
1171 	}
1172 
1173 	if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1174 	    cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1175 		ret = aes_s390_register_alg(&xts_aes_alg);
1176 		if (ret)
1177 			goto out_err;
1178 	}
1179 
1180 	if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1181 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1182 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1183 		ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1184 		if (!ctrblk) {
1185 			ret = -ENOMEM;
1186 			goto out_err;
1187 		}
1188 		ret = aes_s390_register_alg(&ctr_aes_alg);
1189 		if (ret)
1190 			goto out_err;
1191 	}
1192 
1193 	if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1194 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1195 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1196 		ret = crypto_register_aead(&gcm_aes_aead);
1197 		if (ret)
1198 			goto out_err;
1199 		aes_s390_aead_alg = &gcm_aes_aead;
1200 	}
1201 
1202 	return 0;
1203 out_err:
1204 	aes_s390_fini();
1205 	return ret;
1206 }
1207 
1208 module_cpu_feature_match(MSA, aes_s390_init);
1209 module_exit(aes_s390_fini);
1210 
1211 MODULE_ALIAS_CRYPTO("aes-all");
1212 
1213 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1214 MODULE_LICENSE("GPL");
1215