xref: /openbmc/linux/arch/s390/crypto/aes_s390.c (revision 64e26807)
1 /*
2  * Cryptographic API.
3  *
4  * s390 implementation of the AES Cipher Algorithm.
5  *
6  * s390 Version:
7  *   Copyright IBM Corp. 2005, 2007
8  *   Author(s): Jan Glauber (jang@de.ibm.com)
9  *		Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
10  *
11  * Derived from "crypto/aes_generic.c"
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 2 of the License, or (at your option)
16  * any later version.
17  *
18  */
19 
20 #define KMSG_COMPONENT "aes_s390"
21 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22 
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/err.h>
27 #include <linux/module.h>
28 #include <linux/cpufeature.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <crypto/xts.h>
32 #include <asm/cpacf.h>
33 
34 #define AES_KEYLEN_128		1
35 #define AES_KEYLEN_192		2
36 #define AES_KEYLEN_256		4
37 
38 static u8 *ctrblk;
39 static DEFINE_SPINLOCK(ctrblk_lock);
40 static char keylen_flag;
41 
42 struct s390_aes_ctx {
43 	u8 key[AES_MAX_KEY_SIZE];
44 	long enc;
45 	long dec;
46 	int key_len;
47 	union {
48 		struct crypto_skcipher *blk;
49 		struct crypto_cipher *cip;
50 	} fallback;
51 };
52 
53 struct pcc_param {
54 	u8 key[32];
55 	u8 tweak[16];
56 	u8 block[16];
57 	u8 bit[16];
58 	u8 xts[16];
59 };
60 
61 struct s390_xts_ctx {
62 	u8 key[32];
63 	u8 pcc_key[32];
64 	long enc;
65 	long dec;
66 	int key_len;
67 	struct crypto_skcipher *fallback;
68 };
69 
70 /*
71  * Check if the key_len is supported by the HW.
72  * Returns 0 if it is, a positive number if it is not and software fallback is
73  * required or a negative number in case the key size is not valid
74  */
75 static int need_fallback(unsigned int key_len)
76 {
77 	switch (key_len) {
78 	case 16:
79 		if (!(keylen_flag & AES_KEYLEN_128))
80 			return 1;
81 		break;
82 	case 24:
83 		if (!(keylen_flag & AES_KEYLEN_192))
84 			return 1;
85 		break;
86 	case 32:
87 		if (!(keylen_flag & AES_KEYLEN_256))
88 			return 1;
89 		break;
90 	default:
91 		return -1;
92 		break;
93 	}
94 	return 0;
95 }
96 
97 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
98 		unsigned int key_len)
99 {
100 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
101 	int ret;
102 
103 	sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
104 	sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
105 			CRYPTO_TFM_REQ_MASK);
106 
107 	ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
108 	if (ret) {
109 		tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
110 		tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags &
111 				CRYPTO_TFM_RES_MASK);
112 	}
113 	return ret;
114 }
115 
116 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
117 		       unsigned int key_len)
118 {
119 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
120 	u32 *flags = &tfm->crt_flags;
121 	int ret;
122 
123 	ret = need_fallback(key_len);
124 	if (ret < 0) {
125 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
126 		return -EINVAL;
127 	}
128 
129 	sctx->key_len = key_len;
130 	if (!ret) {
131 		memcpy(sctx->key, in_key, key_len);
132 		return 0;
133 	}
134 
135 	return setkey_fallback_cip(tfm, in_key, key_len);
136 }
137 
138 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
139 {
140 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
141 
142 	if (unlikely(need_fallback(sctx->key_len))) {
143 		crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
144 		return;
145 	}
146 
147 	switch (sctx->key_len) {
148 	case 16:
149 		cpacf_km(CPACF_KM_AES_128_ENC, &sctx->key, out, in,
150 			 AES_BLOCK_SIZE);
151 		break;
152 	case 24:
153 		cpacf_km(CPACF_KM_AES_192_ENC, &sctx->key, out, in,
154 			 AES_BLOCK_SIZE);
155 		break;
156 	case 32:
157 		cpacf_km(CPACF_KM_AES_256_ENC, &sctx->key, out, in,
158 			 AES_BLOCK_SIZE);
159 		break;
160 	}
161 }
162 
163 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
164 {
165 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
166 
167 	if (unlikely(need_fallback(sctx->key_len))) {
168 		crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
169 		return;
170 	}
171 
172 	switch (sctx->key_len) {
173 	case 16:
174 		cpacf_km(CPACF_KM_AES_128_DEC, &sctx->key, out, in,
175 			 AES_BLOCK_SIZE);
176 		break;
177 	case 24:
178 		cpacf_km(CPACF_KM_AES_192_DEC, &sctx->key, out, in,
179 			 AES_BLOCK_SIZE);
180 		break;
181 	case 32:
182 		cpacf_km(CPACF_KM_AES_256_DEC, &sctx->key, out, in,
183 			 AES_BLOCK_SIZE);
184 		break;
185 	}
186 }
187 
188 static int fallback_init_cip(struct crypto_tfm *tfm)
189 {
190 	const char *name = tfm->__crt_alg->cra_name;
191 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
192 
193 	sctx->fallback.cip = crypto_alloc_cipher(name, 0,
194 			CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
195 
196 	if (IS_ERR(sctx->fallback.cip)) {
197 		pr_err("Allocating AES fallback algorithm %s failed\n",
198 		       name);
199 		return PTR_ERR(sctx->fallback.cip);
200 	}
201 
202 	return 0;
203 }
204 
205 static void fallback_exit_cip(struct crypto_tfm *tfm)
206 {
207 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
208 
209 	crypto_free_cipher(sctx->fallback.cip);
210 	sctx->fallback.cip = NULL;
211 }
212 
213 static struct crypto_alg aes_alg = {
214 	.cra_name		=	"aes",
215 	.cra_driver_name	=	"aes-s390",
216 	.cra_priority		=	300,
217 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER |
218 					CRYPTO_ALG_NEED_FALLBACK,
219 	.cra_blocksize		=	AES_BLOCK_SIZE,
220 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
221 	.cra_module		=	THIS_MODULE,
222 	.cra_init               =       fallback_init_cip,
223 	.cra_exit               =       fallback_exit_cip,
224 	.cra_u			=	{
225 		.cipher = {
226 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
227 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
228 			.cia_setkey		=	aes_set_key,
229 			.cia_encrypt		=	aes_encrypt,
230 			.cia_decrypt		=	aes_decrypt,
231 		}
232 	}
233 };
234 
235 static int setkey_fallback_blk(struct crypto_tfm *tfm, const u8 *key,
236 		unsigned int len)
237 {
238 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
239 	unsigned int ret;
240 
241 	crypto_skcipher_clear_flags(sctx->fallback.blk, CRYPTO_TFM_REQ_MASK);
242 	crypto_skcipher_set_flags(sctx->fallback.blk, tfm->crt_flags &
243 						      CRYPTO_TFM_REQ_MASK);
244 
245 	ret = crypto_skcipher_setkey(sctx->fallback.blk, key, len);
246 
247 	tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
248 	tfm->crt_flags |= crypto_skcipher_get_flags(sctx->fallback.blk) &
249 			  CRYPTO_TFM_RES_MASK;
250 
251 	return ret;
252 }
253 
254 static int fallback_blk_dec(struct blkcipher_desc *desc,
255 		struct scatterlist *dst, struct scatterlist *src,
256 		unsigned int nbytes)
257 {
258 	unsigned int ret;
259 	struct crypto_blkcipher *tfm = desc->tfm;
260 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
261 	SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
262 
263 	skcipher_request_set_tfm(req, sctx->fallback.blk);
264 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
265 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
266 
267 	ret = crypto_skcipher_decrypt(req);
268 
269 	skcipher_request_zero(req);
270 	return ret;
271 }
272 
273 static int fallback_blk_enc(struct blkcipher_desc *desc,
274 		struct scatterlist *dst, struct scatterlist *src,
275 		unsigned int nbytes)
276 {
277 	unsigned int ret;
278 	struct crypto_blkcipher *tfm = desc->tfm;
279 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(tfm);
280 	SKCIPHER_REQUEST_ON_STACK(req, sctx->fallback.blk);
281 
282 	skcipher_request_set_tfm(req, sctx->fallback.blk);
283 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
284 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
285 
286 	ret = crypto_skcipher_encrypt(req);
287 	return ret;
288 }
289 
290 static int ecb_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
291 			   unsigned int key_len)
292 {
293 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
294 	int ret;
295 
296 	ret = need_fallback(key_len);
297 	if (ret > 0) {
298 		sctx->key_len = key_len;
299 		return setkey_fallback_blk(tfm, in_key, key_len);
300 	}
301 
302 	switch (key_len) {
303 	case 16:
304 		sctx->enc = CPACF_KM_AES_128_ENC;
305 		sctx->dec = CPACF_KM_AES_128_DEC;
306 		break;
307 	case 24:
308 		sctx->enc = CPACF_KM_AES_192_ENC;
309 		sctx->dec = CPACF_KM_AES_192_DEC;
310 		break;
311 	case 32:
312 		sctx->enc = CPACF_KM_AES_256_ENC;
313 		sctx->dec = CPACF_KM_AES_256_DEC;
314 		break;
315 	}
316 
317 	return aes_set_key(tfm, in_key, key_len);
318 }
319 
320 static int ecb_aes_crypt(struct blkcipher_desc *desc, long func, void *param,
321 			 struct blkcipher_walk *walk)
322 {
323 	int ret = blkcipher_walk_virt(desc, walk);
324 	unsigned int nbytes;
325 
326 	while ((nbytes = walk->nbytes)) {
327 		/* only use complete blocks */
328 		unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
329 		u8 *out = walk->dst.virt.addr;
330 		u8 *in = walk->src.virt.addr;
331 
332 		ret = cpacf_km(func, param, out, in, n);
333 		if (ret < 0 || ret != n)
334 			return -EIO;
335 
336 		nbytes &= AES_BLOCK_SIZE - 1;
337 		ret = blkcipher_walk_done(desc, walk, nbytes);
338 	}
339 
340 	return ret;
341 }
342 
343 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
344 			   struct scatterlist *dst, struct scatterlist *src,
345 			   unsigned int nbytes)
346 {
347 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
348 	struct blkcipher_walk walk;
349 
350 	if (unlikely(need_fallback(sctx->key_len)))
351 		return fallback_blk_enc(desc, dst, src, nbytes);
352 
353 	blkcipher_walk_init(&walk, dst, src, nbytes);
354 	return ecb_aes_crypt(desc, sctx->enc, sctx->key, &walk);
355 }
356 
357 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
358 			   struct scatterlist *dst, struct scatterlist *src,
359 			   unsigned int nbytes)
360 {
361 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
362 	struct blkcipher_walk walk;
363 
364 	if (unlikely(need_fallback(sctx->key_len)))
365 		return fallback_blk_dec(desc, dst, src, nbytes);
366 
367 	blkcipher_walk_init(&walk, dst, src, nbytes);
368 	return ecb_aes_crypt(desc, sctx->dec, sctx->key, &walk);
369 }
370 
371 static int fallback_init_blk(struct crypto_tfm *tfm)
372 {
373 	const char *name = tfm->__crt_alg->cra_name;
374 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
375 
376 	sctx->fallback.blk = crypto_alloc_skcipher(name, 0,
377 						   CRYPTO_ALG_ASYNC |
378 						   CRYPTO_ALG_NEED_FALLBACK);
379 
380 	if (IS_ERR(sctx->fallback.blk)) {
381 		pr_err("Allocating AES fallback algorithm %s failed\n",
382 		       name);
383 		return PTR_ERR(sctx->fallback.blk);
384 	}
385 
386 	return 0;
387 }
388 
389 static void fallback_exit_blk(struct crypto_tfm *tfm)
390 {
391 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
392 
393 	crypto_free_skcipher(sctx->fallback.blk);
394 }
395 
396 static struct crypto_alg ecb_aes_alg = {
397 	.cra_name		=	"ecb(aes)",
398 	.cra_driver_name	=	"ecb-aes-s390",
399 	.cra_priority		=	400,	/* combo: aes + ecb */
400 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
401 					CRYPTO_ALG_NEED_FALLBACK,
402 	.cra_blocksize		=	AES_BLOCK_SIZE,
403 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
404 	.cra_type		=	&crypto_blkcipher_type,
405 	.cra_module		=	THIS_MODULE,
406 	.cra_init		=	fallback_init_blk,
407 	.cra_exit		=	fallback_exit_blk,
408 	.cra_u			=	{
409 		.blkcipher = {
410 			.min_keysize		=	AES_MIN_KEY_SIZE,
411 			.max_keysize		=	AES_MAX_KEY_SIZE,
412 			.setkey			=	ecb_aes_set_key,
413 			.encrypt		=	ecb_aes_encrypt,
414 			.decrypt		=	ecb_aes_decrypt,
415 		}
416 	}
417 };
418 
419 static int cbc_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
420 			   unsigned int key_len)
421 {
422 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
423 	int ret;
424 
425 	ret = need_fallback(key_len);
426 	if (ret > 0) {
427 		sctx->key_len = key_len;
428 		return setkey_fallback_blk(tfm, in_key, key_len);
429 	}
430 
431 	switch (key_len) {
432 	case 16:
433 		sctx->enc = CPACF_KMC_AES_128_ENC;
434 		sctx->dec = CPACF_KMC_AES_128_DEC;
435 		break;
436 	case 24:
437 		sctx->enc = CPACF_KMC_AES_192_ENC;
438 		sctx->dec = CPACF_KMC_AES_192_DEC;
439 		break;
440 	case 32:
441 		sctx->enc = CPACF_KMC_AES_256_ENC;
442 		sctx->dec = CPACF_KMC_AES_256_DEC;
443 		break;
444 	}
445 
446 	return aes_set_key(tfm, in_key, key_len);
447 }
448 
449 static int cbc_aes_crypt(struct blkcipher_desc *desc, long func,
450 			 struct blkcipher_walk *walk)
451 {
452 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
453 	int ret = blkcipher_walk_virt(desc, walk);
454 	unsigned int nbytes = walk->nbytes;
455 	struct {
456 		u8 iv[AES_BLOCK_SIZE];
457 		u8 key[AES_MAX_KEY_SIZE];
458 	} param;
459 
460 	if (!nbytes)
461 		goto out;
462 
463 	memcpy(param.iv, walk->iv, AES_BLOCK_SIZE);
464 	memcpy(param.key, sctx->key, sctx->key_len);
465 	do {
466 		/* only use complete blocks */
467 		unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
468 		u8 *out = walk->dst.virt.addr;
469 		u8 *in = walk->src.virt.addr;
470 
471 		ret = cpacf_kmc(func, &param, out, in, n);
472 		if (ret < 0 || ret != n)
473 			return -EIO;
474 
475 		nbytes &= AES_BLOCK_SIZE - 1;
476 		ret = blkcipher_walk_done(desc, walk, nbytes);
477 	} while ((nbytes = walk->nbytes));
478 	memcpy(walk->iv, param.iv, AES_BLOCK_SIZE);
479 
480 out:
481 	return ret;
482 }
483 
484 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
485 			   struct scatterlist *dst, struct scatterlist *src,
486 			   unsigned int nbytes)
487 {
488 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
489 	struct blkcipher_walk walk;
490 
491 	if (unlikely(need_fallback(sctx->key_len)))
492 		return fallback_blk_enc(desc, dst, src, nbytes);
493 
494 	blkcipher_walk_init(&walk, dst, src, nbytes);
495 	return cbc_aes_crypt(desc, sctx->enc, &walk);
496 }
497 
498 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
499 			   struct scatterlist *dst, struct scatterlist *src,
500 			   unsigned int nbytes)
501 {
502 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
503 	struct blkcipher_walk walk;
504 
505 	if (unlikely(need_fallback(sctx->key_len)))
506 		return fallback_blk_dec(desc, dst, src, nbytes);
507 
508 	blkcipher_walk_init(&walk, dst, src, nbytes);
509 	return cbc_aes_crypt(desc, sctx->dec, &walk);
510 }
511 
512 static struct crypto_alg cbc_aes_alg = {
513 	.cra_name		=	"cbc(aes)",
514 	.cra_driver_name	=	"cbc-aes-s390",
515 	.cra_priority		=	400,	/* combo: aes + cbc */
516 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
517 					CRYPTO_ALG_NEED_FALLBACK,
518 	.cra_blocksize		=	AES_BLOCK_SIZE,
519 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
520 	.cra_type		=	&crypto_blkcipher_type,
521 	.cra_module		=	THIS_MODULE,
522 	.cra_init		=	fallback_init_blk,
523 	.cra_exit		=	fallback_exit_blk,
524 	.cra_u			=	{
525 		.blkcipher = {
526 			.min_keysize		=	AES_MIN_KEY_SIZE,
527 			.max_keysize		=	AES_MAX_KEY_SIZE,
528 			.ivsize			=	AES_BLOCK_SIZE,
529 			.setkey			=	cbc_aes_set_key,
530 			.encrypt		=	cbc_aes_encrypt,
531 			.decrypt		=	cbc_aes_decrypt,
532 		}
533 	}
534 };
535 
536 static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
537 				   unsigned int len)
538 {
539 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
540 	unsigned int ret;
541 
542 	crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
543 	crypto_skcipher_set_flags(xts_ctx->fallback, tfm->crt_flags &
544 						     CRYPTO_TFM_REQ_MASK);
545 
546 	ret = crypto_skcipher_setkey(xts_ctx->fallback, key, len);
547 
548 	tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
549 	tfm->crt_flags |= crypto_skcipher_get_flags(xts_ctx->fallback) &
550 			  CRYPTO_TFM_RES_MASK;
551 
552 	return ret;
553 }
554 
555 static int xts_fallback_decrypt(struct blkcipher_desc *desc,
556 		struct scatterlist *dst, struct scatterlist *src,
557 		unsigned int nbytes)
558 {
559 	struct crypto_blkcipher *tfm = desc->tfm;
560 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
561 	SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
562 	unsigned int ret;
563 
564 	skcipher_request_set_tfm(req, xts_ctx->fallback);
565 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
566 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
567 
568 	ret = crypto_skcipher_decrypt(req);
569 
570 	skcipher_request_zero(req);
571 	return ret;
572 }
573 
574 static int xts_fallback_encrypt(struct blkcipher_desc *desc,
575 		struct scatterlist *dst, struct scatterlist *src,
576 		unsigned int nbytes)
577 {
578 	struct crypto_blkcipher *tfm = desc->tfm;
579 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(tfm);
580 	SKCIPHER_REQUEST_ON_STACK(req, xts_ctx->fallback);
581 	unsigned int ret;
582 
583 	skcipher_request_set_tfm(req, xts_ctx->fallback);
584 	skcipher_request_set_callback(req, desc->flags, NULL, NULL);
585 	skcipher_request_set_crypt(req, src, dst, nbytes, desc->info);
586 
587 	ret = crypto_skcipher_encrypt(req);
588 
589 	skcipher_request_zero(req);
590 	return ret;
591 }
592 
593 static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
594 			   unsigned int key_len)
595 {
596 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
597 	u32 *flags = &tfm->crt_flags;
598 	int err;
599 
600 	err = xts_check_key(tfm, in_key, key_len);
601 	if (err)
602 		return err;
603 
604 	switch (key_len) {
605 	case 32:
606 		xts_ctx->enc = CPACF_KM_XTS_128_ENC;
607 		xts_ctx->dec = CPACF_KM_XTS_128_DEC;
608 		memcpy(xts_ctx->key + 16, in_key, 16);
609 		memcpy(xts_ctx->pcc_key + 16, in_key + 16, 16);
610 		break;
611 	case 48:
612 		xts_ctx->enc = 0;
613 		xts_ctx->dec = 0;
614 		xts_fallback_setkey(tfm, in_key, key_len);
615 		break;
616 	case 64:
617 		xts_ctx->enc = CPACF_KM_XTS_256_ENC;
618 		xts_ctx->dec = CPACF_KM_XTS_256_DEC;
619 		memcpy(xts_ctx->key, in_key, 32);
620 		memcpy(xts_ctx->pcc_key, in_key + 32, 32);
621 		break;
622 	default:
623 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
624 		return -EINVAL;
625 	}
626 	xts_ctx->key_len = key_len;
627 	return 0;
628 }
629 
630 static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
631 			 struct s390_xts_ctx *xts_ctx,
632 			 struct blkcipher_walk *walk)
633 {
634 	unsigned int offset = (xts_ctx->key_len >> 1) & 0x10;
635 	int ret = blkcipher_walk_virt(desc, walk);
636 	unsigned int nbytes = walk->nbytes;
637 	unsigned int n;
638 	u8 *in, *out;
639 	struct pcc_param pcc_param;
640 	struct {
641 		u8 key[32];
642 		u8 init[16];
643 	} xts_param;
644 
645 	if (!nbytes)
646 		goto out;
647 
648 	memset(pcc_param.block, 0, sizeof(pcc_param.block));
649 	memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
650 	memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
651 	memcpy(pcc_param.tweak, walk->iv, sizeof(pcc_param.tweak));
652 	memcpy(pcc_param.key, xts_ctx->pcc_key, 32);
653 	/* remove decipher modifier bit from 'func' and call PCC */
654 	ret = cpacf_pcc(func & 0x7f, &pcc_param.key[offset]);
655 	if (ret < 0)
656 		return -EIO;
657 
658 	memcpy(xts_param.key, xts_ctx->key, 32);
659 	memcpy(xts_param.init, pcc_param.xts, 16);
660 	do {
661 		/* only use complete blocks */
662 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
663 		out = walk->dst.virt.addr;
664 		in = walk->src.virt.addr;
665 
666 		ret = cpacf_km(func, &xts_param.key[offset], out, in, n);
667 		if (ret < 0 || ret != n)
668 			return -EIO;
669 
670 		nbytes &= AES_BLOCK_SIZE - 1;
671 		ret = blkcipher_walk_done(desc, walk, nbytes);
672 	} while ((nbytes = walk->nbytes));
673 out:
674 	return ret;
675 }
676 
677 static int xts_aes_encrypt(struct blkcipher_desc *desc,
678 			   struct scatterlist *dst, struct scatterlist *src,
679 			   unsigned int nbytes)
680 {
681 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
682 	struct blkcipher_walk walk;
683 
684 	if (unlikely(xts_ctx->key_len == 48))
685 		return xts_fallback_encrypt(desc, dst, src, nbytes);
686 
687 	blkcipher_walk_init(&walk, dst, src, nbytes);
688 	return xts_aes_crypt(desc, xts_ctx->enc, xts_ctx, &walk);
689 }
690 
691 static int xts_aes_decrypt(struct blkcipher_desc *desc,
692 			   struct scatterlist *dst, struct scatterlist *src,
693 			   unsigned int nbytes)
694 {
695 	struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
696 	struct blkcipher_walk walk;
697 
698 	if (unlikely(xts_ctx->key_len == 48))
699 		return xts_fallback_decrypt(desc, dst, src, nbytes);
700 
701 	blkcipher_walk_init(&walk, dst, src, nbytes);
702 	return xts_aes_crypt(desc, xts_ctx->dec, xts_ctx, &walk);
703 }
704 
705 static int xts_fallback_init(struct crypto_tfm *tfm)
706 {
707 	const char *name = tfm->__crt_alg->cra_name;
708 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
709 
710 	xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
711 						  CRYPTO_ALG_ASYNC |
712 						  CRYPTO_ALG_NEED_FALLBACK);
713 
714 	if (IS_ERR(xts_ctx->fallback)) {
715 		pr_err("Allocating XTS fallback algorithm %s failed\n",
716 		       name);
717 		return PTR_ERR(xts_ctx->fallback);
718 	}
719 	return 0;
720 }
721 
722 static void xts_fallback_exit(struct crypto_tfm *tfm)
723 {
724 	struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
725 
726 	crypto_free_skcipher(xts_ctx->fallback);
727 }
728 
729 static struct crypto_alg xts_aes_alg = {
730 	.cra_name		=	"xts(aes)",
731 	.cra_driver_name	=	"xts-aes-s390",
732 	.cra_priority		=	400,	/* combo: aes + xts */
733 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER |
734 					CRYPTO_ALG_NEED_FALLBACK,
735 	.cra_blocksize		=	AES_BLOCK_SIZE,
736 	.cra_ctxsize		=	sizeof(struct s390_xts_ctx),
737 	.cra_type		=	&crypto_blkcipher_type,
738 	.cra_module		=	THIS_MODULE,
739 	.cra_init		=	xts_fallback_init,
740 	.cra_exit		=	xts_fallback_exit,
741 	.cra_u			=	{
742 		.blkcipher = {
743 			.min_keysize		=	2 * AES_MIN_KEY_SIZE,
744 			.max_keysize		=	2 * AES_MAX_KEY_SIZE,
745 			.ivsize			=	AES_BLOCK_SIZE,
746 			.setkey			=	xts_aes_set_key,
747 			.encrypt		=	xts_aes_encrypt,
748 			.decrypt		=	xts_aes_decrypt,
749 		}
750 	}
751 };
752 
753 static int xts_aes_alg_reg;
754 
755 static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
756 			   unsigned int key_len)
757 {
758 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
759 
760 	switch (key_len) {
761 	case 16:
762 		sctx->enc = CPACF_KMCTR_AES_128_ENC;
763 		sctx->dec = CPACF_KMCTR_AES_128_DEC;
764 		break;
765 	case 24:
766 		sctx->enc = CPACF_KMCTR_AES_192_ENC;
767 		sctx->dec = CPACF_KMCTR_AES_192_DEC;
768 		break;
769 	case 32:
770 		sctx->enc = CPACF_KMCTR_AES_256_ENC;
771 		sctx->dec = CPACF_KMCTR_AES_256_DEC;
772 		break;
773 	}
774 
775 	return aes_set_key(tfm, in_key, key_len);
776 }
777 
778 static unsigned int __ctrblk_init(u8 *ctrptr, unsigned int nbytes)
779 {
780 	unsigned int i, n;
781 
782 	/* only use complete blocks, max. PAGE_SIZE */
783 	n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
784 	for (i = AES_BLOCK_SIZE; i < n; i += AES_BLOCK_SIZE) {
785 		memcpy(ctrptr + i, ctrptr + i - AES_BLOCK_SIZE,
786 		       AES_BLOCK_SIZE);
787 		crypto_inc(ctrptr + i, AES_BLOCK_SIZE);
788 	}
789 	return n;
790 }
791 
792 static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
793 			 struct s390_aes_ctx *sctx, struct blkcipher_walk *walk)
794 {
795 	int ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
796 	unsigned int n, nbytes;
797 	u8 buf[AES_BLOCK_SIZE], ctrbuf[AES_BLOCK_SIZE];
798 	u8 *out, *in, *ctrptr = ctrbuf;
799 
800 	if (!walk->nbytes)
801 		return ret;
802 
803 	if (spin_trylock(&ctrblk_lock))
804 		ctrptr = ctrblk;
805 
806 	memcpy(ctrptr, walk->iv, AES_BLOCK_SIZE);
807 	while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
808 		out = walk->dst.virt.addr;
809 		in = walk->src.virt.addr;
810 		while (nbytes >= AES_BLOCK_SIZE) {
811 			if (ctrptr == ctrblk)
812 				n = __ctrblk_init(ctrptr, nbytes);
813 			else
814 				n = AES_BLOCK_SIZE;
815 			ret = cpacf_kmctr(func, sctx->key, out, in, n, ctrptr);
816 			if (ret < 0 || ret != n) {
817 				if (ctrptr == ctrblk)
818 					spin_unlock(&ctrblk_lock);
819 				return -EIO;
820 			}
821 			if (n > AES_BLOCK_SIZE)
822 				memcpy(ctrptr, ctrptr + n - AES_BLOCK_SIZE,
823 				       AES_BLOCK_SIZE);
824 			crypto_inc(ctrptr, AES_BLOCK_SIZE);
825 			out += n;
826 			in += n;
827 			nbytes -= n;
828 		}
829 		ret = blkcipher_walk_done(desc, walk, nbytes);
830 	}
831 	if (ctrptr == ctrblk) {
832 		if (nbytes)
833 			memcpy(ctrbuf, ctrptr, AES_BLOCK_SIZE);
834 		else
835 			memcpy(walk->iv, ctrptr, AES_BLOCK_SIZE);
836 		spin_unlock(&ctrblk_lock);
837 	} else {
838 		if (!nbytes)
839 			memcpy(walk->iv, ctrptr, AES_BLOCK_SIZE);
840 	}
841 	/*
842 	 * final block may be < AES_BLOCK_SIZE, copy only nbytes
843 	 */
844 	if (nbytes) {
845 		out = walk->dst.virt.addr;
846 		in = walk->src.virt.addr;
847 		ret = cpacf_kmctr(func, sctx->key, buf, in,
848 				  AES_BLOCK_SIZE, ctrbuf);
849 		if (ret < 0 || ret != AES_BLOCK_SIZE)
850 			return -EIO;
851 		memcpy(out, buf, nbytes);
852 		crypto_inc(ctrbuf, AES_BLOCK_SIZE);
853 		ret = blkcipher_walk_done(desc, walk, 0);
854 		memcpy(walk->iv, ctrbuf, AES_BLOCK_SIZE);
855 	}
856 
857 	return ret;
858 }
859 
860 static int ctr_aes_encrypt(struct blkcipher_desc *desc,
861 			   struct scatterlist *dst, struct scatterlist *src,
862 			   unsigned int nbytes)
863 {
864 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
865 	struct blkcipher_walk walk;
866 
867 	blkcipher_walk_init(&walk, dst, src, nbytes);
868 	return ctr_aes_crypt(desc, sctx->enc, sctx, &walk);
869 }
870 
871 static int ctr_aes_decrypt(struct blkcipher_desc *desc,
872 			   struct scatterlist *dst, struct scatterlist *src,
873 			   unsigned int nbytes)
874 {
875 	struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
876 	struct blkcipher_walk walk;
877 
878 	blkcipher_walk_init(&walk, dst, src, nbytes);
879 	return ctr_aes_crypt(desc, sctx->dec, sctx, &walk);
880 }
881 
882 static struct crypto_alg ctr_aes_alg = {
883 	.cra_name		=	"ctr(aes)",
884 	.cra_driver_name	=	"ctr-aes-s390",
885 	.cra_priority		=	400,	/* combo: aes + ctr */
886 	.cra_flags		=	CRYPTO_ALG_TYPE_BLKCIPHER,
887 	.cra_blocksize		=	1,
888 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
889 	.cra_type		=	&crypto_blkcipher_type,
890 	.cra_module		=	THIS_MODULE,
891 	.cra_u			=	{
892 		.blkcipher = {
893 			.min_keysize		=	AES_MIN_KEY_SIZE,
894 			.max_keysize		=	AES_MAX_KEY_SIZE,
895 			.ivsize			=	AES_BLOCK_SIZE,
896 			.setkey			=	ctr_aes_set_key,
897 			.encrypt		=	ctr_aes_encrypt,
898 			.decrypt		=	ctr_aes_decrypt,
899 		}
900 	}
901 };
902 
903 static int ctr_aes_alg_reg;
904 
905 static int __init aes_s390_init(void)
906 {
907 	int ret;
908 
909 	if (cpacf_query(CPACF_KM, CPACF_KM_AES_128_ENC))
910 		keylen_flag |= AES_KEYLEN_128;
911 	if (cpacf_query(CPACF_KM, CPACF_KM_AES_192_ENC))
912 		keylen_flag |= AES_KEYLEN_192;
913 	if (cpacf_query(CPACF_KM, CPACF_KM_AES_256_ENC))
914 		keylen_flag |= AES_KEYLEN_256;
915 
916 	if (!keylen_flag)
917 		return -EOPNOTSUPP;
918 
919 	/* z9 109 and z9 BC/EC only support 128 bit key length */
920 	if (keylen_flag == AES_KEYLEN_128)
921 		pr_info("AES hardware acceleration is only available for"
922 			" 128-bit keys\n");
923 
924 	ret = crypto_register_alg(&aes_alg);
925 	if (ret)
926 		goto aes_err;
927 
928 	ret = crypto_register_alg(&ecb_aes_alg);
929 	if (ret)
930 		goto ecb_aes_err;
931 
932 	ret = crypto_register_alg(&cbc_aes_alg);
933 	if (ret)
934 		goto cbc_aes_err;
935 
936 	if (cpacf_query(CPACF_KM, CPACF_KM_XTS_128_ENC) &&
937 	    cpacf_query(CPACF_KM, CPACF_KM_XTS_256_ENC)) {
938 		ret = crypto_register_alg(&xts_aes_alg);
939 		if (ret)
940 			goto xts_aes_err;
941 		xts_aes_alg_reg = 1;
942 	}
943 
944 	if (cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_128_ENC) &&
945 	    cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_192_ENC) &&
946 	    cpacf_query(CPACF_KMCTR, CPACF_KMCTR_AES_256_ENC)) {
947 		ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
948 		if (!ctrblk) {
949 			ret = -ENOMEM;
950 			goto ctr_aes_err;
951 		}
952 		ret = crypto_register_alg(&ctr_aes_alg);
953 		if (ret) {
954 			free_page((unsigned long) ctrblk);
955 			goto ctr_aes_err;
956 		}
957 		ctr_aes_alg_reg = 1;
958 	}
959 
960 out:
961 	return ret;
962 
963 ctr_aes_err:
964 	crypto_unregister_alg(&xts_aes_alg);
965 xts_aes_err:
966 	crypto_unregister_alg(&cbc_aes_alg);
967 cbc_aes_err:
968 	crypto_unregister_alg(&ecb_aes_alg);
969 ecb_aes_err:
970 	crypto_unregister_alg(&aes_alg);
971 aes_err:
972 	goto out;
973 }
974 
975 static void __exit aes_s390_fini(void)
976 {
977 	if (ctr_aes_alg_reg) {
978 		crypto_unregister_alg(&ctr_aes_alg);
979 		free_page((unsigned long) ctrblk);
980 	}
981 	if (xts_aes_alg_reg)
982 		crypto_unregister_alg(&xts_aes_alg);
983 	crypto_unregister_alg(&cbc_aes_alg);
984 	crypto_unregister_alg(&ecb_aes_alg);
985 	crypto_unregister_alg(&aes_alg);
986 }
987 
988 module_cpu_feature_match(MSA, aes_s390_init);
989 module_exit(aes_s390_fini);
990 
991 MODULE_ALIAS_CRYPTO("aes-all");
992 
993 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
994 MODULE_LICENSE("GPL");
995