xref: /openbmc/linux/arch/s390/crypto/aes_s390.c (revision 5c816641)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Cryptographic API.
4  *
5  * s390 implementation of the AES Cipher Algorithm.
6  *
7  * s390 Version:
8  *   Copyright IBM Corp. 2005, 2017
9  *   Author(s): Jan Glauber (jang@de.ibm.com)
10  *		Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
11  *		Patrick Steuer <patrick.steuer@de.ibm.com>
12  *		Harald Freudenberger <freude@de.ibm.com>
13  *
14  * Derived from "crypto/aes_generic.c"
15  */
16 
17 #define KMSG_COMPONENT "aes_s390"
18 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
19 
20 #include <crypto/aes.h>
21 #include <crypto/algapi.h>
22 #include <crypto/ghash.h>
23 #include <crypto/internal/aead.h>
24 #include <crypto/internal/cipher.h>
25 #include <crypto/internal/skcipher.h>
26 #include <crypto/scatterwalk.h>
27 #include <linux/err.h>
28 #include <linux/module.h>
29 #include <linux/cpufeature.h>
30 #include <linux/init.h>
31 #include <linux/mutex.h>
32 #include <linux/fips.h>
33 #include <linux/string.h>
34 #include <crypto/xts.h>
35 #include <asm/cpacf.h>
36 
37 static u8 *ctrblk;
38 static DEFINE_MUTEX(ctrblk_lock);
39 
40 static cpacf_mask_t km_functions, kmc_functions, kmctr_functions,
41 		    kma_functions;
42 
43 struct s390_aes_ctx {
44 	u8 key[AES_MAX_KEY_SIZE];
45 	int key_len;
46 	unsigned long fc;
47 	union {
48 		struct crypto_skcipher *skcipher;
49 		struct crypto_cipher *cip;
50 	} fallback;
51 };
52 
53 struct s390_xts_ctx {
54 	u8 key[32];
55 	u8 pcc_key[32];
56 	int key_len;
57 	unsigned long fc;
58 	struct crypto_skcipher *fallback;
59 };
60 
61 struct gcm_sg_walk {
62 	struct scatter_walk walk;
63 	unsigned int walk_bytes;
64 	u8 *walk_ptr;
65 	unsigned int walk_bytes_remain;
66 	u8 buf[AES_BLOCK_SIZE];
67 	unsigned int buf_bytes;
68 	u8 *ptr;
69 	unsigned int nbytes;
70 };
71 
72 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
73 		unsigned int key_len)
74 {
75 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
76 
77 	sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
78 	sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
79 			CRYPTO_TFM_REQ_MASK);
80 
81 	return crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
82 }
83 
84 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
85 		       unsigned int key_len)
86 {
87 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
88 	unsigned long fc;
89 
90 	/* Pick the correct function code based on the key length */
91 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
92 	     (key_len == 24) ? CPACF_KM_AES_192 :
93 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
94 
95 	/* Check if the function code is available */
96 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
97 	if (!sctx->fc)
98 		return setkey_fallback_cip(tfm, in_key, key_len);
99 
100 	sctx->key_len = key_len;
101 	memcpy(sctx->key, in_key, key_len);
102 	return 0;
103 }
104 
105 static void crypto_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
106 {
107 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
108 
109 	if (unlikely(!sctx->fc)) {
110 		crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
111 		return;
112 	}
113 	cpacf_km(sctx->fc, &sctx->key, out, in, AES_BLOCK_SIZE);
114 }
115 
116 static void crypto_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
117 {
118 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
119 
120 	if (unlikely(!sctx->fc)) {
121 		crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
122 		return;
123 	}
124 	cpacf_km(sctx->fc | CPACF_DECRYPT,
125 		 &sctx->key, out, in, AES_BLOCK_SIZE);
126 }
127 
128 static int fallback_init_cip(struct crypto_tfm *tfm)
129 {
130 	const char *name = tfm->__crt_alg->cra_name;
131 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
132 
133 	sctx->fallback.cip = crypto_alloc_cipher(name, 0,
134 						 CRYPTO_ALG_NEED_FALLBACK);
135 
136 	if (IS_ERR(sctx->fallback.cip)) {
137 		pr_err("Allocating AES fallback algorithm %s failed\n",
138 		       name);
139 		return PTR_ERR(sctx->fallback.cip);
140 	}
141 
142 	return 0;
143 }
144 
145 static void fallback_exit_cip(struct crypto_tfm *tfm)
146 {
147 	struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
148 
149 	crypto_free_cipher(sctx->fallback.cip);
150 	sctx->fallback.cip = NULL;
151 }
152 
153 static struct crypto_alg aes_alg = {
154 	.cra_name		=	"aes",
155 	.cra_driver_name	=	"aes-s390",
156 	.cra_priority		=	300,
157 	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER |
158 					CRYPTO_ALG_NEED_FALLBACK,
159 	.cra_blocksize		=	AES_BLOCK_SIZE,
160 	.cra_ctxsize		=	sizeof(struct s390_aes_ctx),
161 	.cra_module		=	THIS_MODULE,
162 	.cra_init               =       fallback_init_cip,
163 	.cra_exit               =       fallback_exit_cip,
164 	.cra_u			=	{
165 		.cipher = {
166 			.cia_min_keysize	=	AES_MIN_KEY_SIZE,
167 			.cia_max_keysize	=	AES_MAX_KEY_SIZE,
168 			.cia_setkey		=	aes_set_key,
169 			.cia_encrypt		=	crypto_aes_encrypt,
170 			.cia_decrypt		=	crypto_aes_decrypt,
171 		}
172 	}
173 };
174 
175 static int setkey_fallback_skcipher(struct crypto_skcipher *tfm, const u8 *key,
176 				    unsigned int len)
177 {
178 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
179 
180 	crypto_skcipher_clear_flags(sctx->fallback.skcipher,
181 				    CRYPTO_TFM_REQ_MASK);
182 	crypto_skcipher_set_flags(sctx->fallback.skcipher,
183 				  crypto_skcipher_get_flags(tfm) &
184 				  CRYPTO_TFM_REQ_MASK);
185 	return crypto_skcipher_setkey(sctx->fallback.skcipher, key, len);
186 }
187 
188 static int fallback_skcipher_crypt(struct s390_aes_ctx *sctx,
189 				   struct skcipher_request *req,
190 				   unsigned long modifier)
191 {
192 	struct skcipher_request *subreq = skcipher_request_ctx(req);
193 
194 	*subreq = *req;
195 	skcipher_request_set_tfm(subreq, sctx->fallback.skcipher);
196 	return (modifier & CPACF_DECRYPT) ?
197 		crypto_skcipher_decrypt(subreq) :
198 		crypto_skcipher_encrypt(subreq);
199 }
200 
201 static int ecb_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
202 			   unsigned int key_len)
203 {
204 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
205 	unsigned long fc;
206 
207 	/* Pick the correct function code based on the key length */
208 	fc = (key_len == 16) ? CPACF_KM_AES_128 :
209 	     (key_len == 24) ? CPACF_KM_AES_192 :
210 	     (key_len == 32) ? CPACF_KM_AES_256 : 0;
211 
212 	/* Check if the function code is available */
213 	sctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
214 	if (!sctx->fc)
215 		return setkey_fallback_skcipher(tfm, in_key, key_len);
216 
217 	sctx->key_len = key_len;
218 	memcpy(sctx->key, in_key, key_len);
219 	return 0;
220 }
221 
222 static int ecb_aes_crypt(struct skcipher_request *req, unsigned long modifier)
223 {
224 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
225 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
226 	struct skcipher_walk walk;
227 	unsigned int nbytes, n;
228 	int ret;
229 
230 	if (unlikely(!sctx->fc))
231 		return fallback_skcipher_crypt(sctx, req, modifier);
232 
233 	ret = skcipher_walk_virt(&walk, req, false);
234 	while ((nbytes = walk.nbytes) != 0) {
235 		/* only use complete blocks */
236 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
237 		cpacf_km(sctx->fc | modifier, sctx->key,
238 			 walk.dst.virt.addr, walk.src.virt.addr, n);
239 		ret = skcipher_walk_done(&walk, nbytes - n);
240 	}
241 	return ret;
242 }
243 
244 static int ecb_aes_encrypt(struct skcipher_request *req)
245 {
246 	return ecb_aes_crypt(req, 0);
247 }
248 
249 static int ecb_aes_decrypt(struct skcipher_request *req)
250 {
251 	return ecb_aes_crypt(req, CPACF_DECRYPT);
252 }
253 
254 static int fallback_init_skcipher(struct crypto_skcipher *tfm)
255 {
256 	const char *name = crypto_tfm_alg_name(&tfm->base);
257 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
258 
259 	sctx->fallback.skcipher = crypto_alloc_skcipher(name, 0,
260 				CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
261 
262 	if (IS_ERR(sctx->fallback.skcipher)) {
263 		pr_err("Allocating AES fallback algorithm %s failed\n",
264 		       name);
265 		return PTR_ERR(sctx->fallback.skcipher);
266 	}
267 
268 	crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
269 				    crypto_skcipher_reqsize(sctx->fallback.skcipher));
270 	return 0;
271 }
272 
273 static void fallback_exit_skcipher(struct crypto_skcipher *tfm)
274 {
275 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
276 
277 	crypto_free_skcipher(sctx->fallback.skcipher);
278 }
279 
280 static struct skcipher_alg ecb_aes_alg = {
281 	.base.cra_name		=	"ecb(aes)",
282 	.base.cra_driver_name	=	"ecb-aes-s390",
283 	.base.cra_priority	=	401,	/* combo: aes + ecb + 1 */
284 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
285 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
286 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
287 	.base.cra_module	=	THIS_MODULE,
288 	.init			=	fallback_init_skcipher,
289 	.exit			=	fallback_exit_skcipher,
290 	.min_keysize		=	AES_MIN_KEY_SIZE,
291 	.max_keysize		=	AES_MAX_KEY_SIZE,
292 	.setkey			=	ecb_aes_set_key,
293 	.encrypt		=	ecb_aes_encrypt,
294 	.decrypt		=	ecb_aes_decrypt,
295 };
296 
297 static int cbc_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
298 			   unsigned int key_len)
299 {
300 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
301 	unsigned long fc;
302 
303 	/* Pick the correct function code based on the key length */
304 	fc = (key_len == 16) ? CPACF_KMC_AES_128 :
305 	     (key_len == 24) ? CPACF_KMC_AES_192 :
306 	     (key_len == 32) ? CPACF_KMC_AES_256 : 0;
307 
308 	/* Check if the function code is available */
309 	sctx->fc = (fc && cpacf_test_func(&kmc_functions, fc)) ? fc : 0;
310 	if (!sctx->fc)
311 		return setkey_fallback_skcipher(tfm, in_key, key_len);
312 
313 	sctx->key_len = key_len;
314 	memcpy(sctx->key, in_key, key_len);
315 	return 0;
316 }
317 
318 static int cbc_aes_crypt(struct skcipher_request *req, unsigned long modifier)
319 {
320 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
321 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
322 	struct skcipher_walk walk;
323 	unsigned int nbytes, n;
324 	int ret;
325 	struct {
326 		u8 iv[AES_BLOCK_SIZE];
327 		u8 key[AES_MAX_KEY_SIZE];
328 	} param;
329 
330 	if (unlikely(!sctx->fc))
331 		return fallback_skcipher_crypt(sctx, req, modifier);
332 
333 	ret = skcipher_walk_virt(&walk, req, false);
334 	if (ret)
335 		return ret;
336 	memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
337 	memcpy(param.key, sctx->key, sctx->key_len);
338 	while ((nbytes = walk.nbytes) != 0) {
339 		/* only use complete blocks */
340 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
341 		cpacf_kmc(sctx->fc | modifier, &param,
342 			  walk.dst.virt.addr, walk.src.virt.addr, n);
343 		memcpy(walk.iv, param.iv, AES_BLOCK_SIZE);
344 		ret = skcipher_walk_done(&walk, nbytes - n);
345 	}
346 	memzero_explicit(&param, sizeof(param));
347 	return ret;
348 }
349 
350 static int cbc_aes_encrypt(struct skcipher_request *req)
351 {
352 	return cbc_aes_crypt(req, 0);
353 }
354 
355 static int cbc_aes_decrypt(struct skcipher_request *req)
356 {
357 	return cbc_aes_crypt(req, CPACF_DECRYPT);
358 }
359 
360 static struct skcipher_alg cbc_aes_alg = {
361 	.base.cra_name		=	"cbc(aes)",
362 	.base.cra_driver_name	=	"cbc-aes-s390",
363 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
364 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
365 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
366 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
367 	.base.cra_module	=	THIS_MODULE,
368 	.init			=	fallback_init_skcipher,
369 	.exit			=	fallback_exit_skcipher,
370 	.min_keysize		=	AES_MIN_KEY_SIZE,
371 	.max_keysize		=	AES_MAX_KEY_SIZE,
372 	.ivsize			=	AES_BLOCK_SIZE,
373 	.setkey			=	cbc_aes_set_key,
374 	.encrypt		=	cbc_aes_encrypt,
375 	.decrypt		=	cbc_aes_decrypt,
376 };
377 
378 static int xts_fallback_setkey(struct crypto_skcipher *tfm, const u8 *key,
379 			       unsigned int len)
380 {
381 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
382 
383 	crypto_skcipher_clear_flags(xts_ctx->fallback, CRYPTO_TFM_REQ_MASK);
384 	crypto_skcipher_set_flags(xts_ctx->fallback,
385 				  crypto_skcipher_get_flags(tfm) &
386 				  CRYPTO_TFM_REQ_MASK);
387 	return crypto_skcipher_setkey(xts_ctx->fallback, key, len);
388 }
389 
390 static int xts_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
391 			   unsigned int key_len)
392 {
393 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
394 	unsigned long fc;
395 	int err;
396 
397 	err = xts_fallback_setkey(tfm, in_key, key_len);
398 	if (err)
399 		return err;
400 
401 	/* In fips mode only 128 bit or 256 bit keys are valid */
402 	if (fips_enabled && key_len != 32 && key_len != 64)
403 		return -EINVAL;
404 
405 	/* Pick the correct function code based on the key length */
406 	fc = (key_len == 32) ? CPACF_KM_XTS_128 :
407 	     (key_len == 64) ? CPACF_KM_XTS_256 : 0;
408 
409 	/* Check if the function code is available */
410 	xts_ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
411 	if (!xts_ctx->fc)
412 		return 0;
413 
414 	/* Split the XTS key into the two subkeys */
415 	key_len = key_len / 2;
416 	xts_ctx->key_len = key_len;
417 	memcpy(xts_ctx->key, in_key, key_len);
418 	memcpy(xts_ctx->pcc_key, in_key + key_len, key_len);
419 	return 0;
420 }
421 
422 static int xts_aes_crypt(struct skcipher_request *req, unsigned long modifier)
423 {
424 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
425 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
426 	struct skcipher_walk walk;
427 	unsigned int offset, nbytes, n;
428 	int ret;
429 	struct {
430 		u8 key[32];
431 		u8 tweak[16];
432 		u8 block[16];
433 		u8 bit[16];
434 		u8 xts[16];
435 	} pcc_param;
436 	struct {
437 		u8 key[32];
438 		u8 init[16];
439 	} xts_param;
440 
441 	if (req->cryptlen < AES_BLOCK_SIZE)
442 		return -EINVAL;
443 
444 	if (unlikely(!xts_ctx->fc || (req->cryptlen % AES_BLOCK_SIZE) != 0)) {
445 		struct skcipher_request *subreq = skcipher_request_ctx(req);
446 
447 		*subreq = *req;
448 		skcipher_request_set_tfm(subreq, xts_ctx->fallback);
449 		return (modifier & CPACF_DECRYPT) ?
450 			crypto_skcipher_decrypt(subreq) :
451 			crypto_skcipher_encrypt(subreq);
452 	}
453 
454 	ret = skcipher_walk_virt(&walk, req, false);
455 	if (ret)
456 		return ret;
457 	offset = xts_ctx->key_len & 0x10;
458 	memset(pcc_param.block, 0, sizeof(pcc_param.block));
459 	memset(pcc_param.bit, 0, sizeof(pcc_param.bit));
460 	memset(pcc_param.xts, 0, sizeof(pcc_param.xts));
461 	memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
462 	memcpy(pcc_param.key + offset, xts_ctx->pcc_key, xts_ctx->key_len);
463 	cpacf_pcc(xts_ctx->fc, pcc_param.key + offset);
464 
465 	memcpy(xts_param.key + offset, xts_ctx->key, xts_ctx->key_len);
466 	memcpy(xts_param.init, pcc_param.xts, 16);
467 
468 	while ((nbytes = walk.nbytes) != 0) {
469 		/* only use complete blocks */
470 		n = nbytes & ~(AES_BLOCK_SIZE - 1);
471 		cpacf_km(xts_ctx->fc | modifier, xts_param.key + offset,
472 			 walk.dst.virt.addr, walk.src.virt.addr, n);
473 		ret = skcipher_walk_done(&walk, nbytes - n);
474 	}
475 	memzero_explicit(&pcc_param, sizeof(pcc_param));
476 	memzero_explicit(&xts_param, sizeof(xts_param));
477 	return ret;
478 }
479 
480 static int xts_aes_encrypt(struct skcipher_request *req)
481 {
482 	return xts_aes_crypt(req, 0);
483 }
484 
485 static int xts_aes_decrypt(struct skcipher_request *req)
486 {
487 	return xts_aes_crypt(req, CPACF_DECRYPT);
488 }
489 
490 static int xts_fallback_init(struct crypto_skcipher *tfm)
491 {
492 	const char *name = crypto_tfm_alg_name(&tfm->base);
493 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
494 
495 	xts_ctx->fallback = crypto_alloc_skcipher(name, 0,
496 				CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
497 
498 	if (IS_ERR(xts_ctx->fallback)) {
499 		pr_err("Allocating XTS fallback algorithm %s failed\n",
500 		       name);
501 		return PTR_ERR(xts_ctx->fallback);
502 	}
503 	crypto_skcipher_set_reqsize(tfm, sizeof(struct skcipher_request) +
504 				    crypto_skcipher_reqsize(xts_ctx->fallback));
505 	return 0;
506 }
507 
508 static void xts_fallback_exit(struct crypto_skcipher *tfm)
509 {
510 	struct s390_xts_ctx *xts_ctx = crypto_skcipher_ctx(tfm);
511 
512 	crypto_free_skcipher(xts_ctx->fallback);
513 }
514 
515 static struct skcipher_alg xts_aes_alg = {
516 	.base.cra_name		=	"xts(aes)",
517 	.base.cra_driver_name	=	"xts-aes-s390",
518 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
519 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
520 	.base.cra_blocksize	=	AES_BLOCK_SIZE,
521 	.base.cra_ctxsize	=	sizeof(struct s390_xts_ctx),
522 	.base.cra_module	=	THIS_MODULE,
523 	.init			=	xts_fallback_init,
524 	.exit			=	xts_fallback_exit,
525 	.min_keysize		=	2 * AES_MIN_KEY_SIZE,
526 	.max_keysize		=	2 * AES_MAX_KEY_SIZE,
527 	.ivsize			=	AES_BLOCK_SIZE,
528 	.setkey			=	xts_aes_set_key,
529 	.encrypt		=	xts_aes_encrypt,
530 	.decrypt		=	xts_aes_decrypt,
531 };
532 
533 static int ctr_aes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
534 			   unsigned int key_len)
535 {
536 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
537 	unsigned long fc;
538 
539 	/* Pick the correct function code based on the key length */
540 	fc = (key_len == 16) ? CPACF_KMCTR_AES_128 :
541 	     (key_len == 24) ? CPACF_KMCTR_AES_192 :
542 	     (key_len == 32) ? CPACF_KMCTR_AES_256 : 0;
543 
544 	/* Check if the function code is available */
545 	sctx->fc = (fc && cpacf_test_func(&kmctr_functions, fc)) ? fc : 0;
546 	if (!sctx->fc)
547 		return setkey_fallback_skcipher(tfm, in_key, key_len);
548 
549 	sctx->key_len = key_len;
550 	memcpy(sctx->key, in_key, key_len);
551 	return 0;
552 }
553 
554 static unsigned int __ctrblk_init(u8 *ctrptr, u8 *iv, unsigned int nbytes)
555 {
556 	unsigned int i, n;
557 
558 	/* only use complete blocks, max. PAGE_SIZE */
559 	memcpy(ctrptr, iv, AES_BLOCK_SIZE);
560 	n = (nbytes > PAGE_SIZE) ? PAGE_SIZE : nbytes & ~(AES_BLOCK_SIZE - 1);
561 	for (i = (n / AES_BLOCK_SIZE) - 1; i > 0; i--) {
562 		memcpy(ctrptr + AES_BLOCK_SIZE, ctrptr, AES_BLOCK_SIZE);
563 		crypto_inc(ctrptr + AES_BLOCK_SIZE, AES_BLOCK_SIZE);
564 		ctrptr += AES_BLOCK_SIZE;
565 	}
566 	return n;
567 }
568 
569 static int ctr_aes_crypt(struct skcipher_request *req)
570 {
571 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
572 	struct s390_aes_ctx *sctx = crypto_skcipher_ctx(tfm);
573 	u8 buf[AES_BLOCK_SIZE], *ctrptr;
574 	struct skcipher_walk walk;
575 	unsigned int n, nbytes;
576 	int ret, locked;
577 
578 	if (unlikely(!sctx->fc))
579 		return fallback_skcipher_crypt(sctx, req, 0);
580 
581 	locked = mutex_trylock(&ctrblk_lock);
582 
583 	ret = skcipher_walk_virt(&walk, req, false);
584 	while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
585 		n = AES_BLOCK_SIZE;
586 
587 		if (nbytes >= 2*AES_BLOCK_SIZE && locked)
588 			n = __ctrblk_init(ctrblk, walk.iv, nbytes);
589 		ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
590 		cpacf_kmctr(sctx->fc, sctx->key, walk.dst.virt.addr,
591 			    walk.src.virt.addr, n, ctrptr);
592 		if (ctrptr == ctrblk)
593 			memcpy(walk.iv, ctrptr + n - AES_BLOCK_SIZE,
594 			       AES_BLOCK_SIZE);
595 		crypto_inc(walk.iv, AES_BLOCK_SIZE);
596 		ret = skcipher_walk_done(&walk, nbytes - n);
597 	}
598 	if (locked)
599 		mutex_unlock(&ctrblk_lock);
600 	/*
601 	 * final block may be < AES_BLOCK_SIZE, copy only nbytes
602 	 */
603 	if (nbytes) {
604 		cpacf_kmctr(sctx->fc, sctx->key, buf, walk.src.virt.addr,
605 			    AES_BLOCK_SIZE, walk.iv);
606 		memcpy(walk.dst.virt.addr, buf, nbytes);
607 		crypto_inc(walk.iv, AES_BLOCK_SIZE);
608 		ret = skcipher_walk_done(&walk, 0);
609 	}
610 
611 	return ret;
612 }
613 
614 static struct skcipher_alg ctr_aes_alg = {
615 	.base.cra_name		=	"ctr(aes)",
616 	.base.cra_driver_name	=	"ctr-aes-s390",
617 	.base.cra_priority	=	402,	/* ecb-aes-s390 + 1 */
618 	.base.cra_flags		=	CRYPTO_ALG_NEED_FALLBACK,
619 	.base.cra_blocksize	=	1,
620 	.base.cra_ctxsize	=	sizeof(struct s390_aes_ctx),
621 	.base.cra_module	=	THIS_MODULE,
622 	.init			=	fallback_init_skcipher,
623 	.exit			=	fallback_exit_skcipher,
624 	.min_keysize		=	AES_MIN_KEY_SIZE,
625 	.max_keysize		=	AES_MAX_KEY_SIZE,
626 	.ivsize			=	AES_BLOCK_SIZE,
627 	.setkey			=	ctr_aes_set_key,
628 	.encrypt		=	ctr_aes_crypt,
629 	.decrypt		=	ctr_aes_crypt,
630 	.chunksize		=	AES_BLOCK_SIZE,
631 };
632 
633 static int gcm_aes_setkey(struct crypto_aead *tfm, const u8 *key,
634 			  unsigned int keylen)
635 {
636 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
637 
638 	switch (keylen) {
639 	case AES_KEYSIZE_128:
640 		ctx->fc = CPACF_KMA_GCM_AES_128;
641 		break;
642 	case AES_KEYSIZE_192:
643 		ctx->fc = CPACF_KMA_GCM_AES_192;
644 		break;
645 	case AES_KEYSIZE_256:
646 		ctx->fc = CPACF_KMA_GCM_AES_256;
647 		break;
648 	default:
649 		return -EINVAL;
650 	}
651 
652 	memcpy(ctx->key, key, keylen);
653 	ctx->key_len = keylen;
654 	return 0;
655 }
656 
657 static int gcm_aes_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
658 {
659 	switch (authsize) {
660 	case 4:
661 	case 8:
662 	case 12:
663 	case 13:
664 	case 14:
665 	case 15:
666 	case 16:
667 		break;
668 	default:
669 		return -EINVAL;
670 	}
671 
672 	return 0;
673 }
674 
675 static void gcm_walk_start(struct gcm_sg_walk *gw, struct scatterlist *sg,
676 			   unsigned int len)
677 {
678 	memset(gw, 0, sizeof(*gw));
679 	gw->walk_bytes_remain = len;
680 	scatterwalk_start(&gw->walk, sg);
681 }
682 
683 static inline unsigned int _gcm_sg_clamp_and_map(struct gcm_sg_walk *gw)
684 {
685 	struct scatterlist *nextsg;
686 
687 	gw->walk_bytes = scatterwalk_clamp(&gw->walk, gw->walk_bytes_remain);
688 	while (!gw->walk_bytes) {
689 		nextsg = sg_next(gw->walk.sg);
690 		if (!nextsg)
691 			return 0;
692 		scatterwalk_start(&gw->walk, nextsg);
693 		gw->walk_bytes = scatterwalk_clamp(&gw->walk,
694 						   gw->walk_bytes_remain);
695 	}
696 	gw->walk_ptr = scatterwalk_map(&gw->walk);
697 	return gw->walk_bytes;
698 }
699 
700 static inline void _gcm_sg_unmap_and_advance(struct gcm_sg_walk *gw,
701 					     unsigned int nbytes)
702 {
703 	gw->walk_bytes_remain -= nbytes;
704 	scatterwalk_unmap(&gw->walk);
705 	scatterwalk_advance(&gw->walk, nbytes);
706 	scatterwalk_done(&gw->walk, 0, gw->walk_bytes_remain);
707 	gw->walk_ptr = NULL;
708 }
709 
710 static int gcm_in_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
711 {
712 	int n;
713 
714 	if (gw->buf_bytes && gw->buf_bytes >= minbytesneeded) {
715 		gw->ptr = gw->buf;
716 		gw->nbytes = gw->buf_bytes;
717 		goto out;
718 	}
719 
720 	if (gw->walk_bytes_remain == 0) {
721 		gw->ptr = NULL;
722 		gw->nbytes = 0;
723 		goto out;
724 	}
725 
726 	if (!_gcm_sg_clamp_and_map(gw)) {
727 		gw->ptr = NULL;
728 		gw->nbytes = 0;
729 		goto out;
730 	}
731 
732 	if (!gw->buf_bytes && gw->walk_bytes >= minbytesneeded) {
733 		gw->ptr = gw->walk_ptr;
734 		gw->nbytes = gw->walk_bytes;
735 		goto out;
736 	}
737 
738 	while (1) {
739 		n = min(gw->walk_bytes, AES_BLOCK_SIZE - gw->buf_bytes);
740 		memcpy(gw->buf + gw->buf_bytes, gw->walk_ptr, n);
741 		gw->buf_bytes += n;
742 		_gcm_sg_unmap_and_advance(gw, n);
743 		if (gw->buf_bytes >= minbytesneeded) {
744 			gw->ptr = gw->buf;
745 			gw->nbytes = gw->buf_bytes;
746 			goto out;
747 		}
748 		if (!_gcm_sg_clamp_and_map(gw)) {
749 			gw->ptr = NULL;
750 			gw->nbytes = 0;
751 			goto out;
752 		}
753 	}
754 
755 out:
756 	return gw->nbytes;
757 }
758 
759 static int gcm_out_walk_go(struct gcm_sg_walk *gw, unsigned int minbytesneeded)
760 {
761 	if (gw->walk_bytes_remain == 0) {
762 		gw->ptr = NULL;
763 		gw->nbytes = 0;
764 		goto out;
765 	}
766 
767 	if (!_gcm_sg_clamp_and_map(gw)) {
768 		gw->ptr = NULL;
769 		gw->nbytes = 0;
770 		goto out;
771 	}
772 
773 	if (gw->walk_bytes >= minbytesneeded) {
774 		gw->ptr = gw->walk_ptr;
775 		gw->nbytes = gw->walk_bytes;
776 		goto out;
777 	}
778 
779 	scatterwalk_unmap(&gw->walk);
780 	gw->walk_ptr = NULL;
781 
782 	gw->ptr = gw->buf;
783 	gw->nbytes = sizeof(gw->buf);
784 
785 out:
786 	return gw->nbytes;
787 }
788 
789 static int gcm_in_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
790 {
791 	if (gw->ptr == NULL)
792 		return 0;
793 
794 	if (gw->ptr == gw->buf) {
795 		int n = gw->buf_bytes - bytesdone;
796 		if (n > 0) {
797 			memmove(gw->buf, gw->buf + bytesdone, n);
798 			gw->buf_bytes = n;
799 		} else
800 			gw->buf_bytes = 0;
801 	} else
802 		_gcm_sg_unmap_and_advance(gw, bytesdone);
803 
804 	return bytesdone;
805 }
806 
807 static int gcm_out_walk_done(struct gcm_sg_walk *gw, unsigned int bytesdone)
808 {
809 	int i, n;
810 
811 	if (gw->ptr == NULL)
812 		return 0;
813 
814 	if (gw->ptr == gw->buf) {
815 		for (i = 0; i < bytesdone; i += n) {
816 			if (!_gcm_sg_clamp_and_map(gw))
817 				return i;
818 			n = min(gw->walk_bytes, bytesdone - i);
819 			memcpy(gw->walk_ptr, gw->buf + i, n);
820 			_gcm_sg_unmap_and_advance(gw, n);
821 		}
822 	} else
823 		_gcm_sg_unmap_and_advance(gw, bytesdone);
824 
825 	return bytesdone;
826 }
827 
828 static int gcm_aes_crypt(struct aead_request *req, unsigned int flags)
829 {
830 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
831 	struct s390_aes_ctx *ctx = crypto_aead_ctx(tfm);
832 	unsigned int ivsize = crypto_aead_ivsize(tfm);
833 	unsigned int taglen = crypto_aead_authsize(tfm);
834 	unsigned int aadlen = req->assoclen;
835 	unsigned int pclen = req->cryptlen;
836 	int ret = 0;
837 
838 	unsigned int n, len, in_bytes, out_bytes,
839 		     min_bytes, bytes, aad_bytes, pc_bytes;
840 	struct gcm_sg_walk gw_in, gw_out;
841 	u8 tag[GHASH_DIGEST_SIZE];
842 
843 	struct {
844 		u32 _[3];		/* reserved */
845 		u32 cv;			/* Counter Value */
846 		u8 t[GHASH_DIGEST_SIZE];/* Tag */
847 		u8 h[AES_BLOCK_SIZE];	/* Hash-subkey */
848 		u64 taadl;		/* Total AAD Length */
849 		u64 tpcl;		/* Total Plain-/Cipher-text Length */
850 		u8 j0[GHASH_BLOCK_SIZE];/* initial counter value */
851 		u8 k[AES_MAX_KEY_SIZE];	/* Key */
852 	} param;
853 
854 	/*
855 	 * encrypt
856 	 *   req->src: aad||plaintext
857 	 *   req->dst: aad||ciphertext||tag
858 	 * decrypt
859 	 *   req->src: aad||ciphertext||tag
860 	 *   req->dst: aad||plaintext, return 0 or -EBADMSG
861 	 * aad, plaintext and ciphertext may be empty.
862 	 */
863 	if (flags & CPACF_DECRYPT)
864 		pclen -= taglen;
865 	len = aadlen + pclen;
866 
867 	memset(&param, 0, sizeof(param));
868 	param.cv = 1;
869 	param.taadl = aadlen * 8;
870 	param.tpcl = pclen * 8;
871 	memcpy(param.j0, req->iv, ivsize);
872 	*(u32 *)(param.j0 + ivsize) = 1;
873 	memcpy(param.k, ctx->key, ctx->key_len);
874 
875 	gcm_walk_start(&gw_in, req->src, len);
876 	gcm_walk_start(&gw_out, req->dst, len);
877 
878 	do {
879 		min_bytes = min_t(unsigned int,
880 				  aadlen > 0 ? aadlen : pclen, AES_BLOCK_SIZE);
881 		in_bytes = gcm_in_walk_go(&gw_in, min_bytes);
882 		out_bytes = gcm_out_walk_go(&gw_out, min_bytes);
883 		bytes = min(in_bytes, out_bytes);
884 
885 		if (aadlen + pclen <= bytes) {
886 			aad_bytes = aadlen;
887 			pc_bytes = pclen;
888 			flags |= CPACF_KMA_LAAD | CPACF_KMA_LPC;
889 		} else {
890 			if (aadlen <= bytes) {
891 				aad_bytes = aadlen;
892 				pc_bytes = (bytes - aadlen) &
893 					   ~(AES_BLOCK_SIZE - 1);
894 				flags |= CPACF_KMA_LAAD;
895 			} else {
896 				aad_bytes = bytes & ~(AES_BLOCK_SIZE - 1);
897 				pc_bytes = 0;
898 			}
899 		}
900 
901 		if (aad_bytes > 0)
902 			memcpy(gw_out.ptr, gw_in.ptr, aad_bytes);
903 
904 		cpacf_kma(ctx->fc | flags, &param,
905 			  gw_out.ptr + aad_bytes,
906 			  gw_in.ptr + aad_bytes, pc_bytes,
907 			  gw_in.ptr, aad_bytes);
908 
909 		n = aad_bytes + pc_bytes;
910 		if (gcm_in_walk_done(&gw_in, n) != n)
911 			return -ENOMEM;
912 		if (gcm_out_walk_done(&gw_out, n) != n)
913 			return -ENOMEM;
914 		aadlen -= aad_bytes;
915 		pclen -= pc_bytes;
916 	} while (aadlen + pclen > 0);
917 
918 	if (flags & CPACF_DECRYPT) {
919 		scatterwalk_map_and_copy(tag, req->src, len, taglen, 0);
920 		if (crypto_memneq(tag, param.t, taglen))
921 			ret = -EBADMSG;
922 	} else
923 		scatterwalk_map_and_copy(param.t, req->dst, len, taglen, 1);
924 
925 	memzero_explicit(&param, sizeof(param));
926 	return ret;
927 }
928 
929 static int gcm_aes_encrypt(struct aead_request *req)
930 {
931 	return gcm_aes_crypt(req, CPACF_ENCRYPT);
932 }
933 
934 static int gcm_aes_decrypt(struct aead_request *req)
935 {
936 	return gcm_aes_crypt(req, CPACF_DECRYPT);
937 }
938 
939 static struct aead_alg gcm_aes_aead = {
940 	.setkey			= gcm_aes_setkey,
941 	.setauthsize		= gcm_aes_setauthsize,
942 	.encrypt		= gcm_aes_encrypt,
943 	.decrypt		= gcm_aes_decrypt,
944 
945 	.ivsize			= GHASH_BLOCK_SIZE - sizeof(u32),
946 	.maxauthsize		= GHASH_DIGEST_SIZE,
947 	.chunksize		= AES_BLOCK_SIZE,
948 
949 	.base			= {
950 		.cra_blocksize		= 1,
951 		.cra_ctxsize		= sizeof(struct s390_aes_ctx),
952 		.cra_priority		= 900,
953 		.cra_name		= "gcm(aes)",
954 		.cra_driver_name	= "gcm-aes-s390",
955 		.cra_module		= THIS_MODULE,
956 	},
957 };
958 
959 static struct crypto_alg *aes_s390_alg;
960 static struct skcipher_alg *aes_s390_skcipher_algs[4];
961 static int aes_s390_skciphers_num;
962 static struct aead_alg *aes_s390_aead_alg;
963 
964 static int aes_s390_register_skcipher(struct skcipher_alg *alg)
965 {
966 	int ret;
967 
968 	ret = crypto_register_skcipher(alg);
969 	if (!ret)
970 		aes_s390_skcipher_algs[aes_s390_skciphers_num++] = alg;
971 	return ret;
972 }
973 
974 static void aes_s390_fini(void)
975 {
976 	if (aes_s390_alg)
977 		crypto_unregister_alg(aes_s390_alg);
978 	while (aes_s390_skciphers_num--)
979 		crypto_unregister_skcipher(aes_s390_skcipher_algs[aes_s390_skciphers_num]);
980 	if (ctrblk)
981 		free_page((unsigned long) ctrblk);
982 
983 	if (aes_s390_aead_alg)
984 		crypto_unregister_aead(aes_s390_aead_alg);
985 }
986 
987 static int __init aes_s390_init(void)
988 {
989 	int ret;
990 
991 	/* Query available functions for KM, KMC, KMCTR and KMA */
992 	cpacf_query(CPACF_KM, &km_functions);
993 	cpacf_query(CPACF_KMC, &kmc_functions);
994 	cpacf_query(CPACF_KMCTR, &kmctr_functions);
995 	cpacf_query(CPACF_KMA, &kma_functions);
996 
997 	if (cpacf_test_func(&km_functions, CPACF_KM_AES_128) ||
998 	    cpacf_test_func(&km_functions, CPACF_KM_AES_192) ||
999 	    cpacf_test_func(&km_functions, CPACF_KM_AES_256)) {
1000 		ret = crypto_register_alg(&aes_alg);
1001 		if (ret)
1002 			goto out_err;
1003 		aes_s390_alg = &aes_alg;
1004 		ret = aes_s390_register_skcipher(&ecb_aes_alg);
1005 		if (ret)
1006 			goto out_err;
1007 	}
1008 
1009 	if (cpacf_test_func(&kmc_functions, CPACF_KMC_AES_128) ||
1010 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_192) ||
1011 	    cpacf_test_func(&kmc_functions, CPACF_KMC_AES_256)) {
1012 		ret = aes_s390_register_skcipher(&cbc_aes_alg);
1013 		if (ret)
1014 			goto out_err;
1015 	}
1016 
1017 	if (cpacf_test_func(&km_functions, CPACF_KM_XTS_128) ||
1018 	    cpacf_test_func(&km_functions, CPACF_KM_XTS_256)) {
1019 		ret = aes_s390_register_skcipher(&xts_aes_alg);
1020 		if (ret)
1021 			goto out_err;
1022 	}
1023 
1024 	if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_128) ||
1025 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_192) ||
1026 	    cpacf_test_func(&kmctr_functions, CPACF_KMCTR_AES_256)) {
1027 		ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
1028 		if (!ctrblk) {
1029 			ret = -ENOMEM;
1030 			goto out_err;
1031 		}
1032 		ret = aes_s390_register_skcipher(&ctr_aes_alg);
1033 		if (ret)
1034 			goto out_err;
1035 	}
1036 
1037 	if (cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_128) ||
1038 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_192) ||
1039 	    cpacf_test_func(&kma_functions, CPACF_KMA_GCM_AES_256)) {
1040 		ret = crypto_register_aead(&gcm_aes_aead);
1041 		if (ret)
1042 			goto out_err;
1043 		aes_s390_aead_alg = &gcm_aes_aead;
1044 	}
1045 
1046 	return 0;
1047 out_err:
1048 	aes_s390_fini();
1049 	return ret;
1050 }
1051 
1052 module_cpu_feature_match(MSA, aes_s390_init);
1053 module_exit(aes_s390_fini);
1054 
1055 MODULE_ALIAS_CRYPTO("aes-all");
1056 
1057 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
1058 MODULE_LICENSE("GPL");
1059 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
1060